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1. ABSTRACT

Alzheimer’s disease (AD) is one of the 
most common neurodegenerative diseases that 
influences the central nervous system, often leading 
to dire consequences for quality of life. The disease 
goes through some stages mainly divided into early, 
moderate, and severe. Among them, the early stage 
is the most important as medical intervention has the 
potential to alter the natural progression of the condition. 
In practice, the early diagnosis is a challenge since the 
neurodegenerative changes can precede the onset of 
clinical symptoms by 10–15 years. This factor along 

with other known and unknown ones, hinder the ability 
for the early diagnosis and treatment of AD. Numerous 
research efforts have been proposed to address the 
complex characteristics of AD exploiting various tests 
including brain imaging that is massively utilized due to 
its powerful features. This paper aims to highlight our 
present knowledge on the clinical and computer-based 
attempts at early diagnosis of AD. We concluded that 
the door is still open for further research especially 
with the rapid advances in scanning and computer-
based technologies.
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2. INTRODUCTION

Alzheimer’s disease (AD) is a 
neurodegenerative disease that affects the central 
nervous system (CNS), causing dementia as described 
by the World Health Organization (1). Statistically, AD is 
the most common neurodegenerative disease among 
the elderly population, accounting for approximately 
70 % of all cases of dementia (2). The incidence of AD 
increases with age, affecting 6 % of people between 
70 and 74 years and reaching a prevalence of 42% in 
individuals over 85 years old. Although less common, 
early-onset forms of AD can occur in people younger 
than 70 years of age (3).

The seriousness of AD is manifested in the 
progressive nature of the condition. The AD patient 
presents with worsening clinical features including 
progressive cognitive deficits and disturbances 
of thought, perception, affect, and behaviors. The 
patient’s cerebrum is afflicted with neurofibrillary 
tangles, neuritic plaques, neuronal loss, Hirano 
bodies, granulovacuolar degeneration, and amyloid 
angiopathy, all pathologies present in differing degrees 
from one patient to another (4). The progressive 
neurological decline, with the consequent loss of 
memory and the ability to perform basic daily activities, 
may prove fatal (5).

As is the case with many diseases, the 
early diagnosis of AD can help to preserve patients’ 
quality of life, with therapies aimed at slowing the 
progression of the disease (6). However, the early 
diagnosis of AD is a challenging task due in part to 
the diversity of clinical features that can manifest in 
the disease’s earliest stages (4). Moreover, the onset 
of neuropathological features characteristic of AD 
may precede the onset of clinical symptoms by ten 
to fifteen years. The delay may allow for massive 
neurodegeneration to occur undetected. Finally, the 
ambiguity about the pathophysiology of the disease 
and any putative cause(s) add to the challenges for an 
early diagnosis of AD.

There have been many scientific endeavors to 
clarify this complex disease. These efforts have looked 
at common features found in AD patients’ medical 
history, mental and the physical status, laboratory tests, 
neurological, neuropsychological, and psychiatric 
evaluations, as well as neuroimaging findings (7). Of 
these tests, there has been the extensive utilization of 
brain imaging due to its increasing clinical availability 
and utility. Neuroimaging modalities have the ability 
to rule out other structural abnormalities as well as 
evaluate both the location and the degree of atrophy. 
Some modalities play a role in assessing metabolic 
abnormalities when the structural abnormalities are 
either absent or inconclusive. Finally, brain imaging 
can identify preclinical and mild cognitive impairment 

(MCI) in AD, which facilitates the implementation of 
possible innovative therapeutic endeavors (8). It is 
important to note that brain scans are still expected 
to provide much more diagnostic and clinical utility, 
especially with the rapid development of new scanning 
technologies and analysis tools.

Before discussing the studies of the imaging 
technologies related to AD, a little background on 
the neuropathology of AD can provide a better 
understanding of the disease, as well as clarify the 
challenges faced by patients who struggle with this 
progressive disorder.

2.1 Neuropathology of AD

AD is one of the two most common 
degenerative diseases of the CNS, the other being 
Parkinson’s disease. AD is characterized by two types 
of lesion commonly used to diagnose the disease a 
posteriori: extracellular neuritic plaques (previously 
called senile plaques) and neurofibrillary tangles (10). 
Extracellular neuritic plaques form in the neuropil 
surrounding the neurons and interfere with their 
functionality (11, 12). Within the neurons themselves, 
the abnormal structures known as neurofibrillary 
tangles build up, suppress the intracellular transport 
system, and finally cause cell death. The ensuing 
cellular loss leads to memory deficits and, as the 
process continues, brain shrinkage that results in 
gradual loss of function (11, 12).

Various areas of the brain are differentially 
affected throughout the course of the disease. 
Neurodegenerative changes are first manifested 
in the hippocampal formation and the entorhinal 
cortex, impacting the ability to form memories. From 
there it progresses to other areas of the temporal 
lobe, influencing hearing which can lead to suspicion 
and misunderstanding because of communication 
problems. Parietal lobes are the next brain region to be 
affected, with a consequent loss of ability to integrate 
visual, auditory, and somatosensory information. The 
frontal lobes are last to be affected, leading to socially 
inappropriate/unacceptable behavior and impaired 
judgment and reasoning.

2.2. Staging of AD progression

Systems have been devised to classify the 
degree to which AD has progressed. There are three 
such systems, known as three-, six- and seven-stage 
classification strategies. Among these classifications, 
the three-stage and seven-stage strategies are the 
most commonly used (13), with the latter being a 
refinement of the former. Of the two, the three-stage 
strategy is more widely used. Therefore, a brief 
description of the three-stage strategy and the main 
characteristics of each stage is presented while more 
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details regarding the seven-stage strategy can be found 
through Ali (13):

1.  Pre-AD: In this stage, the disease-related 
symptoms are common even with persons not 
afflicted with AD. Therefore, any abnormality in 
daily life activities will not be noticed at a level 
which would cause concern.

2.  Early (mild) AD: At this point, the abnormalities begin 
to be obvious, leading the patient to be concerned 
about his/her memory and get frustrated or angry. 
They do not correctly accomplish job assignments 
and have difficulties in performing tasks in a social 
setting

3.  Intermediate (moderate) AD: The disease spreads 
and covers a larger area of the brain that influences 
sensory processing, reasoning, and thoughts. The 
patients’ forgetfulness now includes old facts, which 
contributes to difficulties in performing required 
duties and increases the rate of agitation.

4.  Late (severe) AD: It is the last and most difficult 
stage that faces the AD patients’ family and 
caregivers due to the expansion of the damaged 
nerve cells making the patient require around-
the-clock assistance. The patient will have 
difficulty walking, making him or her susceptible to 
complications such as pneumonia.

3. IMAGING IN AD

Medical imaging technologies have an effective 
role in revealing how the pathology of AD influences 
the brain. For instance, magnetic resonance imaging 
(MRI) technology can define the common occurrence 
of atrophy of the temporal lobes’ medial structures (i.e., 
hippocampus and entorhinal cortex) in AD patients 
(14). Diffusion tensor imaging (DTI) measures the fiber 
tract integrity that directly helps in assessing the fibers 
of the white matter (WM). In addition, it reflects any 
disruption in the axons through the random movement 
of water molecules in tissues. Therefore, DTI facilitates 
the characterization of AD since such disruption would 
cause a reduction in the anisotropy (i.e., the water 
molecules’ movement along the neural tract length is 
greater than those across the tract’s width). Also, the 
regional analysis of the DTI shows that the changes in 
the hippocampal microstructure may represent a better 
indicator of the MCI progression risk to AD (15).

Studying both the resting and the activation 
states of the functional magnetic resonance imaging 
(fMRI) technology indicates the lesser-coordinated 
activity of AD patients compared with normal subjects 
in the hippocampus, inferior parietal lobes, and the 
cingulate cortex. Single photon emission computed 
tomography (SPECT), and positron emission 
tomography (PET), the main applications of emission-
computed tomography (ECT) medical imaging 
modalities, reflect the detail of the progression of 

brain changes (14). PET technology is considered a 
powerful tool for demonstrating the alterations of brain 
function by reflecting the brain condition at a molecular 
and cellular level. Before reviewing the current role of 
the other technologies in the early diagnosis of AD, a 
description of the AD stages will be presented.

As previously mentioned, the early diagnosis 
of AD can assist in prolonging and enhancing the 
AD patient’s life. Despite the constant attempts of 
researchers to enhance knowledge in this area, the 
early diagnosis of the disease remains a challenge. 
Various scientific efforts were proposed throughout the 
last few decades to address the significant role of brain 
imaging in the early diagnosis of AD. These studies 
delineated the progression of AD and removed the 
ambiguity that surrounds the disease.

There is some reviews in the recent literature, 
summarizing the current advances regarding the 
early detection of AD (16–27). Some of these reviews 
focus only on specific brain imaging modalities, while 
others consider the combination of neuroimaging with 
other AD-related biomarkers. These reviews highlight 
findings in the preclinical or the MCI stage of AD. 
The present review, while also describing anatomical 
and clinical findings regarding stage 1 and stage 
2 AD, primarily deals with computer-based methods 
that assist in defining these stages. Focus on the 
methodology is due to the rapid advances in biomedical 
imaging, which are leading to powerful new tools in 
diverse areas computer-assisted medicine including 
the management of AD. The review is organized by 
the significance of the modalities as follows: structural 
MRI is described first, followed by ECT modalities, and 
lastly the lesser used modalities, fMRI and DTI. After 
presenting the studies in each of these modalities, 
we discuss fusion methods where multi-modal data 
are combined to provide more informative results that 
consequently assist the early diagnosis of AD.

3.1. Magnetic resonance imaging (MRI)

MRI is a widely used, powerful assistive 
technology in diagnosing a variety of pathologies. This 
role is due to the level of detail and contrast it can 
achieve in its tomographic reconstructions. Besides 
differentiating tissue types by chemical composition 
(hydrogen content), MRI can additionally determine 
viscosity, stiffness, and protein content of the tissues 
(14). With signal intensity dependent on proton density 
and magnetization (spin-spin and spin-lattice relaxation 
times, T1 and T2, respectively), MRI is capable of 
unparalleled soft tissue definition for a non-invasive 
procedure (28, 29).

In AD, MRI has been widely utilized to study 
brain atrophy, which commonly occurs first in medial 
structures of the temporal lobe (21–32). Some studies 
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have demonstrated the progression of atrophy from 
entorhinal cortex to the hippocampus, amygdala, and 
parahippocampus (33–36). Additionally, the analysis of 
MRI has demonstrated the association between atrophy 
in MCI patients and the increased risk of developing 
AD that in turn helps in predicting future decline in 
healthy adults’ memory. Besides such investigations, 
the volumetric analysis of the structural MR imaging 
technique may assist in detecting significant changes 
in the volumes of different brain regions, which in 
turn represent a promising indicator for the diagnosis 
process during the progression of AD (26). Examples 
of MRI-based visualization of the brain atrophy in an 
MCI subject and throughout the disease progression 
are presented in Figure 1 and Figure 2, respectively.

Yang et al. (37) introduced a classification 
framework of AD, amnestic MCI (aMCI), and 
dysexecutive MCI (dMCI). Further details regarding 
the difference between aMCI and dMCI can be found 
through Pa et al. (38). This framework used principal 
component analysis (PCA) for feature reduction and a 
self-organizing map (SOM) for the classification task. 
In addition, the study evaluated the accuracy of using 
volume features, shape features, a combination of 
the two, and both of them in addition to PCA-derived 
features. The results showed superior classifier 
performance when combining volume, shape and 
PCA. Although there was an improvement in the 
classification results, weak results were obtained all 
cases differentiating aMCI from dMCI.

Figure 1. Examples of MRI-based visualization of three subjects: NC, MCI, and AD (left to right). The red circles show the degree of hippocampus atrophy 
that absents in NC, start to appear in MCI and clearly appeared in the AD subject.

Figure 2. Different scans show the progression of the brain atrophies in an MCI subject with a year separating between each scan and the next. The red 
rectangles show the progression of the atrophies in the entorhinal cortex, hippocampus, amygdala and parahippocampus.
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Wolz et al. (39) aimed to examine four MRI 
related features in AD: hippocampal volume (HV), 
tensor-based morphometry (TBM), cortical thickness 
(CTH), and a feature extracted from a recently 
proposed manifold-based learning (MBL) through 
performing a classification task. For classification, 
support vector machine (SVM) and linear discriminant 
analysis (LDA) with these features were tested. The 
evaluation of utilizing the features individually showed 
that TBM provided the best results followed by MBL. 
Evaluating the classifiers showed that LDA obtained 
the best results on individual features. Finally, the 
combination of all features provided the most stable 
and reliable results of classification.

Varghese et al. (40) proposed a computer-
aided diagnosis (CAD) system built on the combination 
of the bacterial foraging optimization (BFO) along with 
artificial neural network (ANN) to assist in the early 
diagnosis of AD. The proposed method illustrated that 
BFO-ANN segmentation algorithm could be used to 
distinguish between normal and abnormal MRIs of the 
brain. The method achieved classification accuracy 
up to 92%.

Mahmood and Ghimire (41) presented an 
automated system for diagnosing AD. This study 
was characterized by two aspects. First, rather than 
reducing the dimensionality of image descriptors to 
three dimensions as in the related work, which could 
compromise the information and consequently reduce 
the accuracy, they applied PCA to reduce it to 150 
dimensions. The goal of this procedure was to preserve 
as much information as possible while still reducing 
dimensionality. Second, a multi-stage, multi-class feed 
forward ANN was adopted to help in classifying AD into 
its different stages starting from AD to Severe AD. The 
system achieved nearly 90% correct classification.

Shi et al. (42) focused on the automatic 
segmentation of the hippocampal subfields due to 
their relation to the early pathology of AD. Therefore, 
they introduced an automatic segmentation method 
that showed competitive results compared with related 
methods. Additionally, they proposed an exponential 
function-based, label fusion strategy for fitting the 
normalized case of the similarity measure and reported 
on the effectiveness of such a strategy when tested.

Mondal et al. (43) generated a brain atlas, 
which was represented by invariant feature key-points 
computed from a specific population. The entire brain 
was considered as a whole for such generation. 
Application of this atlas to the automated detection 
of AD-related changes showed major advantages of 
the whole-brain approach over localized methods. The 
results also showed that the proposed system has a 
satisfactory performance regarding early diagnosis 
of AD with sensitivity and a mean specificity of 97% 

and 88%, respectively. For the diagnosis of AD, while 
excluding the very mild class, the system obtained 
sensitivity and mean specificity of 73% and 76%, 
respectively.

Nayaki and Varghese (31) focused on 
identifying MCI patients using a variety of greyscale 
texture operators to extract features from the gray 
matter (GM). The texture operators used by these 
authors were local binary pattern (LBP), local ternary 
pattern (LTP), dominant local binary pattern (DLBP), 
complete local binary pattern (CLBP), adaptive local 
binary pattern (ALBP), local quinary pattern (LQP), 
local graph structure (LGS), and a custom variant of 
LBP. They found that classification by LQP showed 
the highest accuracy, at 81%, followed by LGS-based 
classification with 80%.

López-Rodríguez and García-Linares (44) 
targeted the early diagnosis of AD through proposing 
image processing methodology, population model, and 
automatic system. The proposed image processing 
methodology aimed to ensure the results’ related 
statistical validity. The population model targeted 
the structural changes noted in the progression of 
the disease from the initial stages of mild cognitive 
deterioration until the most advanced form. Regarding 
results, the proposed early diagnosis system reported 
classification results that exceed 90% accuracy. Also, 
testing GM related volumetric parameters of the NC 
versus AD subjects showed that the highest volumetric 
differences take place in the early stages of AD.

Payan and Montana (45) introduced a 
prediction method of AD-related stages through 
utilizing sparse autoencoders and convolutional neural 
networks (CNN). The novelty of the study included 
the usage of 3D convolution kernels on the MRI 
volume as a whole rather than 2D convolution kernels 
on the slices. They compared results of 2D and 3D 
convolution for different classification scenarios, 
including binary classifications (AD vs. NC, AD vs. 
MCI, and NC vs. MCI) and 3-way classification (AD, 
MCI or NC). Comparing the convolutions in such 
scenarios showed, in most cases, the more accurate 
results of the 3D convolution over 2D.

Khedher et al. (46) proposed a CAD system 
to assist in the early diagnosis of AD. The study 
tested the performance of two feature extractors, PCA 
and partial least squares (PLS), and also two SVM 
classifiers, linear SVM and SVM with the radial basis 
function (RBF) kernel. In general, the study found that 
PLS provided better classification in less computational 
time than PCA. Also, linear SVM provided good 
classification results, while more samples or smaller 
feature vectors were needed to make RBF provide 
good results. In the same context, Khedher et al. (47) 
combined independent component analysis (ICA) 
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along with SVM classifier to produce a CAD system, 
the goal of which was to assist in the early diagnosis 
of AD. To perform that, the segmented WM and GM 
were tested individually and after combining them. The 
findings support the combination of both results due 
to its impact in improving the classification accuracy.

Eskildsen et al. (30) proposed an automatic 
prediction system through focusing mainly on five key 
features: the left and right hippocampi gradings and 
the left precuneus’ CTH, left superior temporal sulcus, 
in addition to right anterior parahippocampal gyrus. 
The predictive value of the system achieved 72%, 
which reflected the significance of these features to be 
utilized for the early diagnosis of AD.

Salvatore et al. (32) worked on revealing 
sensitive and specific MR related markers that in 
turn assisted in the early diagnosis of AD through a 
machine learning approach. The study found that the 
cerebellum was not implicated in AD-related atrophy. 
Also, the pathological changes in the temporal cortex, 
hippocampus, entorhinal cortex, thalamus, insular 
cortex, anterior cingulate cortex, orbitofrontal cortex, 
and precuneus, assist in discriminating MCI patients 
who later converted to AD (MCI-C) from those who did 
not (MCI-NC), when those patients were clinically and 
cognitively matched.

Hosseini-Asl et al. (48, 49) utilized deep 
learning to introduce a classification/prediction 
framework that served in the early diagnosis of 
AD. There are three key components regarding 
the proposed framework. First, the framework was 
capable of performing domain adaptation through 
detecting and extracting AD biomarker related 
characteristics from one domain (called the source), 
while performing the classification in another domain 
(called the target). Regarding the feature extraction, 
the framework could extract discriminative features 
that captured the anatomical variations (i.e., CTH and 
volume, brain size, ventricle size, and hippocampus 
model) through pre-training the 3D convolutional 
auto-encoder (3D CAE). Finally, the classification 
task was performed through stacking the trained 3D 
CAE with a fine-tuning to accomplish the required task 
through 3D-CNN. As compared to other state-of-the-
art models, the proposed framework showed better 
classification results, which in turn serve in the early 
diagnosis of AD.

Liu et al. (50) focused on assisting the 
classification task of AD/MCI using an inherent 
structure-based multi-view learning (ISML) method. 
The proposed method went through multiple 
processes. These processes started with nonlinear 
registration for each MRI onto multiple selected 
templates. The goal of this step was to obtain multi-
view feature representation from different templates 

for each subject. Then, a feature selection procedure 
was performed based on a sub-class clustering 
process. After that, multiple SVM classifiers were 
utilized followed by fusion of these SVMs through an 
ensemble classification method with a simple majority 
voting strategy. In general, the proposed method 
showed better results than related state-of-the-art 
methods.

Maicas et al. (51) focused on the hippocampi 
to determine the most damaged regions through a 
spectral shape analysis method. The method relied 
on three different shape descriptors at each vertex of 
a triangulated mesh representation of the segmented 
hippocampus: heat kernel signature (HKS), the scale-
invariant HKS (SIHKS), and the wave kernel signature 
(WKS). The authors’ spectral segmentation method 
aimed to find which zones encode more identification 
information of AD within these descriptors. In brief, the 
results showed that SIHKS was the best descriptor in 
detecting AD from zone 3. Further details regarding the 
study and its results can be found in Table 2. Tables 
1–5 present the details regarding the MRI studies 
arranged based upon the studied brain region.

3.2. Emission-computed tomography (ECT)

ECT is a medical imaging modality that deals 
with physiology rather than anatomy as in structural 
imaging modalities. The main subtypes of ECT are 
SPECT and PET. The difference between the two is 
that in SPECT technology, radioisotopes are employed 
that in turn decay is emitting a single gamma photon, 
while in PET technology, isotopes are employed in 
each annihilation where a couple of photons are 
produced (52).

SPECT assists in the differential diagnosis 
of dementia. In addition, it serves as an accurate tool 
for measuring the progression of the disease (26). 
Regarding AD, SPECT has identified changes in the 
anterior medial temporal lobes, posterior cingulate, 
and posterior temporoparietal cortex (53–56) as 
shown in Figure 3. PET has proven a powerful tool for 
demonstrating the alterations of the brain functions, 
in healthy controls or dementia patients, with imaging 
reflecting properties of the brain at the molecular 
and cellular level. In AD, PET technology has led to 
very accurate diagnostic algorithms. PET is used 
to differentiate between AD and other dementia 
disorders. Although SPECT is cheaper than PET, 
SPECT is less specific in its findings. Finally, it is 
important to note that combining SPECT and PET may 
help in both identifying as well as evaluating the early 
to late conditions of the patients (26).

There are mainly three classes of 
radiopharmaceuticals that have been recently used 
in functional imaging of the brain: markers of regional 
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Table 1. The MRI studies based on structural characteristics

Ref. 41

Approach details Goal CAD (BFO+ANN) 

Notes The Gabor filter was used for feature extraction.

Type Supervised

Results - The system achieved up to 92% accuracy.
- It is possible to use the BFO ANN Segmentation algorithm for distinguishing between normal and abnormal 
MRIs of the brain. 

Clinical findings The accelerated loss in GM volume and other regions of the brain showed a discrimination between AD and NC. 

Dataset Sree Chitra Tirunal institute for medical science and technology (SCTIMST)

Scanning Char. Siemens Magnetom-Avanto SQ engine, 1.5.T MR Scanner. Whole brain volume was acquired by the 3D flash spoiled gradient 
echo sequence using standard parameters. TR=11msec, TE=4.9.5, flip angle=150, slice thickness=1mm, matrix=256x256, 112 
axial plane images were made to cover the whole brain.

Brain Region Structural characteristics

Subjects Group NC MCI AD

No. 20 30 -

Age 52 to 75 -

System Char. Automatic/Objective

Ref. 42

Approach details Goal Classification (multiclass neural network)

Notes The PCA was used to reduce the dimensionality of the MR image vector to 150 dimensions due to the very 
high dimensionality of MRI scans.

Type Supervised

Results The proposed work achieved almost 90% of the classification accuracy.

Clinical findings Providing a classification to different stages of AD. 

Dataset Open access series of imaging studies (OASIS)

Scanning Char. -

Brain Region The structure of the brain.

Subjects Group NC MCI AD

No. - - -

Age - - -

Note: - For training: 230 diagnosed MRIs provided by OASIS were used.
- For testing: The whole OASIS dataset (457 MRIs) was used.
- Regarding age: the adult life span in OASIS was aged 18 to 96.

System Char. Automatic/Objective

Ref. 46

Approach details Goal Classification (sparse autoencoders and CNN)

Notes The main novelty of the proposed method was the use of 3D convolution on the whole MRI rather than 2D 
convolution on the slices.

Type Supervised

Results - The accuracy of the proposed method when using 2D and 3D convolutions for the purpose of binary 
classifications (AD vs. NC, AD vs. MCI and NC vs. MCI) and the purpose of 3-way classification (AD, MCI 
or NC) was evaluated. The results showed that: when comparing 2D and 3D convolutions, 3D convolution 
showed better results in all classification cases except for binary AD vs. NC where there is no noticeable 
difference between 2D and 3D convolutions.

Clinical findings Assisting in predicting the patient status of the disease. 

Dataset Alzheimer’s disease neuroimaging association (ADNI)

Scanning Char. -

Brain Region Structure of the brain

Subjects Group NC MCI AD

No. 755 755 755

Age - - -

System Char. Automatic/Objective
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Table 2. The MRI studies based on Hippocampus

Ref. 43

Approach 
details

Goal Segmentation (multi-atlas image segmentation with ELM based bias detection and correction technique)

Notes -  Symmetric mutual information energy was utilized to perform symmetric diffeomorphic registration in the 
Atlas.

- Exponential label fusion strategy function was proposed for the case of normalized similarity measure in 
combining the segmentation.

Type Supervised

Results - The proposed method showed effectiveness, especially for the larger hippocampal subfields with more 
than 80% of overlap. This provided competitive results compared with the related methods.
- Also, the proposed label fusion strategy showed its effectiveness when tested.

Clinical findings - Improved the effectiveness of the automatic segmentation of the hippocampal subfields that in turn is 
related to the early diagnosis of AD.

Dataset Public brain atlas online

Scanning 
Char.

Two types of images were used:
MRI-T1 images with a resolution of 1.0 × 1.0 × 1.0 mm3

MRI-T2 sagittal images with a resolution of 0.4 × 0.5 × 2 mm3

Brain Region Hippocampal subfields

Subjects Group NC MCI AD

No. - - -

Age - - -

Note: The dataset contained 32 samples and conducted ten experiment groups where each group is using ten 
different test samples.

System Char. Automatic/Objective

Ref. 52

Approach 
details

Goal Automatic detection/Spectral shape analysis (merge spectral techniques based on the Laplace-Beltrami (LB) 
operator and a bag of features (BoF)).

Notes - Three different shape descriptors at each vertex of the triangle mesh of segmented hippocampus were used, 
and these descriptors are HKS, the SIHKS and the WKS.
- Each descriptor was used separately in a BOF framework that in turn was used for shape retrieval.
- An anatomical structure segmentation that applies the neighborhood filter (NF) to decrease the rearrangement 
of the second eigenfunction of the LB operator was also proposed. This method was used to partition the 
hippocampus into three regions to explore whether one of them mostly encapsulates the early damages caused 
by this disorder.

Type -

Results - For both used datasets:
1-Right hippocampus detection outperformed left hippocampus diagnosis in the maximum acceptance rates for 
all the descriptors.
2-SIHKS achieved the best performance when considering both hippocampi (left and right).
3-Combining the descriptors from both hippocampi in the case of SIHKS and HKS revealed more information. 
For WKS, it used right hippocampi for better distinguishing the normal from dementia patients. These results 
meant that better detection could be obtained through descriptors’ combination and also revealed that the right 
hippocampus is more damaged by the disease.
- Evaluating the proposed segmentation method that applied the NF and that partitions the hippocampi into 
three regions, showed that:
1-SIHKS encoded most of the information for detecting AD from zone 3
2-Region analysis using WKS as a signature described a similar behavior because encoding information from 
just region 2 was better than the general WKS approach by 1%.
3-No clear information was obtained by using HKS for local analysis.
4-The proposed technique benefited from image quality, and this was obvious due to the greater results 
obtained by 3T images of DEMCAM than 1.5 T images of ADNI.

Clinical findings The SIHKS was the most suitable descriptor for detecting AD.

Dataset DEMCAM and ADNI

Scanning 
Char.

For DEMCAM: T1-weighted MR images acquired on a GE Healthcare Signa HDX 3Tscanner.

Brain Region Hippocampus
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Subjects Database Group NC MCI AD

ADNI No. 90 - 90

Age - - -

DEMCAM No. 19 - 19

Age - - -

System Char. Automatic/Objective

Table 3. The MRI studies based on GM

Ref. 32

Approach 
details

Goal Longitudinal analysis of GM changes in AD, MCI, and AD (Local patterns)

Notes - Local patterns were used as a feature extraction mechanism
- The used local patterns in the study were: LBP, LTP, DLBP, CLBP, ALBP, LQP, LGS and some variants of 
LBP.
- SVM was used for the classification task

Type Supervised

Results The study compared the local patterns and found that LQP showed the highest accuracy of 81% followed by 
LGS with 80%. 

Clinical findings MCI progresses faster than AD

Dataset ADNI

Scanning Char. T1-Weighted-3TMRI Scanner’s using protocol-TR=3000, FOV=240*240mm2, with 256*256*170 mm3-acquisition matrix in X Y Z 
dimensions-slice thickness 1.2mm, Siemens 3T MR Scanner-176 slices.

Brain Region Medial temporal lobe (MTL) where the GM was segmented from it.

Subjects Group NC MCI AD

No. 125 125 125

Age 65.3 69.3 64.9

System Char. Automatic/Objective

Ref. 45

Approach 
details

Goal Prediction (Artificial Intelligence and Data Mining (decision trees and MultiBoost technique))

Notes - The study proposed a robust image processing model to ensure statistical validity of the results of 
neuroimaging studies.
-  The study developed a population model of the structural changes that occurred in the progression of the disease. 

Type Supervised

Results The classification of NC and AD subjects achieved accuracy exceeding 90%.

Clinical findings The highest volumetric differences occur in the early disease-related stages; then the differences tend to 
cancel with age.

Dataset ADNI and OASIS

Scanning Char. -

Brain Region GM

Subjects Database Group NC MCI AD

ADNI No. 766 - 748

Age - - -

OASIS No. 421 - 165

Age - - -

System Char. Automatic/Objective
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Ref. 31

Approach 
details

Goal Prediction (Mutual information-based feature selection method + Linear discriminant classifier)

Notes The mutual information-based feature selection method was utilized to optimize the classification of MCI 
converters through identifying five key features: left and right hippocampi gradings and CTHs of the left 
precuneus, left superior temporal sulcus, and right anterior part of the parahippocampal gyrus.

Type Supervised

Results The used features achieved a prediction accuracy of 72%. 

Clinical findings Assisting the experts in the early diagnosis of AD through revealing the significance of the extracted features.

Dataset ADNI

Scanning Char. -

Brain Region GM especially MTL structures and CTH
Note: the key features obtained using mutual information-based feature selection were the left and right hippocampi gradings and 
CTHs of the left precuneus, left superior temporal sulcus, and right anterior part of the parahippocampal gyrus.

Subjects Group NC MCI AD

No. 231 MCI-C MCI-NC 198

167 238

Age (mean±SD) 76.0±5.0 74.5±7.2 74.9±7.7 75.3±7.5

System Char. Automatic/Objective

Ref. 51

Approach 
details

Goal Classification (ISML method+ ensemble classification method of multiple SVM with a simple majority voting 
strategy)

Notes -

Type Supervised

Results Evaluating the accuracy reported 93.83%, 89.09% and 80.90% for classifying (AD vs. NC, MCI-C vs. NC, 
MCI-C vs. MCI-NC), respectively. 

Clinical findings Assisting the experts in the diagnosis of AD, including the early stages of the disease.

Dataset ADNI

Scanning Char. -

Brain Region GM

Subjects Group NC MCI AD

No. 128 MCI-C MCI-NC 97

117 117

Age 76.11±5.10 75.18±6.97 75.09±7.65 75.90±6.84

System Char. Automatic/Objective

cerebral blood flow (rCBF), markers of regional 
cerebral metabolism, and CNS receptor binding agents 
(57). In any case, the patient is injected intravenously 
with the radiopharmaceuticals, then the SPECT or 
PET scanner is used to measure the regional uptake 
and distribution of the radiotracers. Measurement 
of rCBF relies on lipophilic radiopharmaceutical 
agents that are diffused from the arterial vascular 
compartment to the normal compartment of the brain 
tissue. The tracers are proportionally distributed to the 
blood flow of the regional tissue with an irreversible 
trapping in the tissue compartment. Measurement of 
regional cerebral metabolism is performed through 
transporting the applied radiopharmaceuticals through 

regional cerebral blood flow to the brain tissues. 
Subsequently, the distribution of the regional cerebral 
reflects the utilization rate of the specific tracer in the 
cerebral metabolic pathway. Receptor binding agents 
measure the density as well as the binding affinity 
of the neuronal receptor through the use of suitable 
radiotracers (57). Table 6 shows the major agents from 
each class; reference (58) provides further details.

In addition to the tabulated radiotracers, 
Pittsburgh compound b (11C-PiB) is a fluorescent 
analog of thioflavin T that helps in PET to visualize 
pathological hallmarks associated with AD. Therefore, 
it can be used in the investigation of the progression 



Medical imaging diagnosis of early Alzheimer’s disease

681 © 1996-2018

through the AD stages (26). In MCI and AD subjects, 
cerebral cortical retention of 11C-PiB is present while 
most of the NC did not show that (59, 60). In MCI 
group, up to two-thirds of the studied patients showed 
levels of 11C-PiB uptake and retention between that 
of NC and AD. This retention appears in the posterior 

cingulate cyrus, anterior cingulate and frontal cortex 
(61, 62). Finally, the AD group presented a correlation 
between the retention and the anatomopathological 
distribution of dense β-amyloid plaques. The frontal 
cortex, cingulate gyrus, precuneus, and the striate, 
parietal, and lateral temporal cortexes showed the 

Ref. 47

Approach details Goal CAD system (PLS or PCA +SVM with linear or (RBF) kernels)

Notes - The study evaluates the performance of PCA and PLS as feature extraction methods.
- Two SVM classifiers have been assessed with linear or RBF kernels

Type Supervised

Results - Comparing WM, GM and WM+GM shows various results:
1- The classification results of using only WM brain tissue provided better results than using only GM.
2- The combination of GM and WM tissues in (NC vs. AD) and in (NC vs. MCI) showed better results than 
using these tissues individually. In the case of (MCI vs. AD), using WM was better than the combination 
which indicated that most important brain changes occur in WM than GM tissue.
3- The classification results of (MCI vs. AD) reflected that the neurodegeneration effect of the disease starts 
in the WM and with the disease progression it spreads to the GM.
- Evaluating the performance of the classification using PLS for feature extraction along with SVM classifier 
produced better classification and smaller computational time results than using PCA method.
- The CAD system related performance improved with the number of the components of PLS and PCA used 
as input features to the classification that achieved a maximum stable value.
- Linear SVM provided good results while more samples or smaller feature vectors were needed to obtain 
good results with RBF.
- Regarding sensitivity, specificity, and accuracy, the proposed CAD system obtained maximize values of 
85.11%, 91.27%, and 88.49%, respectively.

Clinical findings - The important brain atrophy in the early study (MCI) occurs in WM rather than GM tissue.
- The classification results of (MCI vs. AD) reflected that the neurodegeneration effect of the disease starts in 
the WM and with the disease progression it spreads to the GM.

Dataset ADNI

Scanning Char. -

Brain Region GM and WM

Subjects Group NC MCI AD

No. 229 401 188

Age (mean±SD) 75.97±5.0 74.85±7.4 75.36±7.5

System Char. Automatic/Objective

Ref. 48

Approach details Goal CAD system (ICA+SVM)

Notes Two SVM classifiers were evaluated: with linear or RBF kernels

Type Supervised

Results - Combining WM and GM tissues improved accuracy more than using these tissues individually.
- The proposed method of combining ICA and SVM performed better than other related methods.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Scanning Char. -

Brain Region WM and GM

Subjects Group NC MCI AD

No. 229 MCI-NC MCI-C 188

312 86

Age - - - -

System Char. Automatic/Objective

Table 4. The MRI studies based on WM and GM
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Ref. 38

Approach details Goal Classification (SOM)

Notes PCA was used for feature reduction.

Type Supervised

Results - Combining the volumetric and shape features improved the classification accuracy to 86.76%, 66.67% and 
46.67% in AD, aMCI, and dMCI, respectively.
- Testing the classification results using volume features, shape features, volume+shape features, and 
volume+shape+PCA features showed that the volume+shape+PCA features provided the best classification 
results with accuracies of 93.63%, 73.33% and 53.33% in AD, aMCI, and dMCI, respectively.
- Despite the achieved accuracy, sensitivity and specificity in AD, aMCI, and dMCI, the classification results 
in aMCI and dMCI were not better than AD. This was due to similar characteristics between aMCI and AD, 
and dMCI and NC.

Clinical findings - Measuring global GM, WM and cerebrospinal fluid (CSF) volumes and the analysis of local shapes, 
especially in the ventricular area, perimeter properties, and distances properties, revealed atrophy related 
information.

Dataset Chang Gung Memorial Hospital, Lin-Kou, Taiwan

Scanning Char. The whole-brain MRI scans were obtained by a 3T MR scanner T1 MPRage series with TR = 2000ms and TE = 2.63ms. The 
results were represented as a 224×256 matrix, and slice thickness = 1mm in 160 slices.

Brain Region Volumetric and shape features

Subjects Group NC MCI AD

No. 28 aMCI dMCI 24

17 15

Age 67 ± 5.67 70 ± 5.01 73 ± 5.13 71 ± 7.37

System Char. Automatic/Objective

Ref. 40

Approach details Goal Classification 

Notes - The study aimed to improve the accuracy of the classification through combining features revealed from 
different MRI analysis techniques. These features were HV, TBM, CTH and those extracted from a recently 
proposed MBL.
- Two classifiers (LDA and SVM) were utilized, and their results were compared.

Type Supervised

Results - Evaluating the utilized features individually showed that TBM was the best, closely followed by MBL while 
combing all the features improved the results.
- Comparing SVM and LDA showed that LDA classifier achieved the best sensitivity and specificity results of 
90%/84% (NC vs. AD), 64%/66% (MCI-NC vs. MCI-c) and 82%/76 (NC vs. MCI-C) with individual features.
- The features combination improved the sensitivity and specificity results to 93%/85% (NC vs. AD), 
67%/69%, (MCI-NC vs. MCI-C) and 86%/82% (NC vs. MCI-C).

Clinical findings - Among the evaluated features, TBM showed the best results, closely followed by MBL.
- Combining the features improved the results.

Dataset ADNI

Scanning Char. Standard 1.5.T screening/baseline T1-weighted images obtained using volumetric 3D MPRAGE protocol with resolutions 
ranging from 0.9. mm×0.9. mm×1.2.0 mm to 1.3. mm×1.3. mm×1.2.0 mm were included from the ADNI database.

Brain Region HV, TBM, CTH and features extracted from a recently proposed MBL.

Subjects Group NC MCI AD

No. 231 MCI-C MCI-NC 198

167 238

Age 76.02 74.6 74.85 75.68

System Char. Automatic/Objective

Table 5. The MRI studies based on multiple brain regions



Medical imaging diagnosis of early Alzheimer’s disease

683 © 1996-2018

Ref. 44

Approach details Goal Brain atlas generation (invariant feature key-points’ detection and description by 3D scale-invariant feature 
transform (SIFT))

Notes - The model based MRI alignment technique was utilized, which helped in reducing search space for 
keypoint matching among different volumes.
- A greedy approach has been introduced to obtain a set of invariant feature keypoints from multiple volumes 
of the brain.
- The proposed method for brain atlas generation depended on the machine used for the acquisition of brain 
MR images, the spatial resolution used for the analysis, and the mode of imaging (i.e., T1 weighted, T2 
weighted, etc.).
- The proposed method considered the entire brain as a whole instead of considering mere individual organs.

Type -

Results - Evaluating the system showed the significant role of the very mild AD class in the early diagnosis. This 
appeared since:
1-The experimental results showed a satisfactory performance of the proposed method for the application of 
an early diagnosis of AD with sensitivity and a mean specificity of 97% and 88%, respectively.
2-For the diagnosis of AD, excluding the very mild class, the system obtained sensitivity and mean specificity 
of 73% and 76%, respectively.
- Considering the entire brain volume for atlas generation represented a major advantage of the proposed 
technique

Clinical findings The system showed satisfactory performance regarding the early diagnosis of AD.

Dataset OASIS

Scanning Char. -

Brain Region The entire brain as a whole.

Subjects Group NC MCI AD

No. 30 - -

Age 33 to 70 - -

Note: - For atlas generation: 30 NC brain volumes have been used.
- For AD diagnosis, 165 brain volumes have been used for the experiments.

System Char. Automatic/Objective

Ref. 33

Approach details Goal Classification (machine learning classifier proposed by (in paper) that is an optimization of SVM)

Notes - The aim was to be able to extract spatially distributed multivariate diagnostic biomarkers from structural MR 
brain images to be used for both the early and accurate AD diagnosis.
- The classifier went through two steps:
1-Feature extraction and selection (PCA+FDR).
2-Single-subject classification.

Type Supervised

Results The accuracy results of (AD vs. NC), (MCI vs. NC) and (MCI-c vs. MCI-NC) were 76%, 72% and 66%, 
respectively (nested 20-fold cross validation).

Clinical findings - The cerebellum was found to be not related to the AD-like atrophy.
- Anatomical changes were detected in the posterior lobule of the cerebellum.
- The AD-like atrophy patterns characterized by combined pathological changes within the temporal cortex, 
hippocampus, entorhinal cortex, thalamus, insular cortex, anterior cingulate cortex, orbitofrontal cortex, and 
precuneus allowed distinguishing clinically- and cognitively-matched MCI-C from MCI-NC.

Dataset ADNI

Scanning Char. -

Brain Region Hippocampus, entorhinal cortex, basal ganglia, gyrus rectus, precuneus, and cerebellum were all critical regions known to be 
strongly involved in the pathophysiological mechanisms of AD.

Subjects Group NC MCI AD

No. 162 MCI-C MCI-NC 137

76 134

Age (range) (mean±SD) (60–90) 76.3±5.4 (55–88) 74.8±7.4 (58–88) 74.5±7.2 (55–91) 
76.0±7.3

System Char. Automatic/Objective
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Ref. 49

Approach details Goal Classification/Prediction (deep 3D-CNN)

Notes - No skull-stripping was performed on the MRI data.
- The proposed framework was capable of detecting and extracting AD biomarker related characteristic in 
the domain (called source) while performing the classification in another domain (called the target). 

Type Supervised

Results - The hierarchical feature extraction was improved in the hidden layer of the 3D-CNN.
- The proposed framework showed better performance results compared with other state-of-the-art models.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset 30 subject from CAD Dementia (as a source domain) and 210 subjects from ADNI (as a target domain)

Scanning Char. -

Brain Region CTH and volume, brain size, ventricle size and hippocampus model

Subjects Database Group NC MCI AD

subjects from ADNI No. 70 70 70

Age (mean ± SD) 75.0±7.9 75.9±7.7 74.6±6.1

System Char. Automatic/Objective

Ref. 50

Approach details Goal Classification (3D-CAE+3D-CNN)

Notes - 3D extension of CAE was used for unsupervised generic and transferable feature extraction of the source 
domain.
- 3D-CNN was fine-tuned to perform classification task on the target domain.
- For feature extraction through the pretrain 3D-CAE, the source domain data were preprocessed through 
spatial normalization then skull stripping and intensities normalization were performed. However, for the 
classification, the data were used without any preprocessing or skull stripping procedures. 

Type Supervised

Results The proposed system showed better accuracy results than related state-of-the-art models.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset CAD-Dementia (Source domain) and ADNI (target domain) 

Scanning Char. -

Brain Region CTH and volume, brain size, ventricle size and hippocampus model

Subjects Database Group NC MCI AD

ADNI No. 70 70 70

Age (mean±SD) 74.6±6.1 75.9±7.7 75.0±7.9

System Char. Automatic/Objective

greater regional binding. On the other hand, the 
occipital cortex, sensory and motor cortex, and mesial 
temporal cortex showed the lesser binding (63). To 
illustrate these findings, Figure 4 shows an example of 
11C-PiB PET scans of NC, MCI, and AD subjects. Also, 
Figure 5 shows 11C-PiB scans of an MCI subject during 
different time periods.

18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) 
is a marker of regional cerebral metabolism that 
measures the metabolism of glucose in different brain 
regions. This tracer can help to predict the conversion 
of MCI patients to AD, where patients who convert 
show hypometabolism in medial temporal and 
posterior cingulate cortices as compared to the NCs 
(64–66). The examination of FDG-PET shows severe 

reductions of glucose consumption in the AD patients’ 
brains compared to NC subjects. Figure 6 shows an 
example of different subjects’ scans to illustrate the 
visualization of the disease’s progression using FDG, 
while Figure 7 shows the alterations at different time 
periods of an MCI subject. Finally, usage of FDG 
and PiB tracers in PET scans indicates that the last 
tracer is more capable of early detection of the AD 
progression (26).

3.2.1. PET related studies

As previously mentioned, the PET scan is an 
accurate assistant for the diagnosis of AD. Numerous 
studies relied on this powerful technology to serve in 
decision-making at this early stage of the disease. 
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Figure 3. An example of 99mTc-HMPAO SPECT scan (50) (left) where the left is an NC scan within general uniform distribution of the tracer throughout 
the cortex along with slight “hyperperfusion” in the basal ganglia. On the other hand, the right is for AD patient with a general decrease in the perfusion 
throughout the cortex relatively with the cerebellum.

rCBF Regional cerebral metabolism CNS receptor binding agents

SPECT - technetium-99m-hexamethylpropylene 
amine oxime (Tc-99m-HMPAO)
- Tc-99m-ethyl cysteinatedimer  
(Tc-99m-ECD)
- …

- In normal Brain:
No tracers until now to measuring normal cerebral 
metabolism
- In brain tumors:
thallium-201 Tc-99m-methoxylisobutylnitrile  
(Tc-99m-MI-BI)

I-123 q-CIT

PET O-15 H2O - 18F-FDG
- (F-18)-fluoro-3’-deoxy-3’-l-fluorothymidine (FLT)

Hundreds of PET tracers 

.Table 6. The Major SPECT and PET radiotracers for the brain

Figure 4. Examples of 11C-PiB retention of three subjects NC, MCI, and AD, respectively from left to right where the brighter colors represent, the higher 
retention and vice versa.
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Figure 5. Different 11C-PiB PET scans of an MCI subject that represent the progression of the disease through the increment of the retention illustrated 
through the brighter colors.

Figure 6. The variations on an MCI subject’s scan on different time periods using 18F-FDG that represent the hypometabolism between the two scans as 
the disease proceed.

Figure 7. Examples of NC, MCI and AD subjects’ 18F-FDG scans that reveal the hypometabolism throughout the progression of the disease.
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For example, Illán et al. (67) focused on comparing 
18F-FDG and PiB PET regarding the early diagnosis 
of AD. To accomplish such a comparison, the study 
applied an automatic classification system based on 
PCA and SVM. The results showed that 18F-FDG and 
PiB had similar accuracy regarding AD diagnosis, 
while PiB was shown to have higher discriminative 
power than FDG in the case of very early AD. One year 
later, the same group (68) presented a CAD system 
that relied on an eigenimage framework for PET 
imaging that did not require an eigenbrain selection. 
The system encompassed several ideas, which were 
dimensionality reduction, feature extraction (with 
representative vector demixing using PCA/ICA), and 
classification. The results of the classification stage 
showed the accuracy of 88.24% in identifying AD.

López et al. (69) proposed a CAD system 
that relied on PCA along with LDA/Fisher discriminant 
ratio (FDR) to select the required features for the 
subsequent classification process that was carried out 
through ANN/SVM. The system was evaluated on two 
different databases of SPECT and PET images, with 
resulting accuracy up to 89.52% for PET scans.

Martínez-Murcia et al. (70) presented a 
CAD system that proceeding in three stages: voxel 
selection using Mann-Whitney-Wilcoxon U-Test, 
feature extraction using means of factor analysis, and 
classification based on linear SVM. The strength of the 
Mann-Whitney-Wilcoxon U-Test was in its resistance 
to outliers. The system was tested on two databases, 
one for SPECT and another for PET scans. Regarding 
PET, the system achieved an accuracy of 92.9% which 
in turn reflected the power of this system in serving the 
early diagnosis of AD.

Chaves et al. (71) relied on the association 
rule (AR) mining to construct a CAD system that 
served the early diagnosis of AD. The proposed 
system applied FDR and activation estimation (AE) 
for feature/region of interest (ROI) extraction. Then, 
AR was used for the classification task. FDR was 
used to reveal the selection of the most discriminant 
regions and to reduce computation cost. AE provided 
a trade-off between the computation complexities 
and the accuracy of the image classification, and 
it allowed all relevant brain regions to be included. 
The system performance was evaluated on two 
databases for PET and SPECT scans. Regarding 
PET, the classification accuracy of applying the 
system achieved 91.33%. Then, Chaves et al. (72) 
addressed the problem of the small sample size 
through combining ARs, PCA, and PLS to construct a 
CAD system that targeted the early stages of AD. This 
proposed combination produced a feature vector with 
a reduced dimension to overcome a smaller number 
of samples compared to the high dimension of the 
feature space. The proposed system was evaluated 

on PET and SPECT scans. For PET scan, the system 
achieved an accuracy of 90%; that was better than 
other compared methods and thus assisted in the 
early diagnosis of the disease.

After that, Chaves et al. (15) aimed to provide 
early diagnosis of AD through integrating continuous 
attribute discretization (for the feature selection) along 
with the AR-mining (for classification). Before applying 
the discretization procedure, the histogram was 
calculated over a mean control image for the purpose 
of segmenting the image into subimages composed of 
voxels whose intensities belong to each bin. Therefore, 
this procedure could call image thresholding due to 
the separation of the objects based on their intensity 
level. The performance of the proposed system was 
evaluated on SPECT and PET databases. Using PET 
scans, the method attained 92% accuracy, improving 
on the authors’ previous work on the early diagnosis of 
AD (71, 72).

Padilla et al. (73) proposed an NMF-SVM 
CAD system for early diagnosis of AD. This method 
employed nonnegative matrix factorization (NMF) 
and the FDR for the purpose of feature selection and 
SVM with bounds of confidence for the purpose of 
classification. To test the performance of the proposed 
system, two databases (PET and SPECT) were 
used where the system achieved up to 86 % of the 
classification accuracy of the PET data.

Toussaint et al. (74) targeted the early 
diagnosis of AD through a classification method (SVM) 
that relied on combining voxel-based group analysis 
and ICA. The purpose of such combination was to 
extract characteristic differential patterns from the 
PET scans. The results showed that the combination 
assisted in the discrimination task and the accuracy of 
classification achieved 80%.

Morbelli et al. (75) focused on analyzing the 
voxel-wise interregional correlation by means of a 
statistical parametric mapping to reveal information 
that consequently serves the early diagnosis of 
AD. The results, in general, showed that the AD 
pathophysiological process seems to be associated 
with large-scale of functional brain network alterations. 
Default mode network (DMN) and networks that 
support memory function are particularly involved in 
this alterations.

Ayhan et al. (76) focused on voxel-based 
analysis using composite kernels for a predictive 
model of AD. The Gaussian process (GP) was used 
for the predictive modeling. The results showed that 
the composite kernels helped to reveal the anatomical 
regions that were related to the disease. Additionally, 
comparing single and composite kernels either showed 
competitive or better results of the composite kernels. 
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Also, the composite kernels showed significantly 
improved discrimination between MCI and NC. A 
further goal of the study was to derive the automatic 
relevance determination down to the region level, 
thereby significantly reducing the computational 
requirements.

Aidos et al. (77) focused on comparing voxel 
regions extracted automatically against that extracted 
with the assistance of an expert. To accomplish that, 
three classifiers were used: SVM, k-nearest neighbors 
(KNN), and naïve Bayes classifiers. In general, the 
experiments showed best results with SVM and KNN 
when the automatic identification took place with better 
results of KNN compared with SVM.

Bilgel et al. (78) studied the temporal 
trajectories of amyloid deposition with the goal of 
better understanding their association with disease 
progression. Therefore, the study presented an 
estimation method of the temporal trajectories of 
voxelwise amyloid from the longitudinal PET images 
using expectation-maximization (EM) algorithm. 
The results of the study showed that the estimated 
longitudinal trajectory slopes revealed better 
localized longitudinal changes as compared with the 
age progression at each voxel. Much more details 
regarding the results of PET related studies are found 
in Table 7.

3.2.2. Single photon emission computed 
tomography (SPECT)

Many of the same labs working on PET have 
also studied the utility of SPECT in AD. For instance, 
Padilla et al. relied on the SPECT data in different 
studies (79–81). Their recent work (81) presented a 
CAD system capable of analyzing functional SPECT 
images to assist in the early diagnosis of AD. The 
system applied FDR to analyze the imaging data and 
NMF to select and extract discriminatory features, 
which were then used to train an SVM-based classifier. 
The findings showed classification accuracy up to 94%, 
thus improving on the PCA+SVM method. Regarding 
feature extraction, NMF showed better results when 
compared with PCA techniques. Finally, with regard 
to their CAD system (73) which combines NMF and 
SVM for feature selection/reduction and classification, 
respectively, the system achieved an accuracy up to 
91% of SPECT data.

Ramírez et al. (82) constructed a CAD system 
that uses PCA/PLS regression model to perform 
feature extraction and random forest (RF) classifier 
to accomplish the classification task. Evaluating the 
system showed that a generalization error converged 
to a limit when the number of trees was increased 
in the forest. Therefore, the generalization error was 
reduced when using PLS and relied on the individual 

forest trees’ strength and the correlation between 
them. Finally, evaluating PCA and PLS on the data for 
extracting discriminative information showed that PLS 
was more efficient yielding peak accuracy values of 
96.9%.

Salas-Gonzalez et al. (83) presented a 
CAD system to assist in the early diagnosis of AD. 
The system was composed of Welch’s t-test for 
feature selection, and linear kernel based SVM/
classification trees for classification tasks. Voxels 
were selected based on whether they are exceeding 
different threshold values after applying Welch’s t-test. 
Then, the feature vectors were constructed through 
calculating mean and standard deviation (SD). The 
experimental results showed that classifying the 
subjects into normal and affected was performed in a 
parsimonious way without prior knowledge. Moreover, 
the system achieved the best classification accuracy 
(i.e., 96.2%) using classification trees, high sensitivity 
with SVM, and high specificity with decision trees.

Chaves et al. (84) presented a method for 
classification that aids with early diagnosis through 
applying the voxels-as-features (VAF) technique and 
AE in the feature extraction step while applying AR in 
the mining step. As a final step, the classification was 
carried out depending on some mined rules that were 
previously verified by each subject. Testing the results 
of two AR modes (supervised mode with the prior 
goal of 2 discriminant rules and unsupervised mode 
without any prior goals) showed the same accuracy, 
but better computation time with the supervised 
mode. Regarding classification accuracy results, the 
proposed method achieved an accuracy of 95.87% 
that represented a better result when compared with 
other reported methods.

Chaves et al. (85) subsequently proposed 
another classification method combining VAF, 
normalized minimum square error (NMSE), t-test 
selection, and kernel PCA (KPCA) in the feature 
extraction stage and kernel distance metric learning 
methods in the classification stage. The study compared 
three different metrics in the classification stage: 
Euclidean, Mahalanobis, energy-based distance. The 
results showed the highest classification accuracy of 
the energy-based method, achieving 96.91%. After 
that, they (72) proposed a CAD system that was 
based on AR-mining for feature selection, PCA/PLS 
for feature extraction and SVM for classification. They 
tested the system performance on SPECT and PET 
databases and achieved an accuracy of 91.75% with 
SPECT images. With the test on SPECT images of 
their proposed system (71) that was dependent on 
FDR and AE for feature/ROI extraction and AR for 
classification, the system achieved accuracy results of 
92.78%. Finally, the classification accuracy achieved 
up to 96.91% for their system (15) that relied on 
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Ref. 68

Approach details Goal Comparing the diagnostic accuracy of 18F-FDG and PiB PET scans (Machine learning algorithm (PCA + 
SVM))

Notes -

Type Supervised

Results While 18F-FDG and PiB have similar diagnostic accuracy in AD, PiB was shown to have higher discriminative 
power in very early AD than FDG.

Clinical findings Regarding the early diagnosis of AD, PiB was shown to have higher discriminative power than FDG.

Dataset 18F-FDG and PiB PET scans from ADNI

Scanning Char. -

Brain Region - Glucose metabolism (from 18F-FDG PET) and amyloid deposition (from PiB PET).

Subjects Group NC MCI AD

No. 17 MCI-C MCI-NC 19

12 55

Age 76.5±4.8 75.1±7.4 77.2±7.2

System Char. Automatic/Objective

Ref. 69

Approach details Goal CAD system (image projection (feature reduction) + eigenimage based decomposition (feature extraction) + 
SVM)

Notes The PCA and ICA were evaluated to perform image projection for the purpose of feature reduction.

Type Supervised

Results The proposed system achieved 88.24% accuracy in AD identification.

Clinical findings Assist in the early diagnosis of AD.

Dataset 18F-FDG PET from ADNI

Scanning Char. The PET data were acquired using Siemens, General Electric (GE), Philips, Siemens HRRT and BioGraph HiRez PET 
scanners. FDG PET scans were acquired according to a standardized protocol. A 30 min dynamic emission scan, consisting of 
65 minframes, was acquired starting 30 min after the intravenous injection of 5.0 ± 0.5 mCi of 18F-FDG, like the subjects, who 
were instructed to fast for at least 4 h prior to the scan, lay quietly in a dimly lit room with their eyes open and minimal sensory 
stimulation.

Brain Region Measuring the brain’s rate of glucose metabolism with the 18F-Fluorodeoxyglucose tracer.

Subjects Group NC MCI AD

No. 97 209 95

Age 76.7 ± 5.2 76.0 ± 7.7 77.3 ± 7.4

System Char. Automatic/Objective

Ref. 70

Approach details Goal CAD system (PCA/LDA (feature extraction) + FDR (feature selection) +ANN/SVM (classification))

Notes - The data were arranged into three different groupings to label the data into only two classes:

Grouping 1: All the data were considered where AD and MCI subjects were treated as positive and NC as 
negative.

Grouping 2: Only AD and NC subjects were considered, with AD treated as positive and NC as negative.

Grouping 3: Only MCI and NC subjects were considered, with MCI treated as positive and NC as negative. 

Type Supervised

Results - The best combination of techniques that composed the complete CAD systems was not fixed but depends 
on the specific database and the classification task. However, in general, SVM provided better results than 
ANN with the same features.

- When classes were best classified by linear surfaces or decision lines, the rearrangement of the PCA 
coefficients by the FDR criterion usually yielded higher accuracy rates.

- FDR was useful when dealing with group 2, which was the best-described group regarding class 
separability using PCA+LDA features. However, it did not outperform PCA+LDA either for group 1 or group 3.

- The system achieved a classification accuracy of 89.52%.

Clinical findings Assisting the experts in the early diagnosis of AD

Dataset 18F-FDG PET from ADNI

Table 7. The PET related studies for early diagnosis of AD
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Scanning Char. The data were acquired using Siemens, GE, and Philips PET scanners. PET data acquired from the Siemens HRRT and 
BioGraph HiRez scanners were excluded from the primary analysis due to differences in the pattern of FDG uptake.

Brain Region Measuring the rate of glucose metabolism with the tracer 18F-Fluorodeoxyglucose

Subjects Group NC MCI AD

No. 52 114 53

Age (mean 
±SD)

76.5±4.8 75.1±7.4 77.2±7.2

System Char. Automatic/Objective

Ref. 71

Approach details Goal CAD system (voxel selection (Mann–Whitney–Wilcoxon U-Test), feature extraction (Factor 
Analysis) and classification (linear SVM))

Notes - Using Mann–Whitney–Wilcoxon selection criteria for the purpose of voxel selection represented 
one of the strengths of the proposed system due to its role in preventing the system from 
selecting outliers.

- The purpose of proposing the factor analysis was to extract common factors and factor loadings 
from the selected voxels and thus helped in carrying out the feature reduction. 

Type Supervised

Results The classification accuracy achieves 92.9%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset 18F-FDG PET from ADNI

Scanning Char. Baseline FDG-PET data acquired from Siemens, GE, Philips, Siemens HRRT and BioGraph HiRez PET scanner. FDG PET 
scans were acquired according to a standardized protocol. A 30 min dynamic emission scan, consisting of 65- min frames, was 
acquired starting 30 min after the intravenous injection of 5.0±0.5 mCi of 18F-FDG, like the subjects, who were instructed to fast 
for at least 4 h before the scan, lay quietly in a dimly lit room with their eyes open and minimal sensory stimulation. 

Brain Region Measuring the brain’s rate of glucose metabolism with the 18F-Fluorodeoxyglucose tracer.

Subjects Group NC MCI AD

No. The total number of participants was 401

Age Enrolled subjects were between 55–90 (inclusive) years of age.

System Char. Automatic/Objective

Ref. 72

Approach details Goal CAD system (FDR and AE (feature/ROI extraction), AR (mining))

Notes - The FDR was used for enabling the selection of the discriminant regions for further analysis and 
for reducing the computational cost.
- AE provided a trade-off between the computation complexities and the accuracy of the image 
classification in addition to allowing all relevant brain regions to be included.

Type Supervised

Results The system achieved the accuracy of 91.33%

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset 18F-FDG PET from ADNI

Scanning Char. FDG PET scans were acquired according to a standardized protocol. A 30-min dynamic emission scan, consisting of six 5-min 
frames, was acquired starting 30 min after the intravenous injection of 5.0 ± 0.5 mCi of 18F-FDG, like the subjects, who were 
instructed to fast for at least 4 h prior to the scan, lay quietly in a dimly lit room with their eyes open and minimal sensory 
stimulation.

Brain Region Measures the rate of glucose metabolism with the tracer 18F-Fluorodeoxyglucose

Subjects Group NC MCI AD

No. 75 - 75

Age - - -

System Char. Automatic/Objective
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Ref. 74

Approach details Goal CAD system (analysis (FDR)+feature selection and extraction (NMF) + classification (SVM with 
bounds of confidence))

Notes Three different approaches for the classifier were provided and detailed, two of them included bounds 
of confidence and took advantage of the definition of a “security region” in the SVM hyperplane, where 
no decision was assumed.

Type Supervised

Results The results achieved up to 86 % of the classification accuracy.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset 18F-FDG PET from ADNI

Scanning Char. -

Brain Region Measures the rate of glucose metabolism with the tracer 18F-Fluorodeoxyglucose

Subjects Group NC MCI AD

No. 52 114 53

Age - - -

System Char. Automatic/Objective

Ref. 75

Approach details Goal Classification (univariate or multivariate statistical techniques + SVM)

Notes The proposed method combined voxel-based group analysis and ICA for the purpose of extracting 
differential characteristic patterns from the PET scans.

Type Supervised

Results - Extracting visual or attentional components using spatial ICA could help in improving the discrimination 
accuracy.
- Using the selected regions achieved an accuracy of 80%.

Clinical findings - Improved the early detection and differentiation of typical vs. pathological metabolic patterns in the MCI 
subjects.
- Early Identified in the development of the disease those individuals at high risk of rapid cognitive 
decline who could be candidates for new therapeutic approaches

Dataset ADNI

Scanning Char. -

Brain Region Cerebral glucose metabolism

Subjects Group NC MCI prodromal AD (pAD)

No. 80 MCI-C MCI-NC 80

40 40

Age 76.4±4.6 76.4±4.1 76.4±4.2 76.0±6.3

System Char. Automatic/Objective

Ref. 76

Approach details Goal voxel-wise interregional correlation analysis (Statistical parametric mapping)

Notes -

Type -

Results and Clinical 
findings

- The area of hypometabolism in pAD showed less metabolic connectivity in patients than in NC 
(autocorrelation and correlation with large temporal and frontal areas, respectively).
- pAD patients showed limited correlation even in selected nonhypometabolic areas, including the 
hippocampi and the dorsolateral prefrontal cortex (DLFC).
- In NC group, the correlation was highlighted between hippocampi and precuneus/posterior cingulate 
and frontal cortex, and between DLFC and caudate nuclei and parietal cortex.
- The reduced metabolic connections both in hypometabolic and nonhypometabolic areas in pAD 
patients suggested that metabolic disconnection (reflecting early diaschisis) may antedate remote 
hypometabolism (an early sign of synaptic degeneration).

Dataset 18F-FDG PET from European Alzheimer’s disease consortium (EADC) project

Scanning Char. -

Brain Region Resting-state metabolic connectivity

Subjects Group NC aMCI AD

No. 105 36 -

Age 68.7±6.4 72.1±8.4 -

Note: the aMCI is for amnestic MCI subjects who converted to AD after an average time of 2 years, pAD

System Char. Semiautomatic/Subjective
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Ref. 73

Approach details Goal CAD system (AR-mining and combination (feature selection) + PCA/PLS (feature extraction) + SVM 
(classification))

Notes -

Type Supervised

Results The system achieved an accuracy of 90%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Scanning Char. A 30-min dynamic emission scan, consisting of 6 5-min frames, was acquired starting 30 min after the intravenous injection of 
5.0 ± 0.5 mCi of 18F-FDG, like the subjects, who were instructed to fast for at least 4 h prior to the scan, lay quietly in a dimly lit 
room with their eyes open and minimal sensory stimulation.

Brain Region Measures the rate of glucose metabolism with the tracer 18F-Fluorodeoxyglucose

Subjects Group NC MCI AD

No. 75 - 75

Age (range) (mean±SD) (62–86) (75.97±4.91) - (55–88) (75.72±7.40)

System Char. Automatic/Objective

Ref. 14

Approach details Goal CAD system (continuous attribute discretization (feature selection) + AR mining (classification))

Notes Image histogram segmentation was used over the mean control images to obtain the best mask that 
in turn was used in the feature selection step.

Type Supervised

Results Obtained a classification accuracy of 92%.

Clinical findings Assisting the experts in the early diagnosis of AD

Dataset ADNI

Scanning Char. A 30-min dynamic emission scan, consisting of 6 5-min frames, was acquired starting 30 min after the intravenous injection of 
5.0 ± 0.5 mCi of 18F-FDG, as the subjects, who were instructed to fast for at least 4 h prior to the scan, lay quietly in a dimly lit 
room with their eyes open and minimal sensory stimulation.

Brain Region Measures the rate of glucose metabolism with the tracer 18F-Fluorodeoxyglucose

Subjects Group NC MCI AD

No. 75 - 75

Age (range) (mean±SD) (62–86) (75.97±4.91) - (55–88) (75.72±7.40)

System Char. Automatic/Objective

Ref. 77

Approach details Goal Voxel-based analysis (GPs by composite kernels)

Notes - Two composite kernels were used: (SE and NN).
- The aim of using composite kernel was to respond to the disease related characteristic patterns.

Type Supervised

Results - The composite kernels helped to reveal the anatomical regions that are related to the disease.
- Comparing single and composite kernels either showed competitive or better results of the 
composite kernels.
- The composite kernels showed significant distinguishing improvement between MCI and NC.
- Derived the automatic relevance determination toward the region level would significantly reduce 
the computation requirement.

Clinical findings Assist in the early diagnosis AD

Dataset ADNI

Scanning Char. -

Brain Region The metabolic activity of the cerebral cortex was used.

Subjects Group NC MCI AD

No. 101 230 60

Age (mean) 76.1 75.6 77.4

System Char. Automatic/Objective
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Ref. 78

Approach details Goal Comparing automatic and expert based identification of voxels regions for the discrimination task 
between AD and MCI subjects.

Notes - Automatic identification was performed by segmenting each FDG-PET image and combining those 
regions (clusters) to obtain a reduced feature space.
- Three classifiers were used to accomplish the comparison: SVM, KNN, and naïve Bayes classifier.

Type -

Results - The found regions were automatically very discriminative (when using SVM and KNN) and were 
better than results with regions defined by experts.
- The voxel intensity approach was the one with the lowest accuracy.
- Merging the ROIs found by the experts together with the automatic identification of ROIs 
differentiated between the MCI subjects and AD better than the automatic method using a naïve 
Bayes classifier.
- The highest accuracies were obtained with a lower number of features, and all the approaches 
decreased their performance when the number of features increased.
- KNN was the worst classifier, and Naïve Bayes, in some approaches outperformed SVM.
- For classification tasks other than AD vs. MCI, the accuracies became a little higher: for AD vs. NC 
it could be around or higher than 85%, and for MCI vs. NC, it achieved results between 65% and 
79% relying on the used classifier and approach.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Scanning Char. -

Brain Region Voxels regions.
Note: for automatically based identification of ROIs, each FDG-PET scan is segmented, getting a partitioning of the image into 
regions (clusters) using DBSCAN.

For expert based identification, seven ROIs were identified namely: lateral temporal (right and left); mesial temporal (right 
and left); inferior frontal gyrus/orbitofrontal; inferior anterior cingulate; superior anterior cingulate; dorsolateral parietal (right and 
left); posterior cingulate and precuneus.

Subjects Group NC MCI AD

No. - 59 59

Age (mean±SD) - 77.7±6.9 78.3±6.6

System Char. Two types (automatic/objective and semiautomatic/subjective) were compared

Ref. 79

Approach details Goal Estimation of the temporal trajectories of voxelwise amyloid (EM algorithm)

Notes -

Type Unsupervised

Results The longitudinal trajectory slopes estimated using the proposed method showed better localized 
longitudinal changes as compared to regressing on age at each voxel.

Clinical findings The results were consistent across the hemispheres and agree with a global index of brain amyloid 
known as mean cortical distribution volume ratio (DVR). Unlike mean cortical DVR, which depends 
on a priori defined regions, the progression score extracted by the method was data-driven and did 
not make assumptions about regional longitudinal changes.

Dataset Longitudinal PET from the Baltimore longitudinal study of aging (BLSA)

Scanning Char. PET scans were acquired on a GE Advance scanner immediately following an intravenous bolus injection of PiB, which binds to 
fibrillar β-amyloid. Dynamic PET data were acquired over 70 min, yielding 33-time frames each with 128×128×35 voxels. Voxel 
size is 2×2×4.25 mm3.

Brain Region Temporal trajectories of amyloid deposition
Note: each cerebral hemisphere was considered separately

Subjects Group NC MCI AD

No. Data for 75 participants

Age Ages of 55.7–92.4 at baseline were used.

System Char. Semiautomatic/Subjective



Medical imaging diagnosis of early Alzheimer’s disease

694 © 1996-2018

integrating continuous attribute discretization along 
with the AR-mining.

Illán et al. (86) proposed a CAD system that 
relied on the ICA for the purpose of feature extraction 
and selection. In addition, SVM was used for the 
purpose of classification. The study performed two 
classification tasks, represented by two methods: 
Method I was NC vs. dementia (combining MCI, 
probable AD, and certain AD in one category) while 
method II was NC vs. MCI vs. probable AD vs. certain 
AD. The system achieved an error of estimation 
under 9% and specificity of 95.12%. On the other 
hand, the second method showed a high accuracy of 
91.1% when training SVM using RBF kernel function. 
Also, method II showed the highest sensitivity, which 
more adequately characterizes AD. This finding was 
supported by some studies that showed the affected 
regions of the brain, which might be attained by 
different hypo-perfusion levels through the AD stages. 
Also, Illán et al. proposed a CAD system (87) that 
relied on mask-based techniques for feature reduction, 
combined component-based SVM for the classification 
task, and pasting-votes method of assembling SVM 
classifiers for final decision making. Two distinct 
voting methodologies were considered: majority and 
relevance. The former incorporates all components 
into the final decision, while the latter uses a subset of 
components deemed relevant. The results illustrated 
the better accuracy and reduced computation time 
with relevance voting when compared to the majority 
voting method. Regarding classification accuracy, 
training SVM with RBF kernel function assisted 
in obtaining an accuracy of 96.91%. In the same 
context, Illán et al. (88) analyzed the importance 
of the latent brain symmetry and asymmetry parts 
in the AD subjects’ identification. To perform such 
analysis, they demonstrated a CAD system that relied 
on eigenspace extension for feature extraction and 
SVM for classification. The experimental results of the 
proposed system showed an identification accuracy 
of 92.78% with the presence of latent symmetry of 
the brain, linear kernel, and a leave-one-out cross-
validation strategy. Although pronounced asymmetries 
in the hypometabolic patterns were specific to AD, the 
usage of such to test for AD was was not especially 
sensitive. The study concluded that considering 
only the symmetric component of the spectrum was 
relevant to recognizing AD subjects.

Martínez et al. (89) proposed a CAD system 
that serves the early diagnosis of AD through building 
decision models that provided its decision based 
on two different classifiers. The difference between 
these classifiers was in the form of selecting the 
required voxels where two criteria were used (i.e., 
Mann-Whitney-Wilcoxon test/relative entropy). 
These two criteria were used to find different brain 
regions that may differ from one patient to another. 

The classification results achieved 92.78% that was 
better than other state-of-the-art methods, which were 
used for comparison. Also, regarding the CAD system 
that was presented by Martínez-Murcia et al. (70), 
the evaluation of the system on the SPECT database 
showed an accuracy of 93.7% for the classification 
task, and thus assisted in the early diagnosis of the 
disease.

As previously mentioned, López et al. 
(69) proposed a CAD system for early diagnosis of 
AD. In addition to the general results on PET and 
SPECT databases, the SPECT images achieved a 
classification accuracy of 96.7 %.

Segovia et al. (90) aimed to improve on 
existing CAD systems by using a PLS algorithm to 
extract features for an SVM-based classifier. PLS 
was used for decomposing the images into scores 
and loadings. Comparing the obtained features using 
PLS-based methodology against those achieved by 
the well-known PCA approach, it showed better FDR 
results with the PLS-based methodology. Ultimately, 
the CAD system’s classification accuracy achieved 
results higher than 90%, which was better than other 
referenced methods. More details regarding the results 
of SPECT related studies can be found in Table 8.

3.3. Other Modalities

3.3.1. Functional magnetic resonance  
imaging (fMRI)

fMRI is an MR imaging technique that aims 
to capture the intrinsic changes of the blood oxygen 
level-dependent (BOLD) signal (91). fMRI captures 
the brain region function that is involved in certain 
cognitive tasks in addition to capturing the general 
functions of the brain involving speech, language, and 
sensory motion (14).

Regarding AD, fMRI is used in monitoring 
the treatment status. Studying both the resting and 
the activation states of the fMRI indicates the lesser-
coordinated activity of the AD patients compared 
with normal subjects within the hippocampus, inferior 
parietal lobes, and the cingulate cortex. Additionally, 
the neural substrate that is related to the behavioral 
functions or cognition occurs in the early stages 
of the neurodegenerative disorder. Therefore, 
correlation of behavioral or cognitive function with the 
neuroanatomical network has become possible due 
to recent fMRI advances (14). Figure 8 (92) shows 
an example of fMRI of NC and AD subjects while 
performing a task that consists of memorizing a series 
of faces. As shown by the red color on the figure that 
represents the increased activity when performing the 
task, the NC shows higher activation than does the AD 
subject.
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Ref. 80

Approach details Goal Classification (2D GW (analysis of SPECT) + PCA (feature extraction) + SVM (classification))

Notes - 16 GW sets (scales=2, orientations=6) were applied and found to be enough.
- Before applying PCA, FDR was used for the purpose of feature selection from the GW-based 
images.

Type Supervised

Results - The best results were found to be when the number of used principal components was 3.
- The classification of the proposed method achieved up to 96% accuracy.
- Improved the classification accuracy results of the PCA+SVM methods. 

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital (Granada, Spain)

Scanning Char. The patients were injected with a gamma emitting99mTc-ECD radiopharmaceutical, and the SPECT raw data was acquired by a 
three head gamma camera Picker Prism 3000.

Brain Region Function of the brain (rCBF)

Subjects Group NC MCI AD

No. 41 - 56

Age - - -

System Char. Automatic/Objective

Ref. 81

Approach details Goal CAD system (FDR (feature selection), NMF (feature extraction), classification (SVM))

Notes -

Type Supervised

Results The system achieved up to 94.9% of the classification accuracy.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital (Granada, Spain)

Scanning Char. The patients were injected with a gammaemitting technetium-99m labeled ethyl cysteinate dimer (99mTc-ECD) 
radiopharmaceutical, and the SPECT images were captured through a 3-head gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 - 56

Age - - -

System Char. Automatic/Objective

Ref. 83

Approach details
Goal

CAD system (PCA/PLS regression model (downscaling and feature extracting), RF predictor 
(classification))

Notes -

Type Supervised

Results

- When the number of the forest trees increased, the system showed a convergence to a limit in 
the generalization error. Thus, the reduction in the generalization error occurred when using PLS 
and depended on the individual forest trees’ strength and the existed correlation between them.
- PLS feature extraction was found to be more effective for extracting discriminative information 
from the data than PCA, yielding peak accuracy values of 96.9%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. The patients were injected with a gamma emitting99mTc-ECD radiopharmaceutical, and the SPECT raw data was acquired by a 
three-head gamma camera Picker Prism 3000.

.Table 8. The SPECT related studies
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Brain Region rCBF

Subjects Group NC MCI AD

No. 41 30 moderate Severe

22 4

Age - - - -

System Char. Automatic/Objective

Ref. 84

Approach details Goal CAD system (Welch’s t-test (feature selection), linear kernel based SVM/classification trees 
(classification))

Notes - The voxels selection was performed through the t-values that were greater than different 
thresholds.
- Then, the used feature vectors were obtained through the mean and SD of the selected voxels.

Type Supervised

Results - The accuracy of the classification obtained through linear based SVM and classification trees was 
found to be proportional to the threshold values used for feature selection.
- In general, linear based SVM showed higher correct rate than classification trees, except when 
the values of threshold that are very high.
- Other classifiers such as quadratic based SVM, RBF based SVM, and Fisher-linear discriminant 
analysis were also evaluated for the classification goals. The findings showed that they, in general, 
had similar performance to the linear based SVM used in this study.
- The proposed methodology achieved the best classification accuracy of 96.2% using 
classification trees.
- Regarding sensitivity and specificity, SVM achieved higher sensitivity while the decision trees 
achieved higher specificity when the threshold values were high.

Clinical findings Classifying the subjects into normal and affected in a parsimonious way without prior knowledge.

Dataset -

Scanning Char. The patients were injected with a gamma emitting99mTc-ECD radiopharmaceutical, and the SPECT raw data were acquired 
through a camera of three head gamma Picker Prism 3000. Totally, 180 projections were captured for each patient with a 
2◦angular resolution.

Brain Region Function of the brain

Subjects Group NC MCI AD

No. 41 - 38

Age - - -

System Char. Automatic/Objective

Ref. 85

Approach details Goal Classification (VAF and AE (feature extraction), ARs (mining))

Notes -

Type Supervised

Results - The study compared the supervised (with the prior goal of 2 most discriminant rules) and 
unsupervised mode (without any prior goals) of ARs. The experiments showed the same accuracy 
results for the both modes but better computation time efficiency in the supervised mode.
- Achieves classification accuracy of 95.87%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. The patients were injected with a gamma ting99mTc-ECD radiopharmaceutical, and the SPECT raw data was acquired by a 
three head gamma camera Picker Prism 3000. A total of 180 projections were taken with a 2-degree angular resolution

Brain Region rCBF

Subjects Group NC MCI AD

No. 43 30 moderate severe

20 4

Age - - - -

System Char. Automatic/Objective
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Ref. 82

Approach details Goal CAD system (FDR (data analysis), NMF (feature selection and extraction), SVM (classification))

Notes -

Type Supervised

Results The system achieved classification accuracy up to 94%. 

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. Each patient was injected with a gammaemittingtechnetium-99m labeled ethyl cysteinate dimer (99mTc-ECD) 
radiopharmaceutical, and the SPECT scan was acquired using a 3-head gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 - 56

Age - - -

System Char. Automatic/Objective

Ref. 87

Approach details Goal CAD (ICA (feature extraction and selection), SVM (classification))

Notes - Two methods were defined:
Method I: used two categories: NC and AD (combined the three stages of AD into one category).
Method II: used four categories: NC, MCI, probable and certain.
- Four SVM-related kernel functions were tested: linear, quadratic, RBF, and polynomial.

Type Supervised

Results - With a small number of features, the non-linear kernel functions generalized better as linear kernel 
functions.
- Method I showed the high specificity performance of 95.12%.
- Method II showed high sensitivity.
- The best performance of the system was achieved with Method II with an accuracy of 91.1% 
when combined with RBF kernel.
- Regarding features, comparing ICA, PCA and VAF showed the improvement of ICA over the 
others.
- The system caused an error estimation below 9%.

Clinical findings The high sensitivity of Method II showed that the affected regions of the brain might be attained by 
different hypo-perfusion levels through the AD stages.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. The database produced with an injected gamma emitting 99mTc-ECD radiopharmaceutical and acquired by a three-head 
gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 20 Probable Certain

14 4

Age - - - -

System Char. Automatic/Objective

Ref. 90

Approach details Goal CAD system (Mann-Whitney-Wilcoxon test/Relative Entropy (voxels ranking and selection), factor 
analysis (feature extraction), multivariate normal classifier (classification))

Notes - The final decision was made based on two different classifiers:
Classifier A: Mann-Whitney-Wilcoxon test, factor analysis, and multivariate normal classifier
Classifier B: Relative Entropy, factor analysis, multivariate normal classifier

Type Supervised

Results The proposed technique achieved a classification accuracy of 92.78% that was better than other 
compared methods.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital (Granada, Spain)

Scanning Char. -
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Brain Region rCBF

Subjects Group NC MCI AD

No. 43 30 Probable Certain

20 4

Age range (mean±SD) 46–85 (71.51±7.99)
23–81 (65.29±13.36)

46–86 
(65.73±8.25)

69–83 
(76±9.90)

System Char. Automatic/Objective

Ref. 88

Approach details Goal CAD system (mask-based techniques (feature reduction), combined component based-SVM 
(classification), pasting-votes method of assembling SVM classifiers (final decision making))

Notes - Two methods for aggregating the votes were proposed:
1-Majority vote: where the final decision was relied on using all the components.
2-Relevance voting: where casting a vote relied on the most relevant components. The relevance 
of each component was defined as the classifier performance where some wrapper filter method 
was needed to select the component.
- Three kernel functions were tested for training SVM: linear, RBF and polynomial.

Type Supervised

Results - Medium image compression showed optimum performance while high image compression 
caused detail degradation that in turn decreased the performance.
- Relevance voting method showed an accuracy of 89% (with medium compression) which was 
better than VAF and majority voting methods. Also, relevance voting method showed better 
computational time compared to the majority voting method.
- The system achieved the best accuracy of 96.91% when SVM trained with RBF kernel.

Clinical findings - Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves’ Hospital (Granada, Spain)

Scanning Char. The 3D SPECT brain images were produced through an injection with gamma emitting 99mTc-ECD radiopharmaceutical and 
acquired by a three-head gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 20 Probable Certain

14 4

Age - - -

System Char. Automatic/Objective

Ref. 86

Approach details Goal Classification (combine VOF, NMSE, t-test selection and KPCA (feature extraction), Kernel 
Distance Metric Learning Methods (classification))

Notes -

Type Supervised

Results The study compared Euclidean, Mahalanobis and energy-based distance metric learning for 
the classification. The Energy-based method achieved 96.91% classification accuracy which 
represented the highest accuracy among the three tested classifiers.

Clinical findings Assisting the experts in the early diagnosis of AD

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. The patients were injected with a gammaemitting99mTc-ECD radiopharmaceutical, and a camera of a three head gamma 
Picker Prism 3000 was used to acquire the SPECT raw data. Totally, 180 projections were acquired with a 2-degree angular 
resolution.

Brain Region rCBF

Subjects Group NC MCI AD

No. 43 30 Moderate Severe

20 4

Age - - - -

System Char. Automatic/Objective
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Ref. 70

Approach details Goal CAD system (PCA/ LDA (feature extraction) + FDR (feature selection) + ANN/SVM (classification))

Notes - The best combination of techniques that composed complete CAD systems was not fixed but 
depended on the specific database and the classification task they dealt with.

Type Supervised

Results - In general, SVM provided better results than ANN with the same features.
- When classes were best classified by linear surfaces or decision lines, the rearrangement of the 
PCA coefficients by the FDR criterion usually yielded higher accuracy rates.
- The system achieved a classification accuracy of 96.7%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. -

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 27 Probable Certain

19 4

Age range (mean±SD) 46–85 (71.51±7.99) 23–81 (65.29±13.36)
46–86 (65.73±8.25)

69–83 
(76±9.90)

System Char. Automatic/Objective

Ref. 73

Approach details Goal CAD system (AR-mining and combination (feature selection) + PCA/PLS (feature extraction) + 
SVM (classification))

Notes -

Type Supervised

Results The classification accuracy achieved results up to 91.75%

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital (Granada, Spain)

Scanning Char. Note: The images were acquired in the form of PRISM 3000 gamma camera after injecting the subjects by gamma emitting 
tech-netium-99 m labeled ethyl cysteine dimer (99mTc-ECD).

Brain Region rCBF for identifying pathologic anomalies in internal tissues or organs, even before anatomical and structural alterations are 
observable.

Subjects Group NC MCI AD

No. 41 30 Moderate Severe

22 4

Age range (mean±SD) 46–85 (71.51±7.99) 23–81 (65.20±13.36) 46–86 
(65.73±8.25)

69–83 
(76±9.90)

System Char. Automatic/Objective

Ref. 89

Approach details Goal Exploring the brain latent symmetry importance (CAD system (eigenspace extension (PCA) 
(feature extraction), SVM (classification))

Notes -

Type Supervised

Results - The system achieved an identification accuracy of 92.78% with the latent symmetry of the brain, 
linear kernel, and a leave-one-out cross-validation strategy.
- The usage of asymmetries for the test of the AD was very specific but not especially sensitive. 

Clinical findings - Considering just the symmetric part of the spectrum showed an improvement in the AD subject’s 
recognition.
- When the asymmetries in the hypometabolic patterns were presented, they were pronounced in 
the AD subjects.

Dataset Virgen de las Nieves Hospital (Granada, Spain)



Medical imaging diagnosis of early Alzheimer’s disease

700 © 1996-2018

Scanning Char. The 3D SPECT brain images were acquired through an injection with gamma emitting 99mTc-ECD radiopharmaceutical and 
acquired by a three-head gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 30 Moderate Severe

22 4

Age range (mean±SD) 46–85 (71.51±7.99) 23–81 (65.2±13.36) 46–86 
(65.73±8.25)

69–83 
(76±9.90)

System Char. Automatic/Objective

Ref. 71

Approach details Goal CAD system (voxel selection (Mann–Whitney–Wilcoxon U-Test), feature extraction (Factor 
Analysis) and classification (linear SVM))

Notes - Using Mann–Whitney–Wilcoxon selection criteria for the purpose of voxel selection represented 
one of the strengths of the proposed system since it prevented the system from selecting outliers.
- The purpose of proposing the factor analysis was to extract common factors and factor loadings 
from the selected voxels and thus help in carrying out the feature reduction.

Type Supervised

Results The classification accuracy achieved 93.7%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. -

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 29 Probable Certain

22 4

Age range (mean±SD) 46–85 
(71.51±7.99)

23–81 
(65.2±13.36) 46–86 (65.7±8.25) 69–83 (76±9.9)

System Char. Automatic/Objective

Ref. 74

Approach details Goal CAD system (data analysis (FDR)+feature selection and extraction (NMF) + classification (SVM 
with bounds of confidence))

Notes Three different approaches for the classifier were provided and detailed, two of them included 
bounds of confidence and took advantage of the definition of a “security region” in the SVM 
hyperplane, where no decision was assumed.

Type Supervised

Results The system achieved up to 91% of the classification accuracy.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. Each patient was injected with a gamma emitting technetium-99m labeled ethyl cysteinate dimer (99mTc-ECD) 
radiopharmaceutical, and the SPECT images were acquired by means of a 3-head gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 - 56

Age - - -

System Char. Automatic/Objective
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Ref. 72

Approach details Goal CAD system (FDR and AE (feature/ROI extraction), AR (mining))

Notes - The FDR was used to enable the selection of the discriminant regions for further analysis and to 
reduce the computational cost.
- AE provided a trade-off between the computation complexities, the accuracy of the image 
classification, and allowed all relevant brain regions to be included.

Type Supervised

Results The system achieved an accuracy of 92.78%

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. Each subject was injected with a gamma emitting technetium-99 m labeled ethyl cysteinate dimer (99mTc-ECD) 
radiopharmaceutical, and the SPECT scan is acquired by means of a 3-head gamma camera Picker Prism 3000.

Brain Region rCBF

Subjects Group NC MCI AD

No. 42 30 Probable Certain

21 4

Age - - - -

System Char. Automatic/Objective

Ref. 14

Approach details Goal CAD system (continuous attribute discretization (feature selection) + AR mining (classification))

Notes Image histogram segmentation was used over the mean control images to obtain the best mask 
that in turn was used in the feature selection step.

Type Supervised

Results Obtained classification accuracy up to 96.91%

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital (Granada, Spain)

Scanning Char. Note: The images were acquired in the form of PRISM 3000 gamma camera after injecting the subjects by gamma emitting 
tech-netium-99 m labeled ethyl cysteinate dimer (99mTc-ECD).

Brain Region rCBF for identifying pathologic anomalies in internal tissues or organs, even before anatomical and structural alterations are observable.

Subjects Group NC MCI AD

No. 41 30 Moderate Severe

22 4

Age range (mean±SD) 46–85 (71.51±7.99) 23–81 (65.20±13.36) 46–86 (65.73±8.25) 69–83 (76±9.90)

System Char. Automatic/Objective

Ref. 91

Approach details Goal 1-Feature extraction method (PLS)
2-CAD system (PLS regression model (feature extraction), Out-Of-Bag error (feature selection), 
SVM (classification))

Notes -

Type Supervised

Results - The features obtained through PLS showed better FDR when compared with the PCA approach.
- The system achieved a classification accuracy of 91.6%, the sensitivity of 92.7% and specificity of 91.1%.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset Virgen de las Nieves Hospital in Granada (Spain)

Scanning Char. The patients were injected with a gamma emit-ting99mTc-ECD radiopharmaceutical and the SPECT raw data was acquired 
by a three head gamma camera Picker Prism 3000. A total of 180 projections were taken with a 2° angular resolution.

Brain Region rCBF

Subjects Group NC MCI AD

No. 41 30 Moderate Severe

22 4

Age range (mean±SD) 46–85 (71.51±7.99) 23–81 (65.86±13.36) 46–86 (65.73±8.25) 69–83 (76±9.90)

System Char. Automatic/Objective
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For the early diagnosis of AD, Hu et al. (93) 
dealt with functional connectivity between different 
regions of the brain by utilizing fMRI scans to help in 
the early stages’ prediction of AD. Their experiments 
showed that functional connectivity between brain 
regions is of more importance than activity within 
regions in predicting cognitive decline.

In the same context, Challis et al. (94) worked 
with the functional connectivity of the brain from the 
resting state fMRI (rsfMRI) to stratify between NC, 
aMCI, and AD subjects. This study achieved good 
classification results even without including information 
on focal atrophy. A detailed illustration of fMRI-related 
studies is presented in Table 9.

3.3.2. Diffusion tensor imaging (DTI)

DTI is a modality built upon MRI, applying 
diffusion-weighted pulse sequences with magnetic 
field gradients in at least six different directions and 
possibly of different magnitudes to produce MRI 
signals characterized by the sensitivity to the random 
microscopic motion of water. The purpose of DTI is 
to estimate the tensor that characterizes diffusion of 
water within brain tissue, which provides the ability to 
study the microstructure of the white matter and the 
fiber pathways (tractography) between brain regions 
(95). The symmetric, second rank diffusion tensor is 
often reduced to four scalar or pseudoscalar summary 
statistics: axial diffusivity (ADT), radial diffusivity (RD), 
mean diffusivity (MD), and fractional anisotropy (FA) 
(96). Such results assist in measuring as well as 
quantifying the orientation of the tissues. In addition, 
their structure assists in the examination process 
of cerebral WM as well as the neural fiber tracts. 

As an example, Figure 9 (97), shows a comparison 
between AD and NC subjects that, according to 
the studies, shows the increased MD in addition to 
decreased FA in the AD as compared to NC (97). For 
more details, related to the DTI and its mechanism of 
work, please see (78).

Regarding AD, measurement of the fiber 
tract integrity through DTI helps in a directly assessing 
the WM fibers. Therefore, it could potentially be 
considered as an AD biomarker. In addition, it reflects 
any disruption in the axons through random movement 
of water molecules through the tissues. Therefore, 
it helps in characterizing AD since such disruption 
causes, in turn, a reduction in the anisotropy. In other 
words, the water molecules’ movement along the 
neural tract length is greater than those across tract 
width. Finally, the regional analysis of the DTI shows 
that the changes in the hippocampal microstructure 
may represent a better indicator of the MCI progression 
risk to AD (26).

For early diagnosis of AD, Wee et al. (98) 
relied on a collection of measures obtained from 
the connectivity networks of the WM to help in 
distinguishing MCI and NC subjects through presenting 
a classification algorithm. They worked on presenting 
enriched WM connections that were described 
through the use of six physiological parameters: fiber 
penetration count, FA, MD, and principal diffusivities 
(λ1, λ2, λ3). Such utilization associated each subject 
with six connectivity networks to account for both 
connection topology and biophysical properties. 
To help in the accurate detection of MCI, the study 
selected certain brain regions and presented them 
to the classification step. These regions included 

Figure 8. NC and AD subjects’ fMRI scans performing an activation task (93), memorizing faces, with the red color areas in the blue rectangles represent 
the fires when performing the required task.
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Ref. 94 

Approach details Goal Classification (auto-encoder architecture)

Notes -

Type Supervised

Results The experiment results showed that the proposed method found the correlations between different brain regions 
efficiently, and provides a strong reference for AD prediction. Compared to SVM, about 25% improvement was 
gained through the proposed work in the prediction accuracy.

Clinical 
findings

The connections between brain regions showed more importance than the pure function of the regions and that 
the cognitive ability of people heavily depended on this.

Dataset ADNI

Scanning Char. The DICOM fMRI data was scanned by the 3.0. Tesla Philips medical system. Flip angle = 80; repetition time (TR) =3000 ms; 
echo time (TE) = 30 ms; pixel size = 3.3. × 3.3.; slice thickness = 3.3. mm; matrix size = 64 × 63. More information about the 
resting state parameters can be found on the website of ADNI.

Brain Region Brain functional connection

Subjects Group NC MCI AD

No. 52 48 -

Age (range) 63.2 - 88.3 66.5 - 87.3 -

System Char. Automatic/Objective

Ref. 95

Approach details Goal Patient stratification (Bayesian GP logistic regression (GP-LR) models with linear and non-linear covariance 
functions)

Notes -

Type Supervised

Results The results supported the hypothesis that Bayesian GP-LR models can be effective at performing patient 
stratification: the implemented model achieved 75% accuracy disambiguating NC from subjects with aMCI and 
97% accuracy disambiguating aMCI subjects from those with AD. Accuracies were estimated using a held-out 
test set. Both results were significant at the 1% level.

Clinical 
findings

Assist in the early diagnosis of AD.

Dataset Data are available upon request

Scanning Char. All subjects underwent a MRI examination at 3 T (Siemens, Medical Solutions, Erlangen, Germany), including the following 
acquisitions: 3D modified driven equilibrium Fourier transform (MDEFT) scan (TR = 1338 ms, TE = 2.4. ms); and T2* weighted 
echo planar (EPI) sensitised to BOLD contrast (TR = 2080 ms, TE = 30 ms, 32 axial slices, matrix = 64 × 64, pixel size = 3 × 3 
mm2, slice thickness = 2.5. mm, flip angle: 70°) for rsfMRI. BOLD EPIs were collected during rest for a 7 minute and 20 second 
period, resulting in a total of 220 volumes. During this acquisition, subjects were instructed to keep their eyes closed, not to 
think of anything in particular and not to fall asleep.

Brain Region Functional connectivity patterns of the brain

Subjects Group NC MCI AD

No. 39 aMCI: 50 27

Age (mean±SD) 63±9 66±7 68±6

System Char. Automatic/Objective

.Table 9. The fMRI-related studies

the rectus gyrus region within the orbital portion of 
the frontal lobe and the insula within the lateral fissure 
between the temporal lobe and the frontal lobe. The 
experiments showed that relying on the connection 
topology and biophysical properties revealed more 
relevant and subtle information that, in turn, serves the 
purpose of classification.

Schwab et al. (99) incorporated DTI into a 
diagnostic framework combining automated feature 

selection, registration, and atlas construction. They 
focused on the beta-amyloid (Aβ) pathology of AD 
and its relationship to the degenerative changes 
reflected in the neuroanatomy. The study found 
a high probability of association between the 
presence of amyloid deposits and features of the 
parahippocampal WM, in that feature intensity was 
reduced in that region for Aβ+ cases compared with 
Aβ−. More details regarding DTI studies are found in 
Table 10.
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Figure 9. Example (98) of abnormalities between AD as well as NCs subjects. The spatial statistical tract color maps that represent the differences of the 
voxels between the subjects are overlaid on the mean FA skeleton. The red color indicates the voxels with increased MD and decreased FA. Yellow color 
represents voxels of increased ADT while the blue color indicates voxels of increased RD.

3.4. Fusion related studies

In addition to the previous studies that relied 
on information obtained from single modality, various 
studies combined different sorts of information from 
various imaging modalities. Such fusion aims to 
produce more informative results that consequently 
could assist in the early diagnosis process of 
AD. For instance, Polikar et al. (100) introduced 
a decision fusion based approach that combined 
electroencephalogram (EEG), MRI, and FDG-PET 
data using an ensemble of classifiers. The study 

showed, in general, better performance as compared 
with obtained results when working only with a single 
modality.

Kanel et al. (101) utilized Freesurfer 
image analysis tools to obtain different volumetric 
measurements of the hippocampus subfields that 
consequently helped in classifying the subjects into 
different AD stages. The study found that involving 
the hippocampus subfields and raphe nuclei in AD 
show very different measurements than normal 
aging with various degeneration rates. In the end, 
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Ref. 99

Approach details Goal Classification (SVM)

Notes The key of the proposed classification framework involved an enriched description of WM connections 
utilizing six physiological parameters: fiber penetration count, FA, MD and principal diffusivities (λ1, λ2, λ3)

Type Supervised

Results The classification accuracy by the proposed framework (with six parameters) was 92.6%, which was at least 
an 18.5% increment from that using any single physiological parameter

Clinical findings - The WM connections’ topology and biophysical properties revealed more relevant and subtle information 
that in turn served the purpose of classification
- For the classification, the selected brain regions were: the sectus gyrus, which resides on the orbital 
portion of the frontal lobe, and the insula, lies within the lateral fissure between the temporal lobe and the 
frontal lobe. These regions represented discriminant features that helped in an accurate detection of MCI.

Dataset Duke-UNC Brain Imaging and Analysis Center, North Carolina, USA

Scanning Char. 3.0. Tesla scanner (GE Signa EXCITE, GE Healthcare)
DWI of each participant were acquired axially parallel to the anterior and posterior commissures (AC-PC) line with 25-direction 
diffusion-weighted whole-brain volumes using diffusion weighting values, b = 1000 s/mm2, flip angle = 90°, TR = 17 s and TE = 
78 ms. The imaging matrix was 128×128 with a rectangular FOV of 256 × 256 mm2, resulting in a voxel dimension of 2 × 2 ×2 
mm3. A total of 72 contiguous slices were acquired.

Brain Region WM connectivity networks
Note: The most discriminant regions that were selected for classification included the rectus gyrus which is located on the 
orbital portion of the frontal lobe and the insula which is located within the lateral fissure between the temporal lobe and the 
frontal lobe.

Subjects Group NC MCI AD

No. 10 17 -

Age (mean ± SD) 74.2 ± 8.6 72.1 ± 8.2 -

System Char. Semi-automatic/Subjective

Ref. 100

Approach details Goal Joint feature selection, registration and atlas building framework
(Generalized multi-channel large deformation diffeomorphic metric mapping (LDDMM) algorithm)

Notes The proposed framework was applied for the characterization of Aβ pathology for the early diagnosis of AD. 
This aimed to a better understanding of the relationship between Aβ pathology and degenerative changes in 
neuroanatomy.

Type -

Results The presence of Aβ pathology (Aβ+) may be associated with feature decreases in the parahippocampal WM 
ROI, indicating levels of degradation as compared to a healthy average (Aβ-).

Clinical findings - Association probability between the presences of (Aβ) pathology (Aβ +) and the decrease of the feature in 
the parahippocampal WM.
- These findings, in turn, indicated degradation levels as compared to health average (Aβ -).

Dataset Hippocampal connectivity Project (HCP) at the center for imaging of neurodegenerative diseases (CIND) at the University of 
California San Francisco (UCSF). 

Scanning Char. For each subject, 3 high angular resolution diffusion imaging (HARDI) scans were acquired on a Siemens 4T scanner (128 
gradient directions, 3 b0 values, FOV: 192, number of slices: 26, resolution: 1.5 mm isotropic, b-value: 1400 s/mm2, TR/TE: 
3500/86, 3nex averaged to enhance SNR, total protocol time: 1.35 h).

Brain Region Aβ WM pathology
Note: Focused on features within the Parahippocampal WM

Subjects Group Aβ- Aβ+

No. 15 17

Age (mean ± SD) - -

System Char. Automatic/Objective

Table 10. DTI related studies for early diagnosis of AD

the study mentioned that more systematic studies 
were required with optimal intrinsic features using 
the measurements of subfields to achieve early AD 
diagnosis.

Zhang et al. (102) proposed a multi-modal 
multi-task (M3T) learning scheme for the purpose of 
joint prediction of multiple variables from multi-modal 
data through multi-task feature selection (MTFS) and 
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multi-modal SVM for classification/regression. To 
achieve that, the study used data of MRI, PET, and 
CSF in addition to a clinical score of MMSE and ADAS-
Cog. To evaluate the performance of the proposed 
scheme, the study performed two experiments. The 
first experiment examined the estimation of the MMSE 
and ADAS-Cog clinical scores in addition to one class 
label (i.e., AD, MCI, or NC). The second experiment 
predicted the 2-years changes of MMSE and ADAS-
Cog scores beside the conversion of MCI to AD. 
Both experiments showed better results through the 
proposed learning scheme than through the compared 
learning methods.

Kim et al. (103) utilized the integration 
concept to serve the early detection of AD through 
focusing on different features that could be estimated 
from the MRI and PET. The experimental results 
evaluated different aspects. The results revealed 
that integrating metabolism features (measured from 
FDG-PET) and volume/thickness features (measured 
from the MRI) gave the best results. Comparing the 
proposed method against SVM mainly showed better 
results of the proposed method when working with 
volume/thickness measures.

Suk and Shen (104) utilized the deep 
learning concept to perform a feature representation 
process of the proposed classification method that 
finally performed the classification task using multi-
kernel (MK) SVM. To test the system, three binary 
classification problems were considered, AD vs. 
NC, MCI vs. NC, and MCI-C vs. MCI-NC. The test 
showed performance accuracies of 95.9%, 85.0%, 
and 75.8%, respectively. Regarding MCI-C vs. MCI-
NC, the system could improve the performance 
by 4.0%, which is significant for early diagnosis 
purposes.

Jie et al. (105) proposed a manifold 
regularized multitask feature selection (M2TFS) model 
using MRI and PET data to improve classification 
accuracy and consequently assist in the early diagnosis 
of AD. Two regularization items were included: 
Group Lasso regularizer was used to select a small 
number of features across different modalities jointly. 
Laplacian regularization term, the second item, was 
used to preserve the whole data related to geometric 
distribution information from each modality. Testing the 
proposed model under the supervised task showed 
better accuracy and sensitivity results as compared 
with other methods where the accuracy achieved 
was 95.03%, 79.27%, and 68.94% for classification 
problems of AD vs. NC, MCI vs. NC, and MCI-C vs. 
MCI-NC, respectively. Under the semi-supervised task, 
the results revealed that the proposed model could 
lead to better discriminant feature selection using the 
geometric distribution of the data. This finding reflected 
on the accuracy of the classification that improved 

consistently with the increment in the unlabeled 
samples on the three groups of classifications.

Suk et al. (106) attempted to enhance the 
AD/MCI diagnosis performance through presenting 
feature representation and multimodal fusion of MRI 
and FDG-PET to serve the diagnosis process of AD/
MCI. The study relied on deep learning for a self-taught 
system that efficiently combines complementary 
information from MRI and PET modalities to construct 
representations. The findings showed better results of 
the proposed method in various quantitative metrics 
with other compared methods. Also, by visually 
inspecting the trained model, the proposed method 
could discover the complex latent patterns hidden in 
MRI and FDG-PET in a hierarchical manner. Finally, 
due to the better results obtained through the proposed 
method as compared to competing methods, the 
authors concluded that deep learning sheds new light 
regarding the analysis of the neuroimaging data. Then, 
Suk et al. (108) utilized the stacked autoencoders 
(SAE) to perform a feature representation using MRI, 
FDG-PET, and CSF data. The main motivation was 
the possibility of the existence of hidden or latent 
high-level information inherent in the original low-level 
features that could assist in building a robust model 
of the diagnosis. The evaluation regarding binary 
classification problems of AD vs. NC, MCI vs. NC, AD 
vs. MCI, and MCI-C vs. MCI- NC showed accuracies 
of 98.8%, 90.7%, 83.7%, and 83.3%, respectively. 
Also, the unsupervised characteristic of the pre-
training in deep learning helped in discovering general 
latent feature representations that consequently led to 
classification accuracy enhancement.

Li et al. (108) utilized the deep learning 
concept to help in predicting missing patterns of 
the PET images on MR images. The process was 
accomplished through using MRI as input to the model, 
while the PET would be predicted as the output. The 
experiments test multiple things: 1) the PET related 
prediction ability, 2) the classification accuracy 
compared with other methods, and 3) the impact of 
the combination of the PET and MRI images features 
in the accuracy. The results indicated the successful 
ability of the proposed system to perform the prediction 
process of PET missing patterns that could improve 
the diagnosis accuracy. Testing the classification 
accuracy through MRI, true and predicted PET, and 
MRI + PET images were performed. In general, the 
proposed method showed better results compared with 
other related methods. Also, there were comparable 
results between predicted PET and true PET. Finally, 
the combination of PET and MR images features also 
helped in improving the obtained performance.

Liu et al. (109) utilized the deep learning 
concept to present a CAD system that was helpful 
in the early diagnosis of AD. The proposed system 
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used sparse SAE for the representation of the original 
input while the softmax regression layer was used to 
perform the classification task. Evaluating the system 
against single-kernel SVM (SK-SVM) and multi-kernel 
SVM (MK-SVM) showed better sensitivity results in 
two binary classification problems, AD vs. NC and 
MCI vs. NC. For the accuracy, although the proposed 
system achieved better accuracy in AD vs. NC case, 
MK-SVM showed better accuracy in the MCI vs. NC 
problem. Additionally, the classification performance 
of 4-way classification problems, NC, MCI-C, MCI-
NC, and AD using “one against all” approach was 
evaluated. The SAE/softmax method outperformed 
SVM in the classification of NC, MCI-NC, and AD while 
SVM showed better results with regard to the MCI-
NC problem. This led to the proposed system having, 
in general, greater accuracy than SVM on the four-
way classification. Then, Liu et al. (110) utilized the 
architecture of deep learning to suggest a diagnostic 
framework that was capable of distinguishing four 
AD progression stages with fewer requirements 
of prior clinical knowledge. The framework utilized 
SAE to obtain high-level features of the input in an 
unsupervised fashion. In addition, the framework 
used zero-masking strategy in the presence of the 
multimodal data for the purpose of extracting the 
complementary information from these modalities. For 
the classification task, although the extracted features 
of the unsupervised network could be transferred to 
conventional classifiers (e.g., SVM), the softmax 
logistic regression was applied. The purpose of such 
selection of the softmax logistic regression was to 
utilize the fine-tuning of it in jointly optimizing the entire 
network. The framework showed better evaluation 
results as compared to state-of-the-art SVM-based 
methods as well as to other deep learning frameworks.

Shi et al. (111) attempted to serve the 
identification process of AD/MCI against NC 
through presenting two strategies: nonlinear feature 
transformation and feature fusion strategies. 
Regarding data fusion, the authors examined the fusion 
process of certain features extracted from MRI. These 
features were cross-sectional features represented 
through GM tissue densities and longitudinal features 
represented through deformation magnitudes (DM). 
The experiments showed that the proposed strategies 
gave better results when compared to state-of-the-
art solutions. Better performance was obtained using 
fusion rather than each feature individually.

Li et al. (112) proposed a classification 
model for early diagnosis of AD through fusing MRI, 
PET, and CSF data along with two clinical scores of 
each patient, MMSE, and ADAS-Cog. Also, the model 
utilized the deep learning concept in the form of dropout 
technique to model the required weights. The reason 
for choosing dropout method was its ability to improve 
the generalization capability of the model. Other 

components of the model included PCA for feature 
extraction, stability selection technique, least absolute 
shrinkage and a selection operator (Lasso) method 
for feature selection, and SVM for classification. The 
system achieved the best performance in diagnosing 
AD with 91.4%, MCI with 77.4%, and diagnosing AD 
vs. MCI with 70.1%. In the diagnosis of MCI-C vs. MCI-
NC, the PCA was found to degrade the results slightly 
from 58.1% to 57.4%. Identifying the impact of each 
of the model components showed the largest impact 
through dropout component, followed by multitasking 
learning, then stability selection, and ending with PCA. 
They suggested that the deep traditional learning 
could not extract information efficiently from small 
datasets unless a regularization technique, such as 
dropout, was used. Finally, they found that the dropout 
technique helped in improving the classification 
accuracy by 5.9% more than the classical deep 
learning methods.

Zhang et al. (113) proposed a prediction 
model based on extreme learning machine algorithms 
(ELMs) for the identification of MCI relying on MRI, 
PET, and CSF data. First, the study evaluated the 
complementary nature of the three biomarkers 
through testing an ELM prediction based model for 
each biomarker individually, as well as when they 
were combined. The results, in general, showed better 
accuracy with the combination. Then, the comparison 
of the combined model with the SVM and SVM-fusion 
revealed a better accuracy of the proposed model, but 
with a slightly better sensitivity when using the SVM.

Cheng et al. (114) focused on the 
classification of MCI-C and MCI-NC subjects through 
presenting multimodal manifold-regularized transfer 
learning (M2TL) method with an optimization algorithm 
for objective function solution. It is noteworthy that the 
study utilized samples from different domains (i.e., 
AD/NC), as an auxiliary domain, in a transfer learning 
manner to help in the discrimination task of MCI-C and 
MCI-NC, as a target domain. Due to the distribution 
differences of the auxiliary and target domains, the 
study utilized maximum mean discrepancy (MMD) 
criterion and a similarity/dissimilarity measure between 
two samples from different domains. The study 
designed a cross-domain Laplacian matrix to reflect 
the relation among the samples of the target domain, 
auxiliary domain, and the unlabeled samples. Finally, 
in the objective function, a group sparsity constraint 
was used to help in the informative sample selection 
to predict the labels of the target class. The testing 
of the proposed method showed that the maximum 
accuracy of 80.1% of MCI conversion prediction 
helped in the early diagnosis of AD. Additionally, 
Cheng et al. (115) presented a multimodal multi-label 
transfer learning (MDML) method. The method was 
used for transfer learning and multi-label learning for 
feature selection, MK-SVM for classification, and MK 
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relevance vector regression machine for regression. 
Testing classification results of MCI-C vs. MCI-NC 
showed better results of the proposed method against 
compared methods. The proposed method achieved 
accuracies of 73.2%, 70.0%, and 78.7% when testing 
the results with different modalities (MRI, PET, 
MRI+PET+CSF), respectively. Additionally, the study 
tested the prediction of the clinical scores (i.e., MMSE/
ADAS-Cog) using different modalities (MRI, PET, 
MRI+PET+CSF). The tests showed better prediction 
results than the compared methods. It is noteworthy 
that the proposed MDML method performed the 
prediction without a related learning domain. About 
clinical findings, the method could successfully find 
the most discriminant regions of the brain (e.g., 
hippocampal, amygdala, temporal lobe, precuneus, 
and insula). More details regarding the fusion based 
studies can be found in Table 11.

4. CHALLENGES AND FUTURE TRENDS

Despite the availability of several scientific 
efforts that aim to clarify the ambiguity surrounding 
the early diagnosis of AD, some limitations are still 
faced by the scientific community that works in 
this research area. These limitations are related to 
different factors, such as the available databases 
that are utilized for testing the proposed methods, 
the available technologies that produce the medical 
images/biomarkers, the subjects who are the target 
of the proposed works, and the applied methods and 
techniques. The purpose of this section is to highlight 
the major obstacles that still stand in front of the 
achievements regarding the research area of the early 
diagnosis of AD (116).

4.1. Databases

Different databases have emerged to serve 
the scientific community who work in the AD research 
field. The existing repositories still face some limitations 
that affect the scientific development in this area. 
These limitations include, for example, the absence 
of useful modalities within these repositories (e.g., 
EEG, SPECT) and microscopy images. This omission 
prevents the ability to utilize powerful data mining and 
other techniques to perform further studies on these 
modalities along with the other available modalities 
(e.g., MRI).

In addition to the absence of various 
modalities, most databases offer MR imaging modality 
for scientific research. Of course, the availability of 
MRI is important due to the significant role of this 
modality in the context of AD as previously mentioned. 
However, as implied in the previous survey’s tables, 
this trend directs studies to work only in one direction 
(i.e., to deal with MRI only) and to avoid dealing with 
other modalities.

In general, most available data are unimodal, 
with an absence of different modalities in the same 
subjects that hinder certain processes, such as fusing 
the multimodal images/data to achieve maximum 
performance results. In addition, most of the available 
records are in elderly patients, 55 years of age and older. 
Consequently, it prevents the analysis of data on younger 
people who are also at risk of suffering from AD. The 
number of young people affected by early-onset AD is 
small but non-negligible, and building databases for the 
study of this rare condition should be a research priority.

4.2. Modalities

Despite there being significant sources of 
information on different imaging technologies, there 
still exist limitations associated with these modalities. 
For example, PET technology provides high-quality 
results, but it uses ionizing radiation which can 
adversely affect human health. MRI, while generally 
safer, is more costly and cannot be used on patients 
with metallic implants. These limitations can be 
circumvented to some degree, but only by sacrificing 
image quality and further raising costs.

On the other hand, some modalities fail in 
the process of differentiating between AD and other 
disorders, which in turn affects the decision-making 
processes. In addition, some modalities fail to help in 
the early diagnosis of the disease, although they can 
assist in subsequent diagnostic stages. Fortunately, 
advances in medical imaging technologies continue to 
provide improvements for research and development 
in overcoming present limitations.

4.3. Applied Techniques

Various methods and techniques are still 
utilized for deciphering the AD-related diagnostic 
staging complexity to assist experts in their decision 
making. Various studies using different techniques 
have achieved significant results in analyzing AD 
stages. However, these techniques face limitations 
that prevent them from being generalized and applied 
clinically.

Both performance quality and accuracy are 
considered essential factors, especially in medical 
applications since any mistake may endanger human 
life. Although various methods achieve high quality 
and accuracy results, they are in need of much more 
research before they are applied in clinical practice.

Besides performance quality and accuracy, 
the computation time is also a vital factor in 
real applications. It is an obstacle in front of the 
implementation of some techniques that, although 
producing acceptable results, are impractical in a 
clinical due to their relatively high computation time.
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Ref. 101

Approach details Goal Decision fusion approach (ensemble of classifiers)

Notes -

Type Supervised

Results 10%-20% improvement compared with results obtained through the individual source of data.

Clinical findings The usage of different measures of each modality (electrophysiological vs. anatomical vs. metabolic) 
helped in obtaining better performance results than those obtained from individual sources of data.

Dataset -

Fused Modalities MRI, FDG-PET, and EEG

Scanning Char. EEG: The event-related potential (ERPs) were captured through the protocol of an auditory oddball paradigm. Electrodes were 
placed according to 10–20 standard, whose impedances were kept under 20Ω. The patients were tested for 30 minutes with 
approximately 3 rest minutes for every 5 testing minutes. Random stimuli of 1,000 were presented, 65% consisting of 1 kHz 
standard tones, 20% as 2 kHz target tones, and 15% of novel sounds. A random 1.0 to 1.3 seconds inter-stimulus interval was 
inserted. Standard and target stimuli were presented in 100ms busts with a 5ms on/offset envelope. The novel stimuli were 
environmental sounds that long for about 200ms where each was never repeated and was unique. The subjects were instructed 
for pressing a button only whenever they heard the target tone. A sampling at 256 samples/s was performed on the data.

Brain Region MRI: volumetric measurement of the brain (To consider the brain related volumes’ changes)
FDG-PET: glucose metabolism of the brain (to measure Hypometabolism (the brain related drop in the metabolic activity))
EEG: ERPs

Subjects Group NC MCI AD

No. 36 - 37

Age (mean) 71.2 - 74.5

System Char. Automatic/Objective

Ref. 102

Approach details Goal Volumetric segmentation (Freesurfer tool)

Notes -

Type -

Results -

Clinical findings The hippocampus subfields and raphe nuclei showed very different measurements from 
normal aging with different degeneration rates.

Dataset ADNI

Fused Modalities fMRI, MRI, and PET

Scanning Char. -

Brain Region fMRI and MRI images: subfields of the hippocampus
MRI and PET scans: the raphe nuclei

Subjects Group NC MCI AD

No. - - -

Age - - -

System Char. Automatic/Objective

Ref. 103

Approach details Goal Joint prediction of multiple variables from multi-modal data (MTFS, Multi-modal 
SVM(classification/regression))

Notes -

Type Supervised

Results The study performed two types of experiments. The first experiment was estimated the MMSE 
and ADAS-Cog clinical scores in addition to one class label (i.e. AD, MCI, or NC). On the other 
hand, the second experiment dealt with predicting the 2-year changes of MMSE and ADAS-Cog 
scores besides the conversion of MCI to AD. Both experiments were based on ADNI baselines 
MRI, FDG-PET, and CSF data. The results of both experiments showed better results through 
the proposed learning scheme than the compared learning methods.

Clinical findings Assisting the experts in the early diagnosis of AD.

Table 11. The Fusion related studies



Medical imaging diagnosis of early Alzheimer’s disease

710 © 1996-2018

Dataset ADNI

Fused Modalities MMSE, ADAS-Cog, MRI, PET and CSF data

Scanning Char. MRI: were acquired from1.5 T scanners.
PET: were acquired 30–60 min post-injection.
CSF: were collected in the morning after a fast for overnight by a needle of 20- or 24-gauge spinal, frozen within 1 
collection hour, and transported on dry ice to the University of Pennsylvania Medical Center for the ADNI Biomarker Core 
laboratory.

Brain Region MRI: GM tissue volume
PET: average intensity
CSF: Aβ42, t-tau, and p-tau.

Subjects Group NC MCI AD

No. 50 MCI-C MCI-NC 45

43 48

Age (mean±SD) 75.3 ± 5.2 75.8 ± 6.8 74.7 ± 7.7 75.4 ± 7.1

System Char. Automatic/Objective

Ref. 104

Approach details Goal Classification using automatic whole-brain ROI analysis techniques and Graph-based semi-
supervised learning (SSL) method for multimodal brain imaging data integration

Notes The utilized brain imaging data that were used as features were (voxel-based morphometry 
(VBM) and FreeSurfer V5) and PET (FDG and Florbetapir) scans.

Type Semi-supervised

Results - Evaluating the integration effort showed the following results:
1-The integration of FDG and FreeSurfer showed the best performance
2-The integration of Florbetapir and VBM was better than using VBM only.
3-The integration of the four types of brain imaging data did not show the best results.
- Comparing the proposed (graph-based SSL) method with SVM showed that the proposed 
method obtained better results in general except for Florbetapir data. Note: Among the 
compared datasets, significantly better results were obtained using FreeSurfer dataset.

Clinical findings - Comparing the classification performance of the studied brain imaging data showed the 
following resulting order: FreeSurfer > VBM > FDG > Florbetapir.
- Working with ROI values extracted from the temporal lobe, hippocampus, and amygdala 
showed that the atrophy of the regional brain occurs initially and most severely in the 
entorhinal cortex and hippocampus before spreading throughout the neocortex.

Dataset ADNI

Fused Modalities MRI and (Florbetapir and FDG) PET

Scanning Char. -

Brain Region MRI: mean GM, mean CTH and volumetric measure
Note: mean GM extracted from VBM and mean CTH and volumetric measure extracted from FreeSurfer version 5.1.
Florbetapir-PET: brain amyloid β burden
FDG-PET: glucose metabolism

Subjects Group NC MCI AD

No. 98 Early MCI (E-MCI): 174 -

Age - - -

System Char. Automatic/Objective

Ref. 105

Approach details Goal Classification (SAE (feature representation), multi-task learning (feature selection), MK-SVM 
learning (multi-modality fusion))

Notes -

Type Supervised

Results - The proposed system with MK-SVM showed the best performance for AD vs. NC, MCI vs. NC, 
MCI-C vs. MCI-NC binary classification problems. These performance accuracies were 95.9%, 
85.0%, and 75.8%, respectively.
- Regarding MCI-C vs. MCI-NC, the system could improve the performance by 4.0% which is 
important for early diagnosis purposes.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI
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Fused Modalities MRI, PET, and CSF
Note: MMSE and ADAS-Cog were also provided for each subject

Scanning Char. -

Brain Region MRI: GM tissue volume from MRI and PET: the mean intensity
CSF: Aβ42, t-tau, and p-tau

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC 51

43 56

Age - - - -

System Char. Automatic/Objective

Ref. 106

Approach details Goal Feature selection model (M2TFS)

Notes - The classification was performed as a multi-task learning process where each task focused on 
each modality’s classification. To achieve that, SVM was used where for each modality, a linear 
kernel was first calculated using the obtained features. Then, MK-SVM was adopted for multi-
modality classification combination.
- Two regularization items were included:
1-Group Lasso regularizer: jointly selected a small number of features across different modalities.
2-Laplacian regularization term: the whole data related geometric distribution information was 
preserved from each modality.

Type -

Results - For the supervised classification task:
The proposed M2TFS model achieved better accuracy and sensitivity results than compared 
methods. For accuracy, it achieved 95.03%, 79.27% and 68.94% for classification problems of AD 
vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC, respectively.
- For the semi-supervised classification task:
The accuracy of the classification improved consistently with the increase of the unlabeled 
samples on the three groups of classification. These findings revealed that the proposed model 
could lead to the more discriminant feature selection using the geometric distribution of the data.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Fused Modalities MRI, PET

Scanning Char. -

Brain Region MRI: GM
PET: average intensity

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC 51

43 56

Age - - - -

System Char. Automatic/Objective

Ref. 107

Approach details Goal Feature representation and multimodal data fusion (Deep Boltzman Machine).

Notes Rather than dealing with the GM density values as in related literature, this study relied on the 
latent high-level feature representation and proposed a method of extracting a shared feature 
representation from MRI and PET by utilizing deep learning concept.

Type Supervised

Results Obtained the following maximal accuracies for binary classification problems:
95.3.5% for AD vs. NC,
85.6.7% for MCI vs. NC and 
74.5.8% for MCI-C vs. MCI- NC

Clinical findings The proposed method could discover the complex latent patterns hidden in MRI and PET in a 
hierarchical manner. 
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Dataset ADNI

Fused Modalities MRI and FDG-PET

Scanning Char. - The structural MR images were acquired from 1.5 T scanners. The data were downloaded in the neuroimaging informatics 
technology initiative (NIfTI) format, which had been pre-processed for the correction of the spatial distortion that occurred 
through both of the gradient nonlinearity and B1 field inhomogeneity.
- The FDG-PET images were acquired 30–60 min post-injection, averaged, spatially aligned, interpolated to a standard 
voxel size, normalized in intensity, and smoothed to a common resolution of 8 mm full width at half maximum.

Brain Region Latent high-level MRI and PET features.

Subjects Group NC MCI AD

No. 101 MCI-C MCI-NC 93

76 128

Age (range) (mean ± SD) (62–87) 75.9 ± 4.8 (55–89) 75.0 ± 7.2 (55–88) 75.5 ± 7.4

System Char. Automatic/Objective

Ref. 109

Approach details Goal Estimating multi-modality imaging data (3D CNN)

Notes - The study relied on volumetric modalities where one of them was used as an input (MRI) and 
the other as an output (PET). The goal was to capture the nonlinear relationship between the two 
modalities. The idea behind this procedure was to allow the prediction of the missing patterns of 
the PET from the images of the MR.

Type Supervised

Results - The tested data contains 398 subjects with both PET and MRI images. Therefore, the first 
test was to randomly use half of these images for training the 3D-CNN model followed by PET 
prediction using the remaining half. The evaluation showed the possibility of the proposed method 
to successfully estimate the PET images.
- Two classification tests were performed. The first one tested the features obtained from the 
PET and MRI separately while the other one tested the features’ combination. For the first test, 
the proposed method, in general, showed better results when compared with KNN and Zero 
methods even when the true PET images or the predicted ones were used. Also, the predicted 
results of PET were comparable with the true PET images. These results reflected the possibility 
of the proposed method to improve the diagnosis accuracy through its predicted PET. On the 
other hand, testing the combination of the PET and MRI features showed an improvement in the 
performance.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Fused Modalities MRI and PET

Scanning Char. -

Brain Region MRI: GM tissue density maps

Subjects Group NC MCI AD

No. 229 MCI-C MCI-NC 198

167 236

Age (mean) - - - -

Note: of these subjects did not have corresponding PET images.

System Char. Automatic/Objective

Ref. 108

Approach details Goal Feature representation (SAE)

Notes -

Type Unsupervised

Results Obtained the following accuracies for binary classification problems:
98.8% for AD vs. NC,
90.7% for MCI vs. NC
83.7% of AD vs. MCI and
83.3% of MCI-C vs. MCI- NC

Clinical findings The pre-training related unsupervision characteristic in deep learning helped in discovering 
general latent feature representations that consequently led to classification accuracy 
enhancement. 

Dataset ADNI
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Fused Modalities MRI, FDG-PET and CSF data
Note: MMSE and ADAS-Cog were also provided for each patient.

Scanning Char. - The structural MR images were acquired from 1.5 T scanners. The data were downloaded in the NIfTI format, which had 
been pre-processed for the correction of the spatial distortion that occurred through both of the gradient nonlinearity and 
B1 field inhomogeneity.
- The FDG-PET images were acquired 30–60 min post-injection, averaged, spatially aligned, interpolated to a standard 
voxel size, normalized in intensity, and smoothed to a common resolution of 8 mm full width at half maximum.
- CSF data were collected in the morning after a fast for overnight by a needle of 20- or 24-gauge spinal that frozen within 
1 collection hour, and transported on dry ice to the University of Pennsylvania Medical Center for the Laboratory of the 
ADNI Biomarker Core.

Brain Region MRI: GM
PET: mean intensity
CSF: Aβ42, t-tau, and p-tau

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC 51

43 56

Age (range) (mean ± SD) (62–85) 75.3 ± 5.2 (58–88) 75.7 ± 6.9 (55–89) 75.0 ± 7.1 (59–88) 75.2 ± 7.4

System Char. Automatic/Objective

Ref. 110

Approach details Goal CAD system (sparse SAE (representation), softmax regression layer (classification))

Notes -

Type Semi-supervised

Results - Two binary classification problems were addressed (AD vs. NC and MCI vs. NC) where the 
proposed method achieved the better results than SK- and MK- SVM for the classification of 
AD vs. NC. For MCI vs. NC classification problem, MK-SVM showed better results immediately 
followed with an almost even accuracy of the proposed method.
- Regarding sensitivity, the proposed system showed the higher accuracy than the SK- and MK-
SVM in both of the classification problems. These results were useful since the higher sensitivity 
results benefited the diagnosis process.
- Comparing the classification performance of each class separately (NC, MCI-C, MCI-NC, and 
AD). The experiments showed better accuracy results of the proposed method than SVM with 
regard to NC, MCI-NC, and AD. In MCI-C, MK-SVM achieved better results. Computing the 
overall accuracy showed better results of the proposed method than SVM.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Fused Modalities MRI and PET

Scanning Char. -

Brain Region MRI: GM
PET: cerebral metabolic rate of glucose consumption (CMRGlc)

Subjects Group NC MCI AD

No. 77 MCI-C MCI-NC 65

67 102

Age - - - -

System Char. Automatic/Objective

Ref. 112

Approach details Goal Improving the neuroimaging biomarker identification quality of AD/MCI through presenting: 
1) nonlinear feature transformation (thin-plate splines (TPS) metric learning (TML)-SVM) 
and 2) feature fusion (multi-modal stacked denoising sparse auto-encoder (DSAE))

Notes -

Type Supervised

Results The proposed work obtained better results from different comparisons’ perspectives:
1-Comparing the proposed combination of the extracted longitudinal and baseline 
features of the cases of using each of the extracted features individually.
2-Comparing the proposed fusion strategy against other strategies.
3-Comparing the proposed classifier against other state-of-the-art classifiers.

Clinical findings - Fusing longitudinal and baseline feature serviced the classification target more than 
utilizing these features individually.
- Improving the identification ability of the AD/MCI subjects against NC subjects.
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Dataset ADNI

Fused Modalities Cross-sectional (GM tissue densities) and longitudinal (DM) features that estimated from the MRI

Scanning Char. -

Brain Region Structure of the brain
Note: focused on the cross-sectional and longitudinal features that estimated from the MRI.

Subjects Group NC MCI AD

No. 123 121 94

Age - - -

System Char. Automatic/Objective

Ref. 113

Approach details Goal Classification (PCA (feature extraction), stability selection technique, least absolute shrinkage 
and a selection operator (Lasso) method (feature selection), deep learning system (modeling 
weights), SVM (classification))

Notes - Modeling the weights in the deep structure was made in two phases: initialization through 
unsupervised training then fine-tuning using the labels of AD patients by employing dropout 
technique. - The dropout technique was utilized to improve the generalization capability of the model.
- SVM was used for AD/MCI classification using the learned features representation.
- The deep learning structure was treated as multitasking learning framework.
- The class label learning, MMSE, and ADAS-Cog were treated as related tasks to improve the 
class label prediction.
- The authors incorporated the stability selection technique (an adaptive learning factor) and 
multitask learning strategy in the proposed deep learning framework.

Type Supervised

Results - The best performance of the system was 91.4% in diagnosing AD, 77.4% in diagnosing MCI and 
70.1% in diagnosing AD vs. MCI.
- In the diagnosis of MCI-C vs. MCI-NC, the PCA found to degrade the results slightly from 58.1% to 57.4%.
- The dropout technique helped in improving the classification accuracy than the classical deep 
learning methods by 5.9%.
- Identifying the impact of each of the model components showed that the largest impact was 
through dropout component, followed by multitasking learning, then stability selection technique and 
ending with PCA.
- The performance of deep model without dropout was comparable with the baseline method 
(feature selection +SVM).
- The authors suggested that the deep traditional learning could not extract information efficiently 
from datasets with small size unless a regularization technique such as dropout is used.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Fused Modalities MRI, PET, and CSF

Scanning Char. -

Brain Region MRI and PET: volumetric features
CSF: β42, t−tau, and p-tau

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC 51

43 56

Age - - - -

Note: Two additional clinical scores for each patient were also used: MMSE and ADAS-Cog

System Char. Automatic/Objective

Ref. 111

Approach details Goal Classification (SAE and a softmax logistic regressor)

Notes - Unsupervised feature representation was embedded in the framework.
- For data fusion: the proposed framework utilized a zero-masking strategy to fuse complementary 
information that obtained from multiple modalities.

Type Supervised

Results The proposed framework obtained better results than SVM and other deep learning frameworks.

Clinical findings The system showed performance gain in both the binary as well as the multiclass classification tasks of 
the disease.
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Dataset ADNI

Fused Modalities MRI and FDG-PET

Scanning Char. -

Brain Region MRI: Structure of the brain
PET: Function of the brain

Subjects For unimodal 
dataset (only MRI)

Group NC MCI AD

No. 204 MCI-C MCI-NC 180

160 214

Age - - - -

For multimodal 
dataset (MRI & 
PET)

Group NC MCI AD

No. 77 MCI-C MCI-NC 85

67 102

Age - - - -

System Char. Automatic/Objective

Ref. 114

Approach details Goal Prediction model (ELMs (prediction))

Notes -

Type Supervised

Results - To evaluate the complimentary of the each of the three biomarkers, the study evaluated 
MRI based-ELM, PET based-ELM, CSF based-ELM and combined information based-ELM. 
Regarding single biomarkers, the MRI and CSF-based prediction capabilities showed close 
results with higher MRI-based sensitivity more slightly than CSF. For PET it showed the lowest 
results, but this did not prevent it from being used to differentiate MCI from NC as its correlation 
coefficient could achieve 0.2086.
- The proposed model achieved the best accuracy with the combination of the three biomarkers 
that indicated the complimentary of them when differentiating MCI from NC.
- Comparing the proposed combined based ELM model against SVM and SVM-fusion showed 
the better accuracy of the proposed model but slightly lower sensitivity than SVM.

Clinical findings Assisting the experts in the early diagnosis of AD.

Dataset ADNI

Fused Modalities MRI, PET, and CSF

Scanning Char. -

Brain Region Structural and functional information.

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC -

43 56

Age - - - -

System Char. Automatic/Objective

Ref. 115

Approach details Goal Classification of MCI-C and MCI-NC (M2TL (sample selection and classification))

Notes - The study utilized samples from different domains (i.e. AD/NC) in a transfer learning manner to 
help in the discrimination task of MCI-C and MCI-NC.
- Due to the distributions differences of the auxiliary and target domains, the study utilized MMD 
criterion as a similarity/dissimilarity measure between two samples from different domains.
- To reflect the relation among the samples of the target domain, the auxiliary domain, and the 
unlabeled samples, the study designed a cross-domain Laplacian matrix.
- Finally, in the objective function, a group sparsity constraint was used to help in the informative 
sample selection to predict the labels of the target class.

Type -

Results The proposed method showed consistent and substantial improvement in the prediction accuracy 
of the MCI conversion, where the maximum accuracy achieved 80.1%.

Clinical findings Assisting the experts in the early diagnosis of AD.
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Dataset ADNI

Fused Modalities MRI, PET, and CSF

Scanning Char. MRI: were acquired from1.5.T scanners.
PET: were acquired 30–60 min post-injection.
CSF: were collected in the morning after a fast for overnight by a needle of 20- or 24-gauge spinal, frozen within 1 
collection hour, and transported on dry ice to the University of Pennsylvania Medical Center for the ADNI Biomarker Core 
laboratory.

Brain Region MRI: GM tissue volume
PET: average intensity
CSF: Aβ42, t-tau, and p-tau.

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC 51

43 56

Age - - - -

System Char. Automatic/Objective

Ref. 116

Approach details Goal Classification of MCI-C and MCI-NC (transfer learning and multi-label learning (feature selection), 
MK-SVM (classification), MK relevance vector regression machine (regression))

Notes Based on transfer learning and multi-label learning, the study proposed MDML method for 
selecting the most informative features from multi-domain data.

Type Supervised

Results - The proposed MDML showed better classification results of MCI-C vs. MCI-NC than 
the compared methods when testing the performance on different modalities (MRI, PET, 
MRI+PET+CSF). The method achieved accuracies of 73.2%, 70.0%, and 78.7%, respectively.
- Additionally, the study tested the prediction of the clinical scores (i.e. MMSE/ADAS-Cog) using 
different modalities (MRI, PET, MRI+PET+CSF). The tests showed better prediction results than 
the compared methods. Noteworthy, the proposed MDML method accomplished the prediction 
task without related learning domain.

Clinical findings The method could successfully found out the most discriminant regions of the brain (e.g. 
hippocampal, amygdala, temporal lobe, precuneus, and insula).

Dataset ADNI

Fused Modalities MRI, PET, CSF, MMSE, and ADAS-Cog data

Scanning Char. MRI: were acquired from1.5.T scanners.
PET: were acquired 30–60 min post-injection.
CSF: were collected in the morning after a fast for overnight by a needle of 20- or 24-gauge spinal, frozen within 1 
collection hour, and transported on dry ice to the University of Pennsylvania Medical Center for the ADNI Biomarker Core 
laboratory.

Brain Region MRI: GM tissue volume
PET: average intensity
CSF: Aβ42, t-tau, and p-tau.

Subjects Group NC MCI AD

No. 52 MCI-C MCI-NC 51

43 56

Age - - - -

Note AD and NC data were used as learning domain while MCI were used as target domain.

System Char. Automatic/Objective

Dependency upon the enrolled data also 
represents a source of limitations in the context of 
applying computerized methods/techniques with 
AD. In other words, some implementations require 
adaptation of certain parameters depending on 
the case studies that prevent such results from 
being generalized unless otherwise verifying its 
performance. Therefore, in general, further advances 
are still needed to help enhance the quality of the 

applied methods/techniques to achieve maximum 
benefits in their implementation.

4.4. Subjects

The subjects themselves also represent 
another obstacle for further development in the context 
of AD. For example, the movement of patients during 
the image acquisition process introduces a source of the 
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noise. It can be detected either by preprocessing steps 
or by taking such movements into consideration during 
further work (e.g., slow eye movement during the earliest 
phase of drowsiness when recording EEG signals).

In addition, comorbidities can lead to 
misclassification. In other words, it prevents accurate 
decision making regarding the stage of the AD due 
to the overlap that may occur between the disorders’ 
symptoms. Furthermore, patients may have counter-
indications for or present with medical treatments 
which prevent the use of some diagnostic equipment 
or modalities (e.g., implanted metallic devices which 
prevent the use of MRI).

5. CONCLUSION

AD is the most common neurodegenerative 
disease affecting the CNS. AD patients experience 
several stages during their disease journey. Among 
these stages, the early stage is the most difficult stage 
to diagnose due to multiple factors, mainly because 
pathological symptoms begin nearly ten to fifteen 
years before clinical diagnosis. Numerous research 
efforts target this stage of AD hoping to reveal as much 
information as possible to assist the early diagnosis 
of AD. The aim of this paper is to monitor the current 
efforts in this area. The findings of this paper are 
presented from two perspectives, computer-based 
as well as clinical findings. As illustrated, the main 
scanning technologies that presently serve this area 
are MRI, PET, and SPECT technologies. Along with 
the use of these technologies individually, fusing 
different features of a single technology in addition to 
fusing different technologies show promising results. 
The cumulative information obtained from these 
technologies may consequently assist the diagnosis 
process. Despite the current advances, the door is 
still open to further efforts. The rapid progress in the 
scanning technologies, computer-based techniques, 
and the databases repositories represent the main 
factors that encourage researchers to continue work in 
this research area.
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