
1257

Enzymatically modified LDL, atherosclerosis and beyond: paving the way to acceptance 

Michael Torzewski1

1Department of Laboratory Medicine, Robert Bosch-Hospital, Stuttgart, Germany

TABLE OF CONTENTS 

1. Abstract 
2. LDL (Low density lipoprotein) insudation and inflammation – triggers of the atherosclerotic process
3. Mainstream concepts on atherogenesis
4. A different concept on atherogenesis – the eLDL hypothesis
5. Cellular uptake of eLDL
6. Cellular effects of eLDL
7. Complement activation
8. In vivo evidence of the eLDL hypothesis
9. eLDL and CRP
10. Initiation and progression of atherosclerosis – enzymatic or oxidative modification of LDL
11. Widening the impact of eLDL
12. Implications of the eLDL hypothesis
13. Acknowledgement
14. References

[Frontiers In Bioscience, Landmark, 23, 1257-1271, January 1, 2018]

1. ABSTRACT

The eLDL (enzymatically modified LDL) hy�-
pothesis proposes that modification of LDL during 
atherogenesis occurs through the action of ubiq-
uitous hydrolytic enzymes. eLDL is recognized by 
multiple macrophage receptors. Following cellular 
uptake, eLDL triggers atherosclerotic lesion initia�-
tion with reversion or progression depending on the 
balance between cholesterol insudation and deple-
tion. The effects of eLDL on cellular constituents of 
the atherosclerotic lesion comprise both pro- and 
anti-inflammatory mechanisms. eLDL triggered 
complement activation is centrally involved in ather�-
osclerosis with the first CRP (C-reactive protein)-de�-
pendent activation step to prevail at the early stages 
of atherogenesis (lesion initiation with reversion), 
and the second situation to gain dominance as local 
concentrations of eLDL surpass a critical threshold 
(lesion initiation with progression). Thus, CRP-
mediated lipoprotein removal likely underlies the 
regression of early lesions, which occurs continuous-
ly through life. Perhaps CRP should be considered as 
an antiatherogenic agent and the question whether 
it is an innocent bystander or proatherogenic culprit 
is not really to the point. The observed association 
between CRP and atherosclerosis might simply be 
reverse causation: atherosclerotic disease progres-
sion induces CRP.

2. LDL (LOW DENSITY LIPOPROTEIN) INSU-
DATION AND INFLAMMATION – TRIGGERS 
OF THE ATHEROSCLEROTIC PROCESS

It is widely accepted that the initiation and 
progression of atherosclerosis from the normal intima 
to thrombotic occlusion displays all the characteristic 
features of a chronic inflammatory disease (1). 
However, a matter of lively debate is the question as 
to what the causative agent is. Lowering of cholesterol 
is still the most successful approach to prevent and 
treat atherosclerosis in humans (2). Is lowering of cho�-
lesterol equivalent to removal of the causative agent 
or, in other words, what link exists between LDL and 
inflammation?

Atherosclerosis research typically focuses on 
the evolution of intermediate or advanced atheroscle-
rotic lesions rather than on prelesional stages of ather-
ogenesis. Yet these early events may provide decisive 
evidence on the triggers of the pathologic process. It is 
known that plasma proteins seep continuously into the 
arterial intima even in the absence of overt endotheli-
al injury (3), and spontaneous insudation of LDL was 
demonstrated some 35 years ago (4, 5). The latter led 
to the “response to retention” hypothesis, which states 
that atherosclerosis develops in response to LDL en-
trapment (6). The fundamental importance of LDL en�-
trapment for initiating lesion formation rather than any 
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modification of the lipoprotein occurring prior to insu-
dation is highlighted by the demonstration that trans-
genic mice expressing modified apolipoprotein B that 
binds poorly to proteoglycans show reduced atheroma 
development (7).

Nevertheless, native LDL lacks inflammatory 
properties, and it follows that the lipoprotein must un-
dergo biochemical alterations to become atherogenic. 
What happens to tissue-stranded LDL? What kind of 
modification takes place? What drives development of 
the fatty streak and what tips the balance within early 
lesions toward development into advanced lesions? 
The early atherosclerotic lesion is reversible and es-
sentially harmless. What tips the scale towards irre-
versible, advanced lesions, i. e. the point of no return? 
In pursuit of an answer, it is important to distinguish be-
tween initiation and progression of atherosclerotic le-
sion development. Central players in advanced stages 
of atherosclerosis need not to be identical with those 
responsible for development of early lesions, and vice 
versa (8).

There are numerous reviews on the possible 
impact of modified lipoproteins on atherosclerosis, 
indicating that a consensus has not yet been reached 
and that basic questions still remain unanswered. 
Among several other concepts, the eLDL (enzymatically 
modified LDL) hypothesis proposes that modification of 
LDL occurs through the action of ubiquitous hydrolytic 
enzymes. In the following, the role of eLDL during 
both initiation and progression of atherosclerosis is 
summarized and opposed to the more widespread 
oxidation hypothesis (Figure 1). 

3. MAINSTREAM CONCEPTS ON  
ATHEROGENESIS

A fundamental question relates to the fate 
of tissue-stranded native LDL and the nature of the 
modification that bestows atherogenic properties onto 
the lipoprotein. The common answer is that oxidative 
modifications render the lipoprotein atherogenic. Argu-
ments in support of this contention have been summa-
rized by Steinberg (9): 1) oxLDL (oxidized LDL) has 

Figure 1. Proposed model of initiation and progression of atherosclerosis with special emphasis on the role of CRP and the complement system. Under 
normal circumstances (initiation and reversion, normocholesterolemia, left), native LDL entrapped within the arterial intima is enzymatically modified 
(eLDL), leading to a sequence of events that serve to clear the vessel wall of cholesterol. Binding of CRP to eLDL is the first trigger for complement 
activation (C), but in this early stage the terminal sequence is spared. The physiological sequence of events is concluded by reverse cholesterol transport. 
If the capacity of the system is overburdened (initiation and progression, hypercholesterolemia, right), this leads to accumulation of eLDL with subsequent 
generation of potentially harmful C5b-9 complexes by both the classical and alternative pathway as well as accumulation and oxidation of extracellular 
LDL particles followed by a wealth of well-documented events like MMP production in surrounding cells and subsequent amplification of enzymatic 
degradation of LDL. FFAs play multifaceted roles through their dual capacity to exert stimulatory and cytotoxic effects on neighboring cells (modified 
from 8, 55).
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been isolated from atherosclerotic lesions; 2) epitopes 
reactive with antibodies against oxLDL have been de-
tected in lesions; 3) autoantibodies reactive with ox-
LDL have been found in patients and experimental an-
imals and the respective antibody titers are reportedly 
of diagnostic and prognostic value; 4) antioxidants can 
slow the progression of atherosclerosis in experimen-
tal animals. 

But is this evidence conclusive? In particular, 
does oxidation explain the development of initial ather-
osclerotic lesions? Napoli et al. analysed fatty streaks 
in human fetuses (10). Epitopes of oxLDL were found, 
but these were localized mainly within macrophages. 
Calara et al. reported that a single injection of heterol-
ogous native LDL resulted in its accumulation in the ar-
terial wall where it became oxidatively modified within 
hours (11). However, the lipoprotein was mainly asso�-
ciated with SMCs (smooth muscle cells). The question 
of localization, however, is of paramount importance: 
the primary modification of native LDL should be ex-
tracellular, since according to the oxidation hypothesis 
itself, this modification is required for the lipoprotein to 
be taken up by macrophages.

Another shortcoming of the oxidation hypoth-
esis is that it does not explain the fact that extracellular 
cholesterol in early lesions is mainly unesterified and 
can form crystals (12-15). In marked contrast, the bulk 
of cholesterol contained in native LDL is esterified with 
fatty acids. Oxidative modifications do not lead to ex-
tensive deesterification of the cholesteryl esters and 
thus are not in line with a major biochemical finding 
in early lesions. Finally, the results of human clinical 
trials with antioxidants were mainly negative, except 
in selected groups of patients with clearly increased 
systemic oxidative stress (16).

4. A DIFFERENT CONCEPT ON ATHEROGEN-
ESIS – THE ELDL HYPOTHESIS 

In the following, I will review the evidence in 
support of a different concept on atherogenesis (17) 
distinguishing between atherosclerotic lesion initiation 
with reversion or lesion initiation with progression. 
Thereby, emphasis will be placed on new evidence 
that has emerged in the past 15 years concerning 
animal models (18-25), in vivo evidence (26) as well 
as proinflammatory effects of eLDL (27-30).

The eLDL hypothesis takes heed of the above 
mentioned shortcomings of the oxidation hypothesis 
and proposes that modification of native LDL occurs 
through the action of ubiquitous hydrolytic enzymes 
rather than oxidation. As already mentioned above, 
elegant earlier studies demonstrated that extracellular 
cholesterol in early lesions is mainly unesterified thus 
proving hydrolytic enzymatic activity (12-15). The en�-
zymes, proteases and cholesterol esterase may partly 

represent lysosomal leakage products of neighbouring 
cells and incoming macrophages. Indeed, cathepsin D 
(31) and H (32), plasmin, MMP-9 (matrix metallopro�-
teinase-9) (33) and cholesterol esterase (34) are pres�-
ent in atherosclerotic lesions. Moreover, LDL isolated 
from early lesions has the same biochemical, ultras-
tructural and immunological properties as eLDL that 
can be generated in vitro by combined treatment of 
native LDL with an arbitrary protease and cholesterol 
esterase (33, 35, 36). Finally, in contrast to oxLDL, 
specific monoclonal antibodies allowed demonstration 
of extensive extracellular deposits of eLDL in the ear-
ly lesion. Thereby, the neoepitopes recognized by the 
two monoclonal antibodies (mAbs) originally used for 
detection of eLDL appear to become exposed at differ-
ent stages of enzymatic lipoprotein degradation: mAb 
AIL-2 recognizes LDL after proteolytic nicking alone, 
whereas mAb AIL-3 reacts only after combined treat-
ment with a protease and cholesterol esterase. How-
ever, mAb AIL-3 stains lesion lipoproteins as strong-
ly as mAb AIL-2 in histological sections indicative of 
deesterification by enzymatic modification of LDL in 
vivo (37). Such demonstration of extracellular localiza�-
tion is mandatory to any claim that a lipoprotein modi-
fication is responsible for inducing foam cell formation. 

5. CELLULAR UPTAKE OF ELDL 

eLDL is recognized by multiple macrophage 
receptors and is indeed the most potent naturally 
occurring foam cell inducer known to date (35, 38, 39). 
eLDL is taken up much more efficiently than oxLDL 
by macrophages in vitro (35), whereby the receptors 
involved are multiple (35, 38, 39). Cellular uptake of 
eLDL by human monocyte-derived macrophages leads 
to the formation of lipid droplets and preferentially 
induces cholesterol/sphingomyelin rich membrane 
microdomains while oxLDL promotes the development 
of cholesterol/ceramide rich microdomains via 
activation of the salvage pathway (40). As for smooth 
muscle cells (SMCs), it was recently demonstrated 
that eLDL is also highly potent in inducing foam cell 
formation in both human (41) and murine SMCs. 
Thereby, eLDL endocytosis is mediated by calcium-
dependent macropinocytosis. Interestingly, priming 
SMCs with eLDL enhances the uptake of oxidized 
LDL (42). Opsonization has also an impact on cellular 
uptake of eLDL. For example, it was demonstrated 
that b-amyloid binding to eLDL enhances cellular 
cholesterol accumulation as well as b-amyloid 
deposition in vessel wall macrophages (43).

Following cellular uptake of eLDL, the 
eLDL hypothesis predicts the following scenario 
of atherosclerotic lesion initiation with reversion or 
progression: under normocholesterolemic conditions, 
the cholesterol removal system comprising cellular 
uptake and the HDL (high density lipoprotein)-dependent 
reverse transport pathway is sufficient to deal with 
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spontaneous insudation of native LDL into the vessel 
wall with subsequent enzymatic modification. The 
concept implies that the physiological events leading 
to macrophage and SMC uptake and reverse transport 
of eLDL first occur without inflammation (initiation 
with reversion). In this regard, it departs from all other 
current concepts of atherogenesis. However, under 
hypercholesterolemic conditions, when the cholesterol 
removal system is overburdened due to continuous 
and excessive tissue-stranding of LDL cholesterol, 
detrimental effects ensue due to the unhalted activation 
of innate immune effectors, in particular complement and 
different subsets of monocyte-derived macrophages 
(initiation with progression) (17). 

6. CELLULAR EFFECTS OF ELDL

The effects of eLDL on cellular constituents 
of the atherosclerotic lesion, i. e. endothelial cells, 
monocytes/macrophages, SMCs and T cells, are 
multifaceted and comprise both pro- and anti-
inflammatory mechanisms. 

In endothelial cells, eLDL stimulated 
upregulation of ICAM-1 (intercellular adhesion 
molecule-1), PECAM-1 (platelet-endothelial cell 
adhesion molecule-1), P-selectin, and E-selectin with 
distinct kinetics. Analyses with blocking antibodies 
indicated that ICAM-1 and P-selectin together 
mediated approximately 70% of cell adhesion, whereas 
blocking of PECAM-1 had no effect on adhesion but 
reduced transmigration to less than 50% of controls. 
eLDL is thus able to promote the selective adhesion 
of monocytes and T lymphocytes to the endothelium, 
stimulate transmigration of these cells, and foster 
their retention in the vessel wall by increasing their 
adherence to SMCs (44). Likewise, production of 
IL-8 (interleukin-8) and simultaneous modulation of 
NF-kappaB in response to eLDL might also serve to 
protect the vessel wall and promote silent removal of 
the insudated lipoprotein (45). 

In monocytes/macrophages, eLDL induces 
upregulation of CLA1/SRB1 (38), the ABCA1 
transporter (46), matrix metalloproteinases (47) and 
cathepsin H (32). Again, an amplifying loop may thus 
be generated to accelerate local cholesterol removal. 
Furthermore, eLDL generated foam cells are protected 
from cell death most likely through the expression of 
TOSO (named after a Japanese liquor drunk on New 
Year´s day to celebrate long life and eternal youth) 
by a FLIP (FLICE-inhibitory protein) independent 
mechanism (48).

In primary vascular SMCs, eLDL mediated 
rapid cholesterol loading and foam cell transformation, 
which was paralleled by a marked dose- and time-
dependent expression of PTX3 (pentraxin 3) mRNA 
and release of the acute-phase protein (49). 

Regarding the above mentioned effects of 
eLDL on cellular constituents of the atherosclerotic 
lesion, the question is whether inhibition of 
proinflammatory signaling pathways provides a 
promising therapeutic tool to prevent inflammatory 
cascades in atherosclerosis. Using the human 
leukemia cell line THP-1 and/or primary monocyte-
derived macrophages, skepinone-L, the first ATP-
competitive p38a MAPK (mitogen-activated protein 
kinase)/MAPK14 inhibitor with excellent in vivo 
efficacy and selectivity (50), inhibited eLDL induced 
activation of the p38 MAPK pathway, inhibited 
eLDL induced expression of both CD36 and ABCA1 
without a net effect on foam cell formation, had a 
cell- and time-dependent effect on eLDL triggered 
apoptosis and inhibited eLDL stimulated secretion of 
IL-8 (interleukin-8) and MIP-1β/CCL4 (macrophage 
inflammatory protein-1β/chemokine, CC motif, ligand 
4) (51).

7. COMPLEMENT ACTIVATION 

In 1977, it has been demonstrated that free 
cholesterol activates complement (52) and since 
then, several reviews summarized the evidence for 
an important impact of complement activation on 
atherogenesis (53-56). Thereby, an unexpectedly large 
number of pathways are operative that may differentially 
influence the evolution of the atherosclerotic lesion. 
The terminal sequence with C5b-9 formation is 
proposed to represent a decisive detrimental factor. 
The presence of C5b-9 complement complexes was 
demonstrated in advanced human atherosclerotic 
lesions by immunohistochemistry in 1985 (57) and 
quantified by ELISA in 1987 (58). The link between 
tissue-deposited eLDL and complement activation was 
elucidated through the isolation of assembled C5b-9 
complexes from early adult human atherosclerotic 
lesions along with a lipoprotein derivative that had 
complement-activating properties (36). These findings 
were corroborated and completed by the subsequent 
in vitro generation of this lipoprotein derivative which 
turned out to be eLDL with potent complement-
activating capacity (35) and the immunohistochemical 
detection of eLDL and its colocalization with the 
terminal complement complex in the early human 
atherosclerotic lesion (37). Demonstration of C5b-9 
in the early lesion and its colocalization with SMCs 
(59) and complement-induced release of MCP-1 
(monocyte chemotactic protein-1) from human SMCs 
(60) provided further indications for a possible role 
of complement activation in atherogenesis. That the 
terminal complement sequence is indeed centrally 
involved in atherosclerotic lesion progression was 
then directly evidenced by the demonstration that 
complement C6 deficiency protected against diet-
induced atherosclerosis in rabbits (61). Likewise, it has 
been demonstrated that CD59, a key regulator of C5b-
9 assembly, offered protection against atherosclerosis 
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in the context of Apo E deficiency (62, 63). The role of 
CD55/DAF (decay-accelerating factor), a membrane 
inhibitor of the C3 convertase, is less clear: while 
one study reported that CD55 deficiency had no 
effect on atherogenesis (62) another found that 
CD55 deficiency protected against atherosclerosis 
in ApoE-deficient mice apparently via modulation of 
lipid metabolism (64). Furthermore, in atherosclerotic 
lesions, apolipoprotein J (clusterin) may subserve 
protective functions through its capacity to inactivate 
C5b-9 complement complexes and by reducing the 
cytotoxic effects of eLDL on cells that gain contact with 
the lipoprotein (30).

Three independent pathways have been 
identified via which eLDL triggers complement. The 
first is the binding of CRP which occurs at low eLDL 
concentrations and leads to efficient activation of the 
early complement sequence with cleavage of C3. 
Conspicuously, progression to the terminal sequence 
is halted in a manner similar to what has been shown 
for the CRP-dependent activation of complement on 
nucleated cells (65). By virtue of its capacity to bind 
factor H, CRP has been reported to be able to deter 
the complement sequence at the stage of C3b/C5 
(66, 67). Early recruitment of complement by CRP 
could serve to effect timely removal of eLDL, thus 
preventing accumulation of the modified lipoprotein 
with its potentially dangerous cargo of free cholesterol. 
That the early complement sequence could serve a 
protective function in atherogenesis is suggested by 
a recent study in LDL receptor-deficient mice demon-
strating that complement C1q deficiency appears to 
slightly promote lesion development (68). It must be 
noted, however, that conclusions drawn from mouse 
models can be no more than tentative because of the 
oddities of the mouse complement system (21). In fact, 
the mouse may not be an ideal model to investigate the 
role of complement in atherogenesis. The same holds 
true for investigating the role of CRP in atherosclerotic 
lesion development in the mouse (see below).

With increasing concentration, eLDL 
then attains an additional dual capacity to activate 
complement. Firstly, triggering occurs via the 
alternative pathway, possibly through the presence 
of large amounts of unesterified cholesterol. There 
is also immunohistochemical evidence that C5b-9 in 
atherosclerotic lesions is formed via the alternative 
pathway (69). Secondly, it has been demonstrated that 
eLDL is recognized by C1q and activates the classical 
complement pathway. Thereby, C1q binding to eLDL 
particles is mediated by the C1q globular domain, 
which senses unesterified fatty acids generated 
by cholesterol esterase (70-72). Together, these 
processes thus guarantee vigorous activation of the 
complement system as eLDL accumulates. In vivo, 
one might envisage the first CRP-dependent activation 

step to prevail at the early stages of atherogenesis 
(lesion initiation with reversion), and the second 
situation to gain dominance as local concentrations 
of eLDL surpass a critical threshold (lesion initiation 
with progression). CRP-dependent activation by eLDL 
essentially excludes the detrimental terminal C5b-9 
sequence and likely subserves the primarily beneficial 
function of macrophage recruitment, which may 
occur in conjunction with IL-8, which is coinduced in 
endothelial cells by eLDL-derived free fatty acids (73). 
As the rabbit experiments indicate (61) it becomes 
clear why pathology would be driven particularly when 
the local eLDL burden exceeds critical limits. 

8. IN VIVO EVIDENCE OF THE ELDL  
HYPOTHESIS 

The eLDL hypothesis contends that tis-
sue-stranded native LDL will only become athero-
genic after enzymatic transformation to eLDL. The 
availability of a model to test this basic contention 
would clearly be highly desirable. Accumulation of 
native LDL with subsequent modification in the intima 
begins in childhood and adolescence in the majority 
of our population and, if unhalted, can lead to devel-
opment of atherosclerotic lesions. Obviously, inves-
tigations on tissues from fetuses and infants might 
provide valuable clues to first events underlying the 
initiation of atherosclerosis. To date, a few studies 
have been undertaken along these lines. Napoli et al. 
described lesion formation in premature fetuses (10) 
and in children aged 1–13 years (74). These studies 
did not address eLDL formation, CRP deposition, or 
complement activation, important issues that were in-
vestigated in our own study (26), where the following 
observations on atherosclerotic lesion initiation and 
reversion were made: 1) lipoproteins accumulate in 
the intima before macrophages infiltrate in the early 
lesion, 2) there is virtually no extracellular lipoprotein 
modification, either enzymatic or oxidative, within in-
timal lesions in infancy (<1 year), 3) onset of extra-
cellular enzymatic modification of LDL occurs in the 
age group between 6 and 15 years and 4) lipopro-
tein accumulation in the intima does not coincide with 
activation of the terminal complement cascade but 
largely coincides with deposition of CRP and C3d in 
the age group between 6 and 15 years.

In the first year of life, there is obviously a kind 
of ‘inert’ lipoprotein insudation into the intima without li-
poprotein modification, monocyte/macrophage infiltra-
tion and/or inflammation, which explains why genuine 
atherosclerosis does not occur. This prelesional stage 
is characterized by the absence of eLDL and C5b-9. 
All available evidence indicates that native LDL differs 
from eLDL in lacking the capacity to activate comple-
ment (35, 75, 76) and this is tellingly reflected by the 
above findings. 
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9. ELDL AND CRP

Bridging the observations on intimal lesions 
in infancy to the above mentioned pathways of eLDL 
dependent complement activation, one might envis-
age the first CRP-dependent activation step to prevail 
in the lesions from individuals between 6 and 15 years 
of age (with deposition of eLDL, CRP and C3d but 
without C5b-9) and other pathways to gain dominance 
as modified lipoproteins accumulate in adult athero-
sclerotic lesions. CRP-mediated lipoprotein removal 
likely underlies the regression of early lesions, which 
we propose occurs continuously through life. 

The interaction of CRP with LDL is 
considered to be another key property that links CRP 
with atherosclerosis. However, the data obtained 
to date are controversial and hence make it difficult 
to conclude an actual physiological or pathological 
impact of such interaction. The incompatible findings 
could be ascribed to the different structural state of 
CRP and/or LDL. For example, it has been reported 
that, once CRP is bound to certain ligands, the 
pentameric structure of CRP is altered so that it can 
dissociate into monomers (77). Accordingly, the 
monomeric CRP found in atherosclerotic lesions may 
be a by-product of a ligand-binding function of CRP. 
CRP has been shown to prevent the formation of 
eLDL-loaded macrophage foam cells (78). Thereby, 
phosphoethanolamine potentiates the binding of CRP 
to eLDL and, therefore, increases the efficiency of 
CRP to prevent transformation of macrophages into 
eLDL-loaded foam cells. Of course, the function of 
CRP to prevent formation of foam cells may influence 
the process of atherogenesis (79-81). With regard 
to oxLDL, it has been reported that CRP binds to 
oxLDL in vitro (82) and some data suggest that CRP 
may even bind to native LDL (82, 83). However, no 
data are available to show that any such binding is 
accompanied by complement activation and indeed, a 
number of investigations clearly indicate that this is not 
the case (35, 75, 76, 84).

The possible protective role of CRP does not 
conflict with the fact that CRP represents a powerful 
predictive factor in cardiovascular risk assessment. 
A host of epidemiological studies have demonstrated 
a significant association between elevated serum or 
plasma CRP concentrations and the prevalence of 
atherosclerotic vascular disease, the risk of recurrent 
cardiovascular events among those with established 
disease or the incidence of first cardiovascular 
events among those at risk (85). This strong base of 
epidemiological evidence has led to the hypothesis 
that CRP is both a marker of and a causal agent 
in the development of atherosclerosis. However, 
overburdening of the physiological eLDL removal 
machinery with atherosclerotic lesion progression is 
accompanied by interleukin-6 production (86) which 

could explain the slightly elevated CRP levels. This 
in turn would serve to augment eLDL removal (even 
though not sufficient to trigger lesion reversion). 
Perhaps the pieces of the puzzle concerning the role 
of CRP in atherosclerosis are trying to be fit into the 
wrong picture? Perhaps CRP should be considered as 
an antiatherogenic agent and the question whether it 
is an innocent bystander or proatherogenic culprit (87, 
88) is not really to the point. The observed association 
between CRP and atherosclerosis might simply be a 
reverse causation: atherosclerotic disease progression 
induces CRP.

In past years, many studies attempted to 
demonstrate an atherogenic effect of CRP in genetically 
modified mice expressing either hCRP (human 
CRP) or rbCRP (rabbit CRP) with quite controversial 
and contradictory results (89): CRP was either 
proatherogenic (20, 90), had no effect on atherogenesis 
(18, 21, 23-25) or was even atheroprotective (19). As 
already mentioned above, the mouse obviously is 
not an appropriate model for evaluation of CRP and 
complement because CRP is not an acute phase 
protein in mice and levels are therefore extremely low 
compared with humans and rabbits (91). Furthermore, 
neither hCRP nor rbCRP can activate complement in 
the mouse (21). Therefore, the hCRP-transgenic rabbit 
model was selected for this purpose because it lacks 
the shortcomings of the mouse model concerning CRP 
and complement pathophysiological functions. Neither 
high nor low plasma concentrations of hCRP affected 
aortic or coronary atherosclerotic lesion formation in 
hCRP-transgenic rabbits (92).

10. INITIATION AND PROGRESSION OF 
ATHEROSCLEROSIS – ENZYMATIC OR 
OXIDATIVE MODIFICATION OF LDL?

Given the above-mentioned examples of the 
different impacts of eLDL and oxLDL on atherosclerotic 
lesion initiation and progression, we would like to 
propose the following model that integrates both types 
of lipoprotein modification (Figure 1) (8). Since LDL 
continuously becomes entrapped in the arterial intima, 
a mechanism should exist that removes the stranded 
lipoprotein. We hypothesize that under normal 
circumstances, the lipoprotein is indeed enzymatically 
degraded in the first place and epitopes are exposed 
to enable the lipoprotein to be recognized and taken 
up by macrophages. This would lead to a sequence 
of events that serve to clear the vessel wall of 
cholesterol and is concluded by the transfer of excess 
cholesterol from foam cells onto HDL for reverse 
cholesterol transport. If the amount of insudated LDL 
exceeds the recycling capacity of the normal intima, 
i. e. the capacity of the system is overburdened, this 
would lead to an imbalance between lipoprotein and 
cholesterol deposition and removal, with subsequent 
accumulation of extracellular LDL particles (17). If 
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these are oxidized in the course of their prolonged 
residence time in the intima, among a wealth of well-
documented events, MMP production in surrounding 
cells would be induced by oxLDL (93) amplifiying 
enzymatic degradation of LDL and thus initiating a 
circle of events that accelerates LDL removal. Given 
the above-mentioned examples of the role of both 
types of lipoprotein modification in early and advanced 
atherosclerosis, we propose that eLDL might be 
more important for the initiation of atherosclerosis, 
while oxLDL might be more helpful for diagnosis and 
prognosis of the disease. In this context, oxidative 
modifications in the vessel wall are considered to occur 
primarily as a process secondary to inflammation (94). 
However, without question, further investigations and 
comparative studies on both eLDL and oxLDL are 
warranted to corroborate the concept presented here. 
In any case, different lipoprotein modifications such 
as enzymatic and oxidative changes do not really 
compete, but rather complement one another. 

11. WIDENING THE IMPACT OF ELDL 

Enzymatic modification of LDL drastically in-
creases its cytotoxicity, which could be relevant for the 
progression of atherosclerotic lesions. This cytotoxicity 
arises from large amounts of unsaturated FFAs (free 
fatty acids) that are liberated from cholesterol esters 
in native LDL during enzymatic modification (27). Low 
concentrations of FFAs stimulate cytokine production 
(73) and represent critical regulators of ADAM (a dis�-
integrin and metalloproteinase) function that may as-
sume relevance in many biological settings through 
their influence on mobility of enzyme and substrate in 
lipid bilayers (29, 95, 96). High concentrations of FFAs 
render eLDL cytotoxic to SMCs, endothelial cells and 
PMNs (polymorphonuclear cells) (27, 28, 30). The po�-
tent cytotoxic effects on PMNs may be one reason why 
these cells are not abundantly present before the devel-
opment of complicated human atherosclerotic lesions 
with plaque erosion and rupture (97). Furthermore, 
eLDL induces rapid foam cell formation in monocytes 
and upregulates adipophilin mRNA and protein within 
2 h of incubation. Vice versa, adipophilin facilitates 
the uptake of FFAs and FFAs increase is related 
to the early upregulation of adipophilin expression 
in blood monocytes. FFAs are ligands for PPAR-g 
(peroxisome proliferator-activated receptor-g), and the 
upregulation of adipophilin mRNA by PPAR-g agonists 
like 15d-PGJ2 (15-deoxy-Δ12, 14-prostaglandin J2) 
and ciglitazone indicates that PPAR-g may mediate 
the induction of adipophilin expression in human blood 
monocytes (98). There is no doubt that FFAs derived 
from eLDL will be increasingly recognized to assume 
important roles in atherogenic processes in the future.

A pathogenetic impact of eLDL (and also ox-
LDL) is not restricted to atherosclerosis. Recently, we 
demonstrated that subendothelially deposited eLDL is 

enzymatically transformed into a complement activator 
at early stages of aortic valve sclerosis development 
and also taken up by myofibroblasts (99). Very 
recently, we demonstrated a strong presence of 
apolipoprotein (a), oxidized phospholipids (OxPL), 
malondialdehyde-lysine, autotaxin, and macrophages, 
particularly in advanced lesions rich in cholesterol 
crystals and calcification. We demonstrated the 
presence of a constellation of pathologically linked, 
Lp(a) (lipoprotein(a))-associated molecules in plasma 
and in aortic valve leaflets of patients with CAVS 
(calcific aortic valve stenosis) (100). 

12. IMPLICATIONS OF THE ELDL HYPOTHESIS

In summary, atherosclerosis is proposed to 
centrally involve enzymatically degraded lipoproteins 
and innate immune effectors, so inhibition of these 
components, in particular with respect to lesion pro-
gression might counteract atherogenesis. Of course, 
it would be highly desirable to have an animal model 
where it is possible to selectively inhibit enzymatic 
degradation of eLDL. However, this approach is 
hindered and probably impossible because of  the 
redundant and unspecific nature of proteolytic nicking 
required to convert native LDL to eLDL (33). Another 
approach would be to inhibit either cellular uptake 
of eLDL or signaling. Recently, we were able to 
demonstrate that inhibition of a key signaling molecule 
of the p38 MAPK pathway induced by eLDL cellular 
uptake, p38a MAPK/MAPK14, by skepinone-L, a 
novel selective p38a MAPK/MAPK14-inhibitor with 
multifaceted effects on foam cell formation, apoptosis, 
and cytokine induction facilitates elucidation of the 
impact of the complex network of p38 MAPK signaling 
on atherogenesis and might provide a promising 
therapeutic tool to prevent inflammatory cascades in 
atherosclerosis, not least because the in vivo potency 
of skepinone-L has been recently demonstrated (50).

With regard to innate immune effectors, it 
was demonstrated that complement C6-deficiency 
protects against diet-induced atherosclerosis (61) and, 
similar to CD59, apolipoprotein J (ApoJ) may subserve 
protective functions through its capacity to inactivate 
C5b-9 complement complexes and also by reducing 
the cytotoxic effects of eLDL on cells that gain contact 
with the lipoprotein (30). 

Vice versa, any situation leading to 
overactivation of the immune system probably 
accelerates atherogenesis in a non-specific fashion. 
This was clearly demonstrated in experiments 
where rabbits on a hypercholesterolemic diet were 
repeatedly challenged with endotoxin (22, 101). These 
results appear to be reproducible in the mouse (102). 
We propose that atherosclerosis is a special type of 
immunopathological disease which evolves as a result 
of excessive lipoprotein insudation and modification 
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triggered by a plethora of well known factors including 
smoking, hypertension, chronic infections, diabetes 
mellitus, e.t.c. 

In this respect I would like to finish with 
a personal opinion: atherosclerosis is generally 
considered to be a multifactorial disease, a concept 
that is not very satisfying, but is rather a platitude. 
Given the roles of eLDL and oxLDL, I propose that 
atherosclerosis should be considered as a multi-step 
rather than a multifactorial disease, with different 
players becoming important during different stages 
of the leading cause of mortality in affluent societies 
around the globe.
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