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1. ABSTRACT

Lipid droplets (LDs) have well-established 
functions as sites for lipid storage and energy 
mobilization to meet the metabolic demands of cells. 
However, recent studies have expanded the roles 
of LDs to protein quality control. Lipophagy, or LD 
degradation by autophagy, plays a vital role not only 
in the mobilization of free fatty acids (FFAs) and lipid 
homeostasis at LDs, but also in the adaptation of cells 
to certain forms of stress including lipid imbalance. 
Recent studies have provided new mechanistic insights 
about the diverse types of lipophagy, in particular 
microlipophagy. This review summarizes key findings 
about the mechanisms and functions of lipophagy and 
highlights a novel function of LD microlipophagy as a 
mechanism to maintain endoplasmic reticulum (ER) 
proteostasis under conditions of lipid imbalance.

2. INTRODUCTION

Lipid droplets (LDs) are present from bacteria 
to metazoans (1-6). In eukaryotes, they are produced 
at the endoplasmic reticulum (ER) (7, 8). The boundary 
membrane of LDs is a single phospholipid monolayer, 
which contains conserved integral and peripheral 
membrane proteins and envelops a hydrophobic core 
composed primarily of triacylglycerol (TAG) and sterol 

esters (SE) (9). LDs are sites of lipid storage and 
mobilization for energy homeostasis and membrane 
biogenesis (10). They also store hydrophobic vitamins 
and lipid signaling molecules, and sequester toxic 
lipids. Finally, emerging evidence support a role for 
LDs in protein storage, assembly, and quality control 
(10, 11).

To use lipids and other compounds stored 
in LDs, cells have developed mechanisms to transfer 
LD contents to other compartments. Lipolysis is the 
best-characterized pathway for release of lipids from 
LDs. In response to depletion of extracellular free fatty 
acids (FFA) or the need for mobilization of energy 
stores, protein kinases including cAMP-dependent 
protein kinase (PKA) and 5-AMP activated protein 
kinase (AMPK) are activated by hormonal cues (12). 
This results in the phosphorylation of cytosolic neutral 
lipid lipases (adipose triglyceride lipase, ATGL and 
hormone sensitive lipase, HSL), and of perilipins 
(PLIN), a conserved family of proteins that serve as 
scaffolds and regulators on the LD surface (13). ATGL 
and HSL are then recruited to PLIN proteins on LDs 
where they catalyze the breakdown of neutral lipids 
within LDs to generate FFAs that are released from 
LDs (14).

  



Lipid droplet autophagy

1553 © 1996-2018

Other studies indicate that the ubiquitin-
proteasome system (UPS) remodels LDs and regulates 
LD activity. Specifically, when lipid availability is limiting 
and LD abundance is low, LD proteins including PLIN1 
and PLIN2, ATGL and its inhibitor GOS2, and the LD 
fusion protein FSP27/CIDEC are degraded by the UPS 
(15-21). Conversely, induction of LD biogenesis (e.g. 
by growth of cells with oleate) results in stabilization of 
these proteins. While the UPS can control LD protein 
composition and regulate TAG lipolysis in LD, the 
mechanisms that target LD proteins for UPS-mediated 
degradation are not well understood.

Finally, emerging studies indicate that 
breakdown of LD constituents and LDs can occur by 
autophagy in response to cellular and environmental 
cues, and that this affects LD function in energy, lipid 
homeostasis, and ER protein quality control. Here, we 
discuss the process, mechanism, and consequences 
of LD autophagy, generally called lipophagy.

3. LIPOPHAGY: LD AUTOPHAGY

While the autophagy of various organelles 
was described as early as the 1960s, it was only 
recently that autophagy was implicated in the 
degradation of LDs (22). There are three main types 
of autophagy: macroautophagy, microautophagy, and 
chaperone-mediated autophagy (CMA). As described 
below, all three forms of autophagy function in LD 
degradation. 

3.1. Macrolipophagy

Macroautophagy is defined by the formation 
of an autophagosome, a double-membrane structure 
that surrounds and sequesters cytosolic components, 
and mediates fusion of the enveloped cargo with the 
lysosome (or vacuole in yeast) for degradation (Figure 
1) (23). LD macrolipophagy was first described in 
mouse hepatocytes under conditions of starvation 
and lipid exposure (22). These studies revealed that 
exposure of hepatocytes to serum starvation results 
in co-localization of autophagosome and lysosome 
marker proteins with LDs and conversion of LC3-I 
to LC3-II, a vital step for initiating and lengthening 
autophagosomal membranes, at LDs. These studies 
also revealed that inhibition of macroautophagy, 
pharmacologically or by silencing of the autophagy 
machinery (ATG genes), leads to the accumulation 
of TAGs and LDs in serum-starved hepatocytes (22). 
Thus, nutrient limitation triggers LD degradation by 
macroautophagy in hepatocytes.

RAB7 and RAB10, members of the Rab 
GTPase family, have emerged as mediators of 
macrolipophagy in hepatocytes. RAB7 was originally 
identified as a regulator of late endosomes and 
autophagosome maturation (24-26). RAB10 has 
multiple roles in vesicular and membrane trafficking in 
adipocytes, epithelial cells and developing axons (27-
29). Recent studies indicate that RAB7 and RAB10 
accumulate on LDs in response to nutrient limitations 

Figure 1. A schematic illustrating different forms of lipid droplet (LD) autophagy.  See text for details.
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and that activation of RAB7 and RAB10 is required to 
recruit autophagosome and lysosomal marker proteins 
to LDs. Conversely, depletion of either protein leads 
to LD accumulation in hepatocytes during starvation 
conditions (30, 31). Overall, these findings support the 
model that RAB7 and RAB10 play a role in the priming 
or licensing of LDs for macrolipophagy.

Recent findings also support a role for 
PLIN1 and PLIN2 in regulating LD macroautophagy. 
Stimulation of -adrenergic receptors in 3T3-L1 cells 
activates PKA, and promotes recruitment of RAB7 
to LDs and lipophagy. Knock-down of PLIN1 inhibits 
association of RAB7 and lysosomal marker proteins 
with LDs in activated 3T3-L1 cells (32). Similarly, 
PLIN2 deficiency reduces LD levels and enhances 
autophagic lipolysis in mouse liver and cultured 
hepatoma cells (33). In contrast, overexpression of 
PLIN2 protects hepatic lipid droplets from autophagic 
lipolysis. Thus, PLIN1 and PLIN2 may function as 
physical barriers that prevent recruitment of the 
macroautophagy machinery to LDs. Since PLIN1 and 
PLIN2 are targets for UPS degradation, it is possible 
that the UPS regulates LD function through effects on 
macrolipophagy. For a more extensive recent review of 
macrolipophagy see Schulze et al. (34).

3.2. CMA and lipophagy

CMA is a specialized form of autophagy 
that targets cytosolic proteins bearing the KFERQ 
degradation pentapeptide signal for lysosomal 
degradation (Figure 1) (35). Although CMA exclusively 
targets proteins and not lipids, several findings support 
a role for CMA in LD homeostasis. CMA is triggered 
by starvation, and mice with defects in liver CMA 
develop marked hepatosteatosis (36, 37). Moreover, 
PLIN2 and PLIN3 contain the KFERQ degradation 
pentapeptide and are CMA substrates (37). CMA-
dependent degradation of PLIN2 and PLIN3 at the 
LD surface promotes the recruitment of a neutral 
lipid lipase (ATGL) and macroautophagy machinery 
components to the LD. Conversely, impairment 
of CMA or mutations in the pentapeptide signal of 
PLIN2 or PLIN3 prevents association of ATG core 
proteins with LDs and promotes LD accumulation (37). 
Overall, these findings indicate that CMA-mediated 
degradation of PLIN2 and PLIN3 stimulates lipolysis 
and macrolipophagy by promoting the recruitment of 
lipases and macrolipophagy machinery components 
to LDs. 

3.3. Microlipophagy

In yeast, LDs are also degraded by 
microautophagy. In microlipophagy, LDs are not 
enveloped by autophagosomes, but are delivered 
directly to the vacuole (the yeast lysosome). 
Microlipophagy has been detected in yeast in response 

to nitrogen starvation, glucose depletion, survival during 
stationary phase, and phospholipid imbalance. Under 
these conditions, LDs are taken up into the vacuole 
at sites of vacuolar membrane invagination (Figure 1) 
(38-41). However, different environmental conditions 
stimulate different mechanisms for microlipophagy. 

3.3.1. LD-vacuolar contact sites during ATG core 
gene dependent microlipophagy

In nitrogen starvation- and stationary phase-
induced microlipophagy, LDs bind to specific sterol-
rich, raft-like liquid ordered (Lo) vacuolar microdomains 
(38, 39). Recent studies support a role for two essential 
Niemann-Pick type C (NPC) sterol transporter proteins, 
Ncr1p and Npc2p, in Lo microdomain formation under 
both conditions (42). These proteins are internalized 
into the vacuolar lumen, where they transfer sterols 
to the vacuolar membrane. If these proteins are 
absent or fail to localize to the vacuolar lumen, the 
formation and expansion of Lo microdomains needed 
for microlipophagy is severely affected.

Interestingly, the source for sterols in Lo 
microdomains differs in yeast in stationary phase and 
undergoing nitrogen starvation. Sterol-rich intraluminal 
vesicles (ILVs) are the main source of Lo microdomain 
sterols in nitrogen starved yeast (42). These ILVs are 
transported to the vacuole by multivesicular bodies 
(MVBs), membrane bound structures that are generated 
from late endosomes, contain internal membranes 
and deliver proteins and lipids to the vacuole (43). In 
contrast, sterol esters in LD are the sterol source in 
stationary phase yeast cells (39). Interestingly, there 
are reciprocal interactions between microlipophagy 
and these sterol-rich microdomains in stationary 
phase yeast. Vacuolar microdomains are required for 
microlipophagy (39). Conversely, microlipophagy is 
essential to maintain the Lo microdomains, potentially 
because LDs that are taken up into the vacuole by 
microlipophagy are a major source for sterol esters for 
vacuolar Lo microdomains (44).

Finally, core ATG genes, which encode 
proteins that mediate autophagosome formation, are 
required for microlipophagy in both stationary phase 
and nitrogen starved yeast (38, 39, 42). However, the 
mechanism of ATG gene function varies under these 
two conditions. ATG genes are required for localization 
of NPC proteins to the vacuole in stationary phase 
cells. Specifically, deletion of ATG1, 2, 3, 5, 7, 8, or 
18 results in accumulation of Ncr1p and Npc2p as 
punctate, presumably aggregated structures in the 
cytosol (42). Surprisingly, under conditions of nitrogen 
starvation, localization of Ncr1p, Npc2p, or ILVs to the 
vacuole is not affected in ATG mutants. Rather, ATG 
genes are required for autophagosome-mediated 
delivery of sphingolipids, another vital component of 
the Lo microdomains, to the vacuole (45, 46).
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Currently, it is not clear whether Ncr1p, 
Npc2p, or ILV-dependent sterols are required 
for microlipophagy under conditions of acute 
glucose depletion. However, microlipophagy in 
glucose-depleted yeast requires ATG core genes 
including Atg14p, an autophagy-specific subunit of 
phosphatidylinositol 3-kinase complex I that localizes 
to Lo microdomains (41). Moreover, ATG14 is required 
for Lo formation and microlipophagy, and localization 
of Atg14p to Lo sites is dependent upon the AMPK 
pathway for energy sensing during acute glucose 
depletion. The defect in microlipophagy observed in 
glucose-depleted atg14∆ cells does not appear to be 
due to effects on macroautophagy: ATG14 is required 
for macroautophagy in fed yeast cells but not in yeast 
undergoing acute glucose depletion (41). This finding 
suggests an unexpected plasticity in autophagy in 
response to different cellular cues and a novel function 
of Atg14p in microlipophagy.

3.3.2. ATG core gene -independent forms of  
microlipophagy

Microlipophagy that does not require core 
ATG genes has been observed in yeast under two 
conditions: lipid imbalance produced by defects in PC 
biosynthesis (47), and transition through the diauxic 
shift, the shift from glycolysis- to respiration-driven 
growth when glucose becomes limiting  (48). Since core 
ATG genes are required for Lo microdomain formation 
(42), it is possible that LD uptake into vacuoles does not 
occur at Lo microdomains in ATG-independent forms 
of microautophagy. Alternatively, Lo microdomains 
may function in all forms of microlipophagy; however, 
generation of those subdomains may occur by different 
mechanisms.

Interestingly, both forms of ATG gene-
independent microlipophagy require the endosome 
sorting complexes required for transport (ESCRT) 
machinery, conserved membrane complexes that 
mediate invagination of late endosomal membranes to 
produce MVBs (49). Since MVBs transport hydrolases 
and other macromolecules to the vacuole, ESCRT 
affects micro- and macrolipophagy through effects on 
vacuolar biogenesis. However, emerging evidence 
supports a direct role for the ESCRT in vacuolar 
membrane remodeling in ATG gene-independent 
microlipophagy. 

 
Lipid imbalance-induced microlipophagy 

requires Vps4p, which mediates ESCRT III 
disassembly, and Esm1p/Atg39p, a newly identified 
class V ESCRT protein that has also been implicated 
in nucleophagy (40, 50). Microautophagy of cargos 
including LDs in post-diauxic yeast requires multiple 
ESCRT components, including Vps27p, a clathrin- 
and ubiquitin-binding protein and component of the 
ESCRT-0 complex normally responsible for initiating 

the MVB pathway (49). Indeed, passage through the 
diauxic shift results in relocalization of Vps27p from 
endosomes to punctate structures on the vacuolar 
membrane. The clathrin-binding domain of Vps27p is 
not required for its relocalization to the vacuole after 
the diauxic shift. However, it is required for efficient 
microlipophagy under these conditions. Other studies 
confirm that ESCRT can function directly on the 
vacuolar membrane to sort and direct polyubiquitinated 
protein cargo into the vacuolar lumen for degradation 
(51). These findings raise the possibility that ESCRT 
mediates invagination of the vacuolar membrane for 
LD uptake during microlipophagy in yeast after the 
diauxic shift, and potentially also in yeast exposed to 
lipid stress.

4. FUNCTIONS OF LIPOPHAGY

4.1. Energy mobilization

A role for lipophagy in release of free fatty 
acids (FFAs) from LDs for energy mobilization in 
response to starvation was first identified in mouse 
hepatocytes (22). Other studies revealed a role for 
lipophagy in starvation-induced FFA release in the 
proximal tubule of the kidney (52), hypothalamic and 
primary striatal neurons, glial cells, lymphocytes, 
macrophages, cultured adipocytes, gastrointestinal 
epithelial cells, and prostate cancer cells (53). 
Lipophagy in response to nutrient limitation is also 
observed in the yeast Saccharomyces cerevisiae, the 
nematode Caenorhabditis elegans, and the fungus 
Fusarium graminearum (53). Finally, lipophagy can 
be activated in brown adipose tissue by cold shock, 
where it promotes the release of FFAs from brown fat 
to supply peripheral tissues with energy and promote 
their survival during cold stress (54). Thus, lipophagy 
is an established mechanism to supply energy to cells 
under various metabolic demands.

As described above, starvation-induced LD 
degradation occurs by macroautophagy in mouse 
liver (22). In contrast, yeast subjected to nitrogen 
starvation or acute glucose limitation degrade LDs by 
microlipophagy (38, 41). Since deletion of cytosolic 
neutral lipid lipases does not have severe effects on 
survival of yeast in stationary phase, microlipophagy 
may also be a major pathway for TAG metabolism 
during that stage of the yeast life cycle (55-57). Yet to 
be determined is why different cell types use different 
mechanisms for microlipophagy.

Although lipolysis can be used to release 
FFAs from LDs, lipophagy may be activated during 
starvation in some cell types because it allows for 
rapid release of FFAs. Moreover, use of lipophagy 
as opposed to lipolysis for energy mobilization from 
LDs varies among tissues. Lipolysis is the primary 
mechanism for FFA release from LDs in white adipose 
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tissue, which expresses high levels of HSL and ATGL 
(12, 58-61). In contrast, lipophagy appears to be the 
major mechanism for FFA mobilization in liver, which 
expresses low levels of HSL and ATGL (13). Elevated 
FFA results in lipotoxicity, elevated reactive oxygen 
species production, uncoupling of mitochondria, 
apoptosis, and insulin resistance (62-65). Therefore, 
use of the relatively slower process of lipolysis for FFA 
release in white adipose tissue may protect against 
release of excessive levels of FFA from the large 
stores of TAGs in those cells. 

4.2. Lipid homeostasis

The function of lipophagy in lipid regulation 
extends beyond TAG storage and FFA release. 
Lipophagy is a mechanism to protect cells from excess 
intracellular lipids and lipotoxicity. Up-regulation of 
macrolipophagy was first detected in hepatocytes 
exposed to high levels of oleic acid (22). Subsequent 
studies showed that lipid overload can increase 
autophagy in cells including neurons, beta cells, 
myocytes and epithelial cells (66-70). Conversely, 
blocking autophagy in cultured myocytes leads to 
elevated TG levels and cell death as a result of lipid 
overload (71). Thus, lipophagy protects cells from 
lipotoxicity by removal of excess intracellular lipids. 

Lipophagy also protects yeast from lipid stress 
produced by inhibition of PC biosynthesis (40). The 
immediate response to inhibition of PC biosynthesis 
is altered levels of phospholipids, decreased growth 
rates, and defects in the morphology and distribution 
of mitochondria and ER, the two organelles where PC 
biosynthesis occurs. Surprisingly, yeast adapt to this 
lipid stress: their growth rates, ER and mitochondrial 
morphology and distribution, and levels of many 
phospholipids are restored (40). We found that TAG 
and sterol ester levels as well as LD biogenesis and 
degradation by microlipophagy are increased in cells 
that have adapted to this lipid stress. Moreover, we 
find that mutations that block TAG and LD biosynthesis 
or microlipophagy severely inhibit adaptation. These 
studies support the model that excess lipids are stored 
in LDs in the form of TAG and degradation of those 
lipids by microlipophagy protects yeast cells from lipid 
imbalance.

 
Finally, lipophagy has also been implicated 

in protecting cells from excess cholesterol. Reverse 
cholesterol transport, transport of free cholesterol from 
macrophage foam cells in atherosclerotic plaques to 
the liver where it is excreted in bile, is one mechanism to 
reduce cholesterol levels (72). Recent studies indicate 
that lysosomes contribute to lipid breakdown in lipid-
loaded macrophage foam cells  (73). These studies 
also revealed co-localization of autophagosome and 
lysosome marker proteins with LDs, conversion of 

LC3-I to LC3-II in subcellular fractions enriched in 
LDs, and a role for lysosomal acid lipases in release 
of free cholesterol from cholesterol esters in LDs 
in macrophage foam cells. Thus, LD breakdown 
in lipid-loaded macrophage foam cells occurs by 
macroautophagy. Finally, these studies showed that 
lipophagy is required for release of free cholesterol 
from cholesterol esters in LDs and reverse cholesterol 
transport from lipid-loaded macrophage foam cells in 
culture and in whole animals (73). Thus, lipophagy 
may contribute to clearance of excess cholesterol 
from peripheral tissues and be a target for treatment of 
atherosclerosis (74).

4.3. Protein quality control

LDs have also emerged as cellular “protein 
sinks.” LDs sequester histones H2A and H2B during 
oogenesis in Drosophila (75). Defects in this process 
results in toxic accumulation of histones, which leads 
to mitotic error and apoptosis (76, 77). LDs also 
sequester misfolded cytosolic proteins and prevent 
them from forming toxic aggregates under several 
pathological states and conditions (78, 79). Finally, 
LDs have been implicated in the assembly of hepatitis 
C virus (HCV) and in liver steatosis caused by HCV 
infection. Specifically, two HCV core proteins localize 
to LDs where they contribute to transfer of lipids from 
LDs to the developing virion during virus assembly 
(80-82).

Our group has recently identified a novel 
role for LD and lipophagy in ER proteostasis under 
conditions of lipid imbalance. Lipid imbalance 
produced by defects in PC biosynthesis results in 
accumulation of unfolded proteins in the ER (ER 
stress) and activation of the unfolded protein response 
(UPR) (40), a signal transduction pathway that 
down-regulates protein synthesis and up-regulates 
proteostasis mechanisms in response to ER stress 
(83). One pathway that is activated by the UPR is ER-
associated protein degradation (ERAD), a pathway 
for retrotranslocation of unfolded ER proteins to the 
surface of the organelle, where they are ubiquitinated 
and targeted for degradation by the proteasome (84, 
85). 

LD biogenesis and microautophagy have 
emerged as an ERAD-independent mechanism 
for ER proteostasis in yeast undergoing acute lipid 
imbalance. Specifically, polyubiquitinated proteins and 
Kar2p, the yeast homologue of the ER chaperone BiP, 
are enriched in LDs isolated from yeast undergoing 
lipid stress (40). Furthermore, these LDs are targeted 
to the vacuole for degradation by microautophagy. As 
described above, lipid stress induced microlipophagy 
does not require the core autophagy gene ATG7, 
but does require ESCRT components. Finally, 
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microlipophagy is essential for yeast cell survival 
during lipid stress (40). 

 
These findings support a novel mechanism 

for ER proteostasis in response to lipid stress whereby 
LDs remove unfolded proteins from the ER and target 
them for degradation by lipophagy. They also provide 
support for the model that LDs function as “escape 
hatches” in ER quality control (86). Interestingly, LDs 
may also remove damaged proteins from mitochondria 
in yeast (87). Under conditions of stress, specific 
damaged mitochondrial outer membrane proteins 
associate with LDs, which in turn are degraded by 
lipophagy. Therefore, LDs may serve as a vehicle for 
segregation and degradation of damaged proteins 
from different compartments.

5. CONCLUSION

It is now clear that LD autophagy occurs 
and contributes to established and newly identified 
LD functions in energy and lipid homeostasis and 
ER proteostasis. However, there are fundamental 
questions that remain unresolved. Indeed, lysosomes 
can be 100 to 1000 times smaller than LDs in 
mammalian cells. In light of this, it is not clear how 
LDs can be taken up into lysosomes. Are there 
mechanisms for fragmentation of LDs that are targeted 
for autophagic degradation? 

Studies from multiple groups revealed that 
macrolipophagy and microlipophagy are used to release 
of FFAs from LDs. However, why different cell types 
use different autophagy mechanisms and how those 
mechanisms are regulated are not well understood. 
Indeed, although macroautophagy has been studied 
extensively, our understanding of microautophagy and 
microlipophagy are limited. Nonetheless, available 
evidence indicates that microlipophagy is complex. 
There appears to be multiple forms of microlipophagy 
in yeast that are induced by different conditions, rely 
upon or do not rely upon core ATG genes, and utilize 
different mechanisms for generating docking sites 
for LDs on the vacuole. Future studies will reveal the 
precise mechanism underlying these pathways, how 
they are regulated and whether they are conserved in 
other cell types. 

Finally, recent studies on microlipophagy 
have revealed novel mechanisms including a possible 
role for the ESCRT machinery in invagination of the 
vacuolar membrane for LD uptake and a role for LD 
biogenesis and microlipophagy in ER proteostasis. 
Ongoing and future studies will reveal whether ESCRT 
mediates lysosomal membrane invagination during 
microlipophagy in metazoans, other possible targets 
for ESCRT function in membrane curvature, whether 
LDs regulate ER proteins quality control in metazoans, 

the targets for ER proteostasis by LDs, and whether 
LDs control the quality of other organelles and cellular 
compartments. 
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