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1. ABSTRACT

Enteroendocrine L cells are open-type 
enteroendocrine cells that play an important role in 
amino acid sensing. They detect amino acids by a 
number of membrane receptors such as calcium-
sensing receptor and G protein coupled receptor 
family C group 6 subtype A. The receptors activate 
signaling pathways and trigger cellular electrical 
activities, inducing gut hormones secretion (glucagon-
like peptide 1, glucagon-like peptide 2 and peptide 
YY). This review focuses on an array of findings on 

L cells as models, receptors and signaling pathways, 
electrical activities and hormones secretion in amino 
acid sensing. Several diseases that are closely related 
to L cells are also reviewed. 

2. INTRODUCTION

Enteroendocrine cells (EECs) are specialized 
intestinal epithelial cells widely distributed in the 
intestinal tract (1, 2). Although EECs account for less 
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C (PKC) pathway (23-25). However, GLUTag does not 
show the polarity of an L cell, such as apical processes 
facing gut lumen. As such, results concluded from 
GLUTag might be difficult to reflect what happened in 
natural cells. 

3.4. NCI-H716 cell line

NCI-H716 cell line was derived from a poor 
differentiated adenocarcinoma of human cecum and 
has shown some endocrine properties such as GLP-
1 secretion and expression of chromogranin and 
glucagon (26). NCI-H716 secretes GLP-1 in response 
to fatty acids, cholinergic agonists, glucose-regulated 
protein, and PKA and PKC activators (27). However, 
these activators are unable to regulate expression 
of proglucagon. For example, PKA up-regulates 
proglucagon expression in animal models but fails to 
regulate it in NCI-H716 (28). Thus, the reliability of 
NCI-H716 as a model of human L cells remains to be 
proved.

4. AMINO ACID SENSING RECEPTORS IN L 
CELLS

Amino acid sensing in L cells relies on a 
number of membrane receptors. These receptors, with 
specific recognition of some amino acids, can activate 
signaling pathways, trigger cellular electrical activities 
and induce gut hormones secretion (Figure 1). Here, 
we summarize three important amino acid sensing 
receptors.

4.1. Calcium-Sensing Receptor 

Calcium-Sensing Receptor (CaSR) is a 
typical G protein-coupled receptor (GPCR) belonging 
to group II of family C (29). It has been firstly cloned 
from bovine parathyroid cells by Brown and coworkers 
in 1993 (30). CaSR is known as seven-transmembrane 
domain receptor that exists in the form of dimer onto 
the cell membrane. The most studied roles of CaSR is 
homeostatic maintainer of systemic calcium (31). It can 
sense imperceptible change of extracellular calcium. 
The CaSR is widely expressed, includes L cells, 
where it is reported to regulate secretion of satiety 
hormones (32, 33). In the L cells, CaSR has been 
reported to act as a nutrient (amino acids / glucose) 
sensor, monitoring, and coordinating digestion, 
absorption and secretion (31, 34, 35). For example, 
rat intestinal L cells recognize L-amino acids by CaSR, 
especially L-aromatic amino acids, and secrete gut 
hormones (32, 36). This process seems to involve 
depolarization of the plasma membrane (9). In the 
STC-1 model, CaSR activates phospholipase C (PLC) 
and inositol triphosphate (IP3) signaling pathways 
after sensing amino acids that induces Ca2+ release 
from endoplasmic reticulum and extracellular Ca2+ 
entering the cell due to the activation of TRPC and 
L-VDCC (37). As a consequence, intracellular calcium 

than 1% of the total intestinal epithelium cells, they 
form the largest endocrine organ in the body (3). 
EECs are primary chemo-sensors in the intestinal 
lumen collecting and integrating information, releasing 
signaling molecules, activating nerve fiber and 
responding to luminal contents (4). 

Enteroendocrine L cells are open-type EECs 
with apical processes facing the gut lumen in nutrient 
sensing (5). They are distributed along the length of 
intestinal epithelium, but the colon harbors the highest 
density (6). L cells are responsive to a range of luminal 
components, particularly the digestion products of 
protein, carbohydrates and fats (7, 8). For example, 
amino acids, such as glutamine, have been shown 
to trigger membrane depolarization and electrical 
activity in L cells that activate signaling pathways and 
stimulate gut hormone secretion (9). In response to 
nutrients stimulation, L cells secrete gut hormones 
such as glucagon-like peptide 1 (GLP-1), glucagon-
like peptide 2 (GLP-2) and peptide YY (PYY) (10). 
These hormones regulate nutrient absorption and 
energy homeostasis in many ways (11, 12). 

3. L CELL MODELS

3.1. Primary intestinal enteroendocrine cell

Primary intestinal EEC is a common model 
for intestinal nutrient absorption experiments in vitro 
(13). Embryonic rat intestinal cells, for example, 
secrete hormones in response to various extracellular 
regulatory factors but fail to response to glucose 
because the corresponding receptors are not 
expressed in embryonic L cells (14). In addition, co-
culture of various adult mouse primary intestinal cells 
harboring L cells in vitro has been explored (15). 

3.2. STC-1 cell line

STC-1 cell line was derived from a duodenum 
tumor of double transgenic mice harboring the 
minigene of the rat insulin promoter that drives the 
expression of the simian virus 40 large T antigen and 
the polyomavirus small T antigen. Originally, STC-
1 cells have been used as a model of native CCK-
producing I cells (16) as well as EECs differentiation 
(17), cellular signaling mechanisms involved in gut 
hormones secretion (18, 19), tumor cell growth (20) 
and  intestinal immune responses (21). 

3.3. GLUTag cell line

GLUTag cell line was derived from a colonic 
tumor of a transgenic mouse expressing simian virus 
40 large T antigen under the control of the proglucagon 
promoter (22). This cell line has been shown to secrete 
GLP-1 in response to a range of physiological stimuli 
including monosaccharides, amino acids and fatty 
acids through protein kinase A (PKA) or protein kinase 
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Figure 1. Amino acid sensing in L cells



L cells in amino acid sensing

1743 © 1996-2018

M member 5 (TRPM5) to promote membrane 
depolarization (52). DAG activates PKC and protein 
kinase D (PKD), which turn off the K+ channel by 
phosphorylation, leading to membrane depolarization 
of L cell and gut hormone secretion (53).

5.2. cAMP pathway

In cAMP pathway, amino acids activate 
α-gustducin (Gg) after binding to membrane receptors 
in L cells. The activated Gg causes the increase of 
cAMP by activating intracellular adenylate cyclase (54). 
Next, cAMP activates cAMP-dependent PKA, resulting 
in phosphorylation and shut off of potassium channel. 
Inhibition of potassium efflux triggers membrane 
depolarization and turns on L type voltage-dependent 
calcium channels (55). Extracellular calcium influx 
leads to the increase of intracellular free calcium, 
which causes gut hormone secretion.

6. ELECTRICAL ACTIVITY IN AMINO ACID 
SENSING

L cells has electrical excitability and direct 
reactivity to amino acids (50, 56). When amino acid 
is sensed by L cells, membrane depolarization and 
electrical activity could be triggered, activating the 
influx of calcium through L or N type voltage-gated 
calcium channel (57-59). Patch clamp is a classical 
electrophysiological technique for the study of electrical 
activity in amino acid sensing (9). We recently recorded 
glutamine-triggered electrical activity of L cells by using 
microelectrode array. Figure 2 displayed the recorded 
signals of STC-1 cells. The representative 8 channel 
signals with negative peaks were potentials triggered 
by glutamine. These potentials were recorded with 
amplitudes about 300-500 μV in our study. Also, the 
signals were similar in these channels, indicating the 
synchronized activities in cell networks.

6.1. Patch clamp

Patch clamp was firstly introduced by Erwin 
Neher and Bert Sakmann on the basis of double-
electrode voltage clamp in the 1970s (60). Since the 
1980s, patch clamp has been widely used in the studies 
of ion channels, membrane proteins and cellular 
signaling pathways (61). Patch clamp, especially 
perforated-patch and standard whole-cell patch clamp 
recordings, allows scientists to record electrical activity 
of a single cell, providing a direct way for understanding 
the electrophysiological characteristics of L cells.

In the GLUTag model, amino acids have 
been shown to cause membrane depolarization, 
electrical activity and influx of Ca2+ by using patch 
clamp technology (62, 63). Action potentials were fired 
by amino acids and maintained by depolarizing current 
injections. Moreover, voltage-gated Na+ channels may 

concentration increases, which stimulates exocytosis 
of CCK and GLP-1 (38). Thus, CaSR induces increase 
of intracellular Ca2+ and stimulates hormone secretion 
by activating downstream signaling pathways and ion 
channels when sensing amino acids.

4.2. G protein coupled receptor family C group 6 
subtype A 

G protein coupled receptor family C group 6 
subtype A (GPRC6A) is another important amino acid 
sensing receptor (39). Unlike CaSR, GPRC6A is not 
very sensitive to L-aromatic amino acids, but can be 
activated by basic amino acids including L-arginine, 
L-lysine and L-ornithine (40-43). GPRC6A has been 
found in many tissues, but the expression levels of 
GPRC6A in animal jejunum and colon are the highest 
(44). In the intestinal GLUTag cell line, GPRC6A 
was activated by L-ornithine and able to regulates 
hormone (e.g. GLP-1) secretion (45). The activation 
of GPRC6A was potentiated by divalent cations 
including calcium and magnesium, in physiologically 
relevant concentrations (43, 46), suggesting a direct 
role for GPRC6A in L-amino acids-triggered hormone 
secretion. However, GPRC6A was hardly detectable 
in FACS-sorted intestinal EECs, which raised the 
question that whether GPRC6A is involved in amino 
acid-triggered hormone secretion in primary intestinal 
L cells.

4.3. Sodium-dependent neutral amino acid 
transporter 2

Sodium-dependent neutral amino acid 
transporter 2 (SNAT2), the ubiquitous member of 
SLC38 family, participates in transmembrane transport 
of small neutral amino acids (47, 48). In competitive 
inhibition test, SNAT2 shows high affinity to alanine, 
proline, methionine and serine, but not charged amino 
acids (e.g. glutamate and lysine) and large amino 
acids (e.g. leucine, valine and phenylalanine) (49). In 
primary L cells, SNAT2 senses glutamine and elevates 
intracellular concentration of calcium, triggering GLP-1 
secretion (50). 

5. SIGNALING PATHWAYS IN AMINO ACID 
SENSING

5.1. Phosphatidylinositol signaling pathway

In phosphatidylinositol signaling pathway, 
amino acids bind to membrane receptors to activate 
PLC and cleave the phosphatidylinositol-(4,5)-
bisphosphate (PIP2) into two second messengers, 
IP3 and diacylglycerol (DAG) (51). The increase of 
IP3 leads to the open of IP3-gated calcium channel 
on the membrane of intracellular calcium pool. At 
the meantime, the rise of calcium ions activates the 
transient receptor potential cation channel subfamily 
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to a frequency-encoded message that can travel 
large distances. Therefore, it is speculated that L cells 
might transfer information from a portion of the cells to 
another via action potentials. 

6.2. Microelectrode array

Microelectrode, also known as 
ultramicroelectrode, is an electrode smaller than 100 
μm. Microelectrode array (MEA) is collector electrode 
in combination of multiple single microelectrodes. 
Culturing tissues or cells onto MEA chip, it can 
simultaneously record extracellular electrical activities 
collected from spatially distributed microelectrodes in 
real time (a typical MEA chip is shown in Figure 3). 
MEA is based on microwire arrays developed in the 
1950s (69). In 1972, Thomas and colleagues found 

also play a significant role in amino acid-triggered 
hormone secretion. Glutamine-stimulated GLP-1 
secretion was obviously inhibited by TTX. Alanine 
has been proved to activate glycine receptor while 
asparagine and glutamine depolarize the cells by their 
Na+-coupled electrogenic uptake (64, 65). Although 
amino acid-induced action potentials were observed 
in GLUTag cells, functional linkage between electrical 
activity and secretion was not fully established (66).

The electrical activity of primary L cells 
is similar to that of GLUTag cell line. Na+ channel-
dependent action potentials were fired by amino acids 
and the glutamine-stimulated secretion was TTX-
sensitive, pointing out that GLP-1 release from primary 
L cells is dependent on Na+ channels (67, 68). Na+-
dependent action potentials convert localized signals 

Figure 2. Glutamine-triggered electrical signals recorded by microelectrode array
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that electrical activity can be recorded extracellularly 
with MEA (70). Over the past decades, many peer-
reviewed articles have proven that the MEA technology 
is indeed a powerful tool in electrophysiology 
research and the technology around the MEA has 
improved significantly (71-76). Compared to ordinary 
electrodes, MEAs have lower signal-to-noise ratio and 
higher measurement sensitivity. This non-invasive 
electrophysiological technique is superior to the patch 
clamp method. MEA can be applied to a wide variety 
of cells, especially in the study of excitable cells such 
as neurons (77), cardiomyocytes (78), muscle fibers 
(79), and pancreatic beta cells (80). Recently, we 
found MEA is also a powerful tool in study of amino 
acid sensing. We developed a system for extracellular 
electrical activity monitoring based on MEA that 

utilizes a two-dimensional confluent layer of STC-1 cell 
line. STC-1 cells could be cultured onto specific MEA 
chip. Using a special software, we recorded strong 
electrical signal from STC-1 cells that triggered by 
glutamine. Waveform, amplitude and frequency of the 
electrical signals were varied in different conditions. 
By analyzing these parameters, we characterized the 
electrical process of glutamine sensing in STC-1 cells 
(Ding et al., manuscript in preparation). 

7. REGULATION OF GUT HORMONE 
SECRETION

Amino acids regulate secretion of various 
hormones such as GLP-1, GLP-2 and PYY in L cells 
by activating specific signaling pathways that trigger 

Figure 3. Microelectrode array.
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cellular electrical activities (81-83). These hormones 
work independently or collaboratively with each other to 
regulate appetite and maintain energy homeostasis (35). 

7.1. L-glutamine

L-glutamine can stimulate GLP-1 secretion in 
primary L cells and GLUTag cell line (58, 84, 85), which 
is related to the increase of cell excitability and change 
of cAMP concentration. Slc6a19 (B0AT1), a sodium-
dependent transporter, has much higher expression 
levels in L cells than other adjacent cells (86), and may 
play an important role in glutamine sensing. Moreover, 
cAMP is also important in glutamine-triggered hormone 
regulation (56). In GLUTag cell line, glutamine 
increases concentration of cAMP and triggers ion 
channels open, membrane depolarization and hormone 
secretion (87). We showed that glutamine can induce 
a dose-dependent regulation of GLP-1 secretion 
accompanying with electrical signals (Figure 3).

7.2. L-arginine

L-arginine is an insulin secretagogue that 
stimulates GLP-1 secretion from isolated rat intestine. 
It has been shown that the levels of GLP-1 and insulin 
were increased in plasma of normal and diet-induced 
obese mice following the intragastric administration of 
L-arginine but not in GLP-1 receptor knockout mice 
(88) indicating that L-arginine acts as GLP-1 agonist in 
vivo. Nevertheless, L-arginine fails to stimulate GLP-1 
secretion in GLUTag cell line in vitro, which raises the 
question that the regulation of hormone secretion by 
L-arginine relies on intact intestinal environment (58). 

8. L CELLS AND HUMAN DISEASES

As L cells can regulate appetite, nutrient 
absorption and energy homeostasis by secreting 
various hormones, dysfunction of L cells can lead to 
disease phenotypes, for example, type 2 diabetes 
(89). Occurrence of type 2 diabetes is closely related to 
insufficient secretion of GLP-1 from L cells after meal 
(90). Diabetic patients have much higher blood sugar 
level and lower GLP-1 level than healthy controls 
after eating high-calorie food (91). GLP-1 and its 
analogues can reduce blood sugar and glycosylated 
hemoglobin, enhance insulin sensitivity, reduce fatty 
tissues and improve symptoms of type 2 diabetes 
(92). Hypodermic or intravenous injection of GLP-1 
significantly decreases blood sugar of diabetic patients 
both before and after meal (93). 

Obesity is also related to L cells. GLP-1 
secreted from L cells can bind to thalamic nuclear 
receptors in hypothalamus and subsequently-induce 
satiety and reduce appetite (94). In addition, PYY 
also participates in the regulation of food intake. 
Injection of PYY reduces appetite and weight gain 

(95). Interestingly, elevated PYY in the body has been 
considered as one of the mechanisms that acupuncture 
treatment for weight loss (96).

Other diseases such as irritable bowel 
syndrome (97), acute pancreatitis (98), colon cancer 
(99) and breast cancer (100) also have been linked 
with L cell and hormones secretion. 

9. FUTURE PERSPECTIVES

Although, many receptors and signaling 
pathways have been proved to play important roles in 
amino acid sensing, little is known about the interaction 
and synergistic action of these receptors. Thus, more 
research on signal transduction network of various 
intestinal amino acid receptors are warranted. Amino 
acid sensing in L cells triggers cellular electrical 
activities, these electrical activities are closely related 
to gut hormone secretion. However, the accurate 
relationship between electrical activities and hormone 
secretion remains unclear. A deeper understanding 
of the mechanisms of electrical activities in amino 
acid-triggered hormone secretion is important. 
Additionally, more transdisciplinary technologies are 
needed to investigate the mechanisms of amino acid 
sensing in the future. For example, it is anticipated 
that molecular biology methods combine with 
microscopic imaging and electroanalytical chemistry 
techniques would open a new horizon in amino acid 
sensing research.
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