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1. ABSTRACT

Atherosclerosis is an inflammatory disease 
involving dysfunction of endothelial cells (EC) and 
enhanced permeability of the endothelium to oxidized 
low-density lipoprotein and the transmigration of 
monocytes from the blood to the intima where they 
are transformed into foam cells after lipid engulfment. 
Changes in the composition of the basement 
membrane leading to increased fibronectin deposition 
also occur and modify EC-extracellular matrix (ECM) 
mechanotransduction. The release of lipids due to 
foam cell apoptosis, as well as the migration of vascular 
smooth muscle cells from the media to the intima and 
their proliferation, increase the stiffness of arteries at 
later stages of atherosclerosis. EC dysfunction also 
involves other factors, including soluble cytokines 
and growth factors (GF) such as bone morphogenetic 
proteins (BMP). BMP-9 is a potent circulatory GF 
which has been shown to affect EC behavior. However, 
to date, few studies have investigated its role in 
atherosclerosis. The present review describes the 
histology and homeostasis of arteries by explaining 
EC function/dysfunction and discusses BMP-9 effect 
on EC behavior, considering factors engaged in the 
development of atherosclerosis.

2. INTRODUCTION

The maintenance of the proper functioning 
of the body is a complicated process known 
as homeostasis. Cardiovascular homeostasis 
is necessary for controlling the balance of vital 
parameters in blood vessels, including pressure, 
volume, temperature, and pH (1). It ensures the 
transport of hormones, oxygen, nutrients, and 
metabolic products in the blood circulatory system (2). 
The functionality of ECs, which line the interior wall of 
blood vessels and form the endothelium, is thus crucial 
for cardiovascular homeostasis. For example, the 
integrity of the endothelium is required to conserve the 
selective migration of leukocytes such as monocytes 
into the intima during inflammatory responses and to 
reduce the risk of thrombosis (3, 4).

EC injury and dysfunction can result in 
atherosclerosis, an inflammatory disease that paves 
the way for cardiovascular disease (CVDs) (2, 5-8). 
CVDs are the leading cause of mortality worldwide, 
with cancer being the second (9). Heart disease is 
the second leading cause of death in Canada, and 
heart failure costs the Canadian economy $3 billion a 
year (10, 11). Many GFs, cytokines, and chemokines 
influence EC function. Of these, BMPs have an 
impact on EC survival and proliferation (12). BMP-9 
is of particular interest as the active form is present 
in blood plasma at high concentrations (13, 14). It 
can regulate the effects of several factors known to 

be involved in EC dysfunction during atherosclerosis. 
These factors range from soluble molecules to ECM 
components and cells, including oxidized low-density 
lipoprotein (ox-LDL), soluble cytokines such as TNF-
alpha and VEGF, basement membrane (BM)/ECM 
proteins such as fibronectin (FN), wall shear stress 
(WSS), and vascular smooth muscle cells (VSMCs) 
(15-26). A review of currently available literature on the 
roles played by BMP-9 in EC function/dysfunction is 
thus of great interest and will also provide the scientific 
community with insights into the potential roles of BMP-
9 in the genesis and development of atherosclerosis.

The present review thus provides a brief 
INTRODUCTION to arterial histology and the location 
of atherosclerotic plaque as well as vascular cell 
functions. EC-ECM and EC-EC interactions are 
explained by describing the molecules involved in these 
interactions, including integrins, adhesion receptors, 
and vascular endothelial VE-cadherin as they play a 
crucial role during EC inflammatory responses and 
the progression of atherosclerosis. The structures, 
the canonical Smad and MAPK signaling pathways 
induced by BMP family members, and their crosstalk 
with the Wnt and Notch pathways are addressed. 
Lastly, a comprehensive summary of the effect of 
BMP-9 on EC function (quiescence, sprouting/vessel 
formation, and inflammation) and on atherosclerotic 
factors is provided. 

2.1. Histology of arteries 

2.1.1. Tunica 

Arteries, which carry blood away from the 
heart, are comprised of three main layers or tunica. 
The innermost layer is the tunica intima (or interna). 
The next layer is the tunica media, while the outermost 
layer is the tunica adventitia (Figure 1) (2). The 
tunica intima is covered with a monolayer of ECs (the 
endothelium), which is in direct contact with the blood 
flow. The intima is also comprised of a BM, which is a 
layer of connective tissue in the sub-endothelial region 
that is part of the ECM connected to ECs (2, 27). The 
connective tissue provides the intima with structural 
flexibility (2). The tunica media is mainly responsible for 
adjusting the size of the lumen by contracting/releasing 
VSMCs, which are highly specialized spindle-shaped 
cells whose main function is contraction beneath the 
intima to preserve blood pressure (2). ECs partially 
modulate this process by secreting NO, a free radical 
with short half-life that induces the constriction of 
VSMCs. NO production can be increased by various 
stimuli such as histamine and WSS through the 
upregulation of eNOS, the enzyme responsible for 
NO production (4, 28). The tunica adventitia provides 
structural support for arteries and is rich in fibrillar type 
I and III Collagen (Coll) and elastin (29, 30). Coll in the 
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adventitia provides a supporting framework whereas 
elastin is responsible for the uniform distribution of 
stress that enables arteries to better resist mechanical 
forces (31). The adventitia fixes arteries in their location 
by providing linkages with the surrounding connective 
tissue (2). Arteries can be categorized into two major 
forms based on the thickness and composition of these 
three layers: elastic and muscular (2). Large diameter 
arteries (> 10 mm) are considered elastic because 
they contain higher levels of elastin in the tunica. They 
are located closer to the heart and are thus subject to 
higher pressures. The mechanical properties of elastic 
arteries allow them to resist changes in blood pressure 
caused by systole and diastole (~120/80 mmHg) (2). 
The walls of muscular arteries are generally the thicker 
of the two forms. In regions more distant from the 
heart, there is not much need for arteries to expand 
as the blood pressure drops. These arteries thus have 
fewer elastic fibers in their intima and higher numbers 
of VSMCs in their media and are smaller in diameter 
than elastic arteries (0.1 mm to 10 mm) (2, 32). 

Atherosclerotic plaques preferentially develop 
in the arterial tree in curves, branching points, and 
bifurcations, which are associated with recirculating 
eddies and changes in WSS direction and magnitude 
(33). These alterations in WSS can affect EC function 
and can trigger the development of atherosclerosis 
(24, 33-36). Although atherosclerosis occurs mainly 
in large and midsize arteries, it can also occur in 
peripheral arteries (2). 

2.2. EC-BM interactions and EC-EC contacts

ECs can recognize and interact with BM 
proteins through specific transmembrane receptors 
called integrins. Human ECs express integrins, 
including alpha5 beta1, alphav beta3, alpha1 beta1, 
alpha2 beta1, alpha3 beta1, alpha6 beta1, and alphav 
beta5 (37, 38). Integrin/ECM interactions influence 
EC behavior such as cell survival, proliferation, and 
migration (39-44).

2.2.1. Integrins 

Integrins are composed of non-covalently 
linked heterodimeric alpha and beta subunits (45). 
Their interactions with specific ECM proteins induce 
the recruitment of cytoplasmic structural proteins (talin, 
vinculin, and kindlin) and the activation of FAK and Src 
signaling proteins by an outside-in mechanism (Figure 
2) (46). However, the activation state of integrins is 
regulated by inside-out signaling. For example, talin 
binding to the cytoplasmic tail of resting integrins 
activates the integrins by forcing the extracellular 
segments of the alpha and beta subunits away from 
cell membrane where they can bind to their ECM 
ligands (45-47). 

Integrin activation can be followed by 
clustering and the formation of nascent adhesions. 
These adhesions can develop into FXs that can 
mature to form FAs (48). FAs contain both structural 

Figure 1. Histology of elastic and muscular arteries, the figure is adapted with permission from (2) [https://creativecommons.org/licenses/by/4.0/]. [The 
figure was created using Servier Medical Art. https://smart.servier.com.].
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cytoplasmic proteins (e.g., vinculin) and cytoplasmic 
signaling proteins (e.g., FAK) (40). FAs also connect 
the actin cytoskeleton to the ECM (45, 46, 49, 50). 
When signaling proteins come into the vicinity of FAs, 
they induce various signaling transduction pathways, 
including Rho GTPase (51). These pathways 
can ultimately affect the arrangement of the actin 
cytoskeleton (41). Certain soluble factors such as 
VEGF and TNF-alpha can induce the rearrangement 
of the actin cytoskeleton to form stress fibers. This is 
associated with EC activation (16, 23, 52). 

2.2.2. Composition of the BM in normal and patho-
logical conditions

The ECM is responsible for various tasks, 
including maintaining the structural integrity of vessels 
and modulating cell functions through signaling 
pathways (53, 54). The BM is a specialized ECM with 
an amorphous, dense, sheet-like structure (55, 56). In 
physiological conditions, the BM of the endothelium 
contains Coll IV, laminin, nidogens, and perlecan (56). 
However, in atherosclerotic lesions, the BM is enriched 
in FN and Coll I (57).

2.2.2.1. Fibronectin

FN is a glycoprotein composed of two quite 
similar subunits linked at their C-terminal extremities 
by disulfide bridges. This dimeric protein (~440-500 
kDa) contains approximately 2300 amino acids that 
are mainly divided into three repeating modules, i.e., 
homology sequence types I (12), II (2), and III (15-17) 
(58, 59). FN can bind to other proteins such as Coll 
and fibrin as well as to glycosaminoglycans such as 
heparin (60-62). The FNIII-10 module is an important 
motif as it contains the RGD-loop that binds to many 
integrins in ECs, including alpha5 beta1 and alphav 
beta3 (63, 64). The FNIII-9 module contains a synergy 
site (proline-histidine-serine-arginine-asparagine 
sequence, PHSRN) that, upon interacting with the 
FNIII-10 module, can significantly enhance the affinity 
of alpha5 beta1 integrin for FN (64-66). The alpha5 
beta1 integrin can also translocate from the periphery 
(FA) to the center of cells to form fibrillar adhesions, 
which allow the cell to transform soluble FN into 
insoluble fibrils by inducing FN molecule stretching 
(Figure 3) (67, 68). This also unmasks cryptic binding 
sites that are mostly available at the N-terminal 
domain, especially FNIII modules such as III1-2 (68-
70). Raitman et al. used CHO-677 cells to identify the 
key role played by heparin/heparan sulfate binding 
sites in FN fibrillogenesis (71).

By binding to alpha5beta1 integrin, FN can 
also regulate the role of ox-LDL in changing ECs 
into a pro-inflammatory phenotype by enhancing the 
activation of a pro-inflammatory transcription factor 
(NF-kappaB) and the expression of VCAM-1 (15). It 
also induces the Rho signaling pathway, reducing the 
integrity of the EC barrier by disrupting AJs (23). 

2.2.2.2. Collagen 

Members of the collagen family are the most 
ubiquitous ECM proteins (54). So far, 27 Coll proteins 
have been identified. Coll proteins usually contain a 
triple helix of polypeptide chains (54, 72). For example, 
two identical alpha1(I)-chains and one alpha2(I)-chain 
make up the triple helix of Coll I, the most abundant 
Coll protein in the body (54,73). Coll I maintains the 
structural integrity of the ECM. It also contains an RGD 
sequence that can be recognized by alpha1 beta1 and 
alpha2 beta1 integrins on ECs and that can influence 
actin stress fiber formation (73-75). Rother et al. used 
PAECs seeded on a 3D hydrogel scaffold made of Coll I 
to show that this interaction can promote EC proliferation 
(76). Coll I also interacts with other ECM proteins (FN, 
Coll V) and glycosaminoglycans (54, 58, 62, 73, 77). 

2.3. EC-EC adhesion and vascular permeability

The passage of circulating cells such as 
leukocytes and soluble molecules such as LDL from 

Figure 2. Organization of a focal adhesion, the figure is adapted with 
permission from (53). [The figure was created using Servier Medical 
Art. https://smart.servier.com.].

Figure 3. Formation of fibrillar adhesions, adapted with permission 
from (67). [The figure was created using Servier Medical Art. https://
smart.servier.com.].
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the blood to the intima depends on the integrity of 
the endothelium. Injuries to or dysfunctions of the EC 
barrier affect vascular homeostasis by disrupting the 
selectivity and effectiveness of the barrier (8, 78). The 
main cell-cell contacts in ECs include AJs, TJs, and 
GJs (Figure 4). 

The present review focuses primarily on 
AJs because of the key role they play in vascular 
permeability (4, 83-86). However, more information 
on TJs and GJs can be found in the articles by 
Radeva and Waschke (2018) and Komarova et al. 
(2017) (87, 88).

The integrity of AJs is closely associated 
with VE-cadherin, a transmembrane adhesion protein 
(83, 85). Cadherins are classified as type I and type 
II. Type II cadherins lack the histidine-alanine-valine 
(HAV) motif, which prevents cadherin-mediated cell 
aggregation (89, 90). VE-cadherin is a type II cadherin 
and contains an extracellular cadherin domain (EC-
domain) and a cytoplasmic tail (C-terminus). The 
EC-domain of VE-cadherin mediates calcium ions 
dependent hemophilic binding between ECs, whereas 
its C-terminus can bind to catenins and stabilize AJs 
(85, 91, 92). Cortical actin filaments aligned with the 
cell surface are associated with AJs through VE-
cadherin/catenin complexes (beta, alpha, and gamma-
catenin). Quiescent ECs in the endothelium contain 
continuous VE-cadherin/catenin complexes at the cell 
periphery (23, 83). Intense tyrosine phosphorylation 
of VE-cadherin has been reported in non-attached 
and migrating ECs with disrupted AJs (91, 93-96). In 
contrast, VE-cadherin/beta-catenin complex formation 
increases when the cytoplasmic tail of VE-cadherin is 
phosphorylated on a serine (83). 

Soluble cytokines such as TNF-alpha and GFs 
such as VEGF can enhance endothelial permeability by 

phosphorylating VE-cadherin. This results in a weaker 
EC barrier by inhibiting AJs and increasing leukocyte 
recruitment/extravasation through the endothelium as a 
result of an immune response (4, 27, 97-99). However, 
the maintenance of cortical actin filaments can inhibit 
these EC barrier (AJ) disruptions (100). In addition to 
soluble GFs and cytokines, mechanical cues such as 
WSS in bovine aortic ECs can affect the stability of 
AJs by increasing the tyrosine phosphorylation of VE-
cadherin (101, 102).

3. EC FUNCTIONS

3.1. Blood fluidity

ECs maintain the non-adhesive nature of the 
lumen in order to maintain blood fluidity in vessels. 
ECs have antithrombotic (preventing thrombosis or 
local blood clotting), anticoagulant (preventing the 
activation of the coagulation cascade), and fibrinolytic 
(hydrolyzing fibrin) activities (4, 103). For example, 
ECs synthesize thrombomodulin (TM), which prevents 
blood coagulation by binding to thrombin, which is 
responsible for turning soluble fibrinogen into an 
insoluble fibrin network (2). ECs also produce PGI2 
and NO, which limit platelet activation and aggregation 
and thus clotting (4, 103). They also synthesize 
plasminogen activating factor, which is responsible 
for the conversion of plasminogen into plasmin, the 
protein involved in fibrin cleavage (103). 

However, in damaged vessels, ECs can 
secrete other factors that can cause blood clotting 
(104). For example, vWF is synthesized by ECs 
following vascular injury to provide needed clot 
formation. This occurs as result of vWF-mediated 
platelet-collagen and platelet-platelet adhesion leading 
to platelet aggregation at the injury site (105-108). 

In addition to the roles played by ECs in 
the regulation of hemostasis, ECs also play a role in 
vascular tone. This occurs mainly via NO-mediated 
EC-induced contraction of VSMCs, which alters the 
luminal cross-section and, in turn, blood pressure (4, 
109, 110).

3.2. Inflammatory response

Inflammation (acute and chronic) weakens the 
EC barrier and causes an increase in the migration of 
circulating leukocytes through the endothelium as part 
of the immune response (4). Leukocyte tethering to the 
EC monolayer is essential for the proper functioning 
of the innate and adaptive immune responses (83). 
Local inflammatory cues in particular can initiate the 
recruitment of neutrophils and monocytes (which are 
leukocytes of the innate immune system) from the blood 
stream that can, in turn, initiate the adaptive immune 
response and prevent the progression of infections 

Figure 4. Tight and adherens junctions and phosphorylation of VE-
cadherin by VEGF signaling, adapted with permission from (79-82). 
[The figure was created using Servier Medical Art. https://smart.
servier.com.].
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(111). The inflammatory response relies on interactions 
between ECs and leukocytes that are promoted by the 
expression of E-selectin, ICAM-1, VCAM-1, and MCP-
1 by ECs (80). An increase in the expression of these 
proteins notably occurs in response to soluble TNF-
alpha via NF-kappaB activation (8, 24, 98, 99, 112). 

Transcellular (through a cell) and paracellular 
(between cells) transport mediate the passage of 
isolated circulatory leukocytes once they adhere to 
ECs (80, 83). Paracellular passage, also known as 
leukocyte diapedesis, occurs when leukocytes squeeze 
through EC-EC junctions whereas transcellular 
passage occurs via the cytoplasm of ECs (vesicular 
system) (83). EC-EC junctions normally reassemble 
quickly after paracellular transport to maintain the 
integrity of the EC barrier (83). Leukocytes use the 
transcellular pathway to pass through approximately 
40% of cultured human umbilical vein ECs (HUVEC: a 
common EC line for in vitro models) (111). PECAM-1 
(or CD31) is also intimately involved in leukocyte 
extravasation and is expressed on EC, monocyte, 
and neutrophil membranes (4). PECAM-1 is initially 
concentrated at EC-EC junctions to protect endothelial 
integrity. However, it can facilitate leukocyte 
extravasation through homophilic (i.e., CD31 on 
the leukocyte surface) or heterophilic (alphav beta3 
integrin on the neutrophil surface) binding (4, 113). 

3.3. Angiogenesis

Angiogenesis is a process that results in 
the production of new vessels and normally occurs 
following metabolic modifications in the body such 
as changes in oxygen supply (114, 115). In contrast, 
vasculogenesis is a process related to embryonic 
development by which new vessels are formed 
as result of the differentiation of mesodermal cells 
into endothelial progenitor cells (114). ECs play 
an essential role in forming new vessels during 
angiogenesis, which is initiated by the activation 
and migration of ECs (116). EC activation can occur 
as result of various events, including changes in the 
gradient of soluble cytokines secreted by monocytes/
neutrophils (e.g., TNF-alpha) and soluble GFs secreted 
by macrophages, parenchymal cells, cardiomyocytes, 
skeletal muscle fibers, and hepatocytes (e.g., VEGF) 
(114, 115, 117). When ECs are activated, the integrity 
of the endothelium weakens under the influence of NO 
produced by ECs, which paves the way for the other 
steps required for the formation of new vessels such 
as the dilation of pre-existing vessels, the removal of 
the BM by MMPs, and the migration of ECs to form 
tip/stalk cells (16, 115, 118-120). During angiogenic 
sprouting, ECs separate into two distinct phenotypes: 
(a) tip cells, which are migrating polarized cells that 
acquire long filopodia that, in turn, direct new sprouts, 
and (b) stalk cells, which are proliferating cells that 
follow tip cells to form the lumen of new sprouts (121). 

VEGF activates VEGF-Receptor 2 (VEGFR2) in ECs 
and triggers a selection process in which ECs form 
distinct tip or stalk cells. The Notch signaling pathway 
inhibits VEGFR2 activation, which is common in stalk 
cells (121). 

For the new tubes to mature and stabilize, 
ECs secrete PDGF, which causes the differentiation 
of adjacent mural cells into VSMCs in large vessels 
and pericytes in small vessels. The maturation process 
includes the deposition of proteins such as laminin that 
are required for EC quiescence (121, 122). 

Angiogenesis plays an important role in the 
development of atherosclerosis as new vessels in 
atherosclerotic lesions contribute to plaque growth. 
However, the fragility of new vasculature can undermine 
plaque stability, resulting in thromboembolism (123). 

3.4. EC dysfunction in atherosclerosis

Atherosclerosis is a chronic inflammatory 
disease that has a causal association with EC 
activation (5, 7, 8). Many risk factors are associated 
with the activation of ECs and atherosclerosis, 
including hyperlipidemia, smoking, chronic infections, 
diabetes, aging, and genetic predisposition (6, 24). 
EC activation weakens the EC-EC junction, which 
enhances the passage of circulating LDL into sub-
endothelial regions. This is followed by a higher 
expression of adhesion molecules (VCAM-1, ICAM-1, 
MCP-1, P-selectin), an increase in the extravasation of 
leukocytes such as monocytes (8, 23), and an increase 
in pattern-recognition receptors (scavenger and toll-
like receptors) on macrophages in sub-endothelial 
regions (8). When scavenger receptors engulf LDL 
oxidization products and accumulate cholesterol 
buildups, this leads up to the formation of foam cells, 
which are predominantly present in fatty streaks in the 
core of atherosclerotic plaque. LDL oxidization and 
heat shock protein 60 (HSP 60) increase the activation 
of toll-like receptors and the production of proteases 
by macrophages (8). MMPs and cysteine proteases 
enhance the risk of plaque rupture by disrupting Coll 
fibers (6, 8). The expression of MMPs also depends 
on endothelial-to-mesenchymal transition  (EndMT), 
which involves the TGF-beta family and hypoxic 
conditions (124-126). Evrard et al. used a model of 
atherosclerotic mice to show that EndMT-derived 
fibroblasts make up to 9% of intimal plaque (125). 
An accumulation of MMP-secreting EndMT-derived 
fibroblasts may be a possible cause of atheroma 
plaque destabilization (125).

MMPs such as MMP-9 can also favor the 
proliferation and migration of VSMCs by promoting 
anchorages between the cell surface and the matrix 
(77). VSMCs in the intima play two roles, depending 
on the stage of atherosclerosis. They induce plaque 
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formation by excessive proliferation in the early stage 
of atherosclerosis, and they contribute to plaque 
stabilization by reinforcing the fibrous cap in advanced 
lesions (127, 128). However, the engulfment of ox-
LDL by VSMCs can alter their ability to synthesize 
and organize ECM proteins such as fibrillar FN and 
subsequent FN-induced Coll I fibrillogenesis (62, 129). 
To summarize, as atherosclerosis progresses, both 
ECs and VSMCs undergo phenotypic changes.

The calcification of VSMCs is also a key 
aspect of the development of atherosclerosis as it 
contributes to arterial stiffening and increases the 
chance of luminal thrombosis (e.g., coronary artery), 
potentially causing a stroke (130-132). 

An increase in stiffness makes arteries less 
expandable when they need to dilate during systole 
to accommodate the surge of a large volume of 
blood from the left ventricle (stroke volume). This 
lack of compliance does not allow arteries to expand, 
resulting in higher resistance and thus higher blood 
pressure (2).

Atherosclerosis is classified into six stages 
or lesions depending on the gravity of the disease as 
defined by the American Heart Association (Figure 
5) (133). The stages are as follows: 1. initial or type 
1 lesions, which involve the transition of isolated 
macrophages into foam cells (fat-laden macrophages); 
2. type 2 lesions, which are typified by the formation of 
fatty streaks under the endothelium due to the deposition 

of intracellular lipid rather than extracellular lipid 
build-up; 3. type 3 or intermediate lesions, which 
occur when small extracellular lipid pools appear; 
4. type 4 or atheroma lesions, which have an 
extracellular lipid core; 5. type 5 or fibroatheroma 
lesions, which have lipid cores and fibrotic (excess 
fibrous connective tissue) layers; and, lastly, 6. 
type 6 or completed lesions, which cause surface 
defects, hematoma-hemorrhage, and thrombus 
(133). Type 1, 2, and 3 lesions are considered 
clinically silent, while type 4, 5, and 6 lesions can 
be clinically silent or can become clinically overt. 
Type 1 and 2 lesions mostly develop during the 
first decade of life while type 3 and 4 lesions 
progress during the third decade. Type 5 and 6 
lesions occur during the fourth decade of life (6).

Atherosclerosis may lead to many 
cardiovascular conditions. Plaque formation on 
the arterial wall causes ischemia by disrupting 
the blood flow and the supply of nutrients and 
oxygen (hypoxia) (2, 134, 135). Hypoxia can 
be followed by the decay of associated tissues, 
which can have clinically grave consequences if it 
impairs the activity of the heart or brain (2). Plaque 
rupture accompanied by bleeding in the arterial 
wall may also occur and result in clot formation 
and thrombus (2). Clots in coronary arteries can 
occlude the blood stream and lead to stroke or 
myocardial infarction while clots in cerebral arteries 
can cause cerebrovascular accidents (CVA) (2). 
Normally, thrombus formation is more dangerous 

Figure 5. Atherosclerosis stages, adapted with permission from (133). [The figure was created using Servier Medical Art. https://smart.servier.com.].
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than stenosis (narrowing) given the consequences of 
strokes (8).

The blockage of smaller arteries is another 
potential outcome of atherosclerosis. If plaques are 
damaged, debris and fragments can travel in the blood 
and obstruct smaller arteries along the way (6, 134, 
135). Blockages in arteries carrying fresh blood to the 
legs can cause leg pain (claudication), changes in skin 
color, and sores and may lead to gangrene (6, 136). 

Atherosclerosis lesions can also trigger 
aneurysms (abnormal swellings and localized dilations 
of arteries). Aneurysms can occur in the aorta, causing 
discomfort and pain, as well as in the brain (2,133-137).

4. BONE MORPHOGENETIC PROTEINS

The functions of the EC layer in blood vessels 
are affected by WSS patterns and values and, like 
all adherent cells, the behavior of ECs also depends 
on the composition and stiffness of the BM (23-25, 
138). Cytokines in the EC microenvironment are also 
crucial players (16). BMPs are potent regulators of EC 
function (12, 14, 139). BMPs, BMP-9 in particular, not 
only affect EC behavior directly but also regulate the 
impact of other players on endothelium physiology, 
including FN, TNF-alpha, and VEGF (17, 18, 20, 22). It 
is thus important to determine how BMP-9 influences 
EC behavior during atherosclerosis, both directly and 
indirectly.

To date, 20 distinct BMPs have been 
identified, 14 of which are produced in the human body 
by various cell types such as osteoblasts, MSCs, and 
ECs (12, 140, 141). BMP-1, a C proteinase precursor 
of collagen composed of 730 amino acid residues, is a 
metalloproteinase, whereas other BMPs belong to the 
TGF-beta superfamily, which includes TGF-beta and 
activins (142-144). 

4.1. BMP subgroups

Members of the BMP family can be divided 
into four main subgroups based on their amino acid 
sequence homology (145). The main BMP subgroups 
are: (1) the BMP-2/-4 subgroup (up to 83% amino acid 
sequence homology); (2) the BMP-5, -6, -7, -8, -8b 
subgroup; (3) the BMP-9 (growth/differentiation factor 
2, GDF-2) and BMP-10 subgroup; and the BMP-12, 
-13, -14 subgroup (67, 146, 147).

TGF-beta family members share some 
common structural features such as a cysteine knot 
(six residues), a wrist epitope (four-turn alpha helix 
in the dimerization region), and a knuckle epitope 
(four antiparallel beta sheets emanating from a 
cysteine knot) (148, 149). The majority of BMPs are 
synthetized as ~500-amino-acid pre-pro-peptides with 

a signal peptide, a pro-domain, and a mature domain 
containing seven cysteines (13). The signal peptide 
(N-terminal) enables BMP secretion, while the pro-
domain facilitates effective folding (150). The Arg-X-
X-Arg sequence in the C-terminal domain of BMPs 
allows them to form homodimers or heterodimers (e.g., 
BMP-2/5, BMP-2/6, and BMP-9/10) through disulfide 
bridges and to become active signaling molecules 
(151-154). Human mature BMP-9, which consists of 
110 amino acids, normally does not lose the N-terminal 
pro-domain (155). In contrast, mature BMP-2 (114 
amino acids) does not contain the pro-domain (142). 
Molecular dynamics and thermodynamic simulations 
have revealed that the structural differences between 
BMP-2 and BMP-9 are responsible for binding to 
distinct receptors (156). Interestingly, both BMP-9 
dimers, with or without the pro-domain, are active and 
can initiate BMP signaling pathways (13, 14). 

BMPs were first discovered by Urist in 
1965 when he observed de novo bone formation 
in rabbit models resulting from the differentiation 
of osteoprogenitor cells stimulated by decalcified 
components of the bone matrix (157). However, 
several studies suggest that some BMP subgroups 
are more efficient at stimulating de novo bone 
formation than others (158, 159). For example, Kang 
et al. injected murine myoblast C2C12 cells infected 
with recombinant adenoviral vectors encoding BMP 
(AdBMP) in mouse quadriceps and found that BMP-6 
and BMP-9 promote more bone formation than BMP-2 
and BMP-7 (159). However, the role of BMPs is not 
limited to bone formation as they also participate in 
other processes such as embryogenesis and vascular 
homeostasis (139, 160). In terms of vasculogenesis 
during embryonic development, it has been reported 
that human BMP-4 contributes to the growth of the 
posterior intermediate cell mass (ICM, blood island, 
including endothelial precursor cells) in zebrafish 
embryos while BMP-9 can affect embryonic vascular 
development by reducing the expression of the gene 
encoding Tmem100 in hPAECs (124, 161). Tmem100 
is a vital player in mice embryo vascular development 
since Tmem100-null mice and endothelial-specific 
Tmem100 knockout mouse embryos do not survive 
due to the lack of EC differentiation (162). 

 4.2. BMP signaling pathways

BMPs act on cells by binding to type I and 
type II Ser/Thr kinase receptors, which leads to the 
activation of both the canonical Smad and the non-
canonical TGF-beta-activated tyrosine kinase, TAK1, 
and MAPK signaling pathways. 

4.2.1. Canonical Smad pathway

The canonical BMP pathway (Figure 6) 
is referred to as Smad because of the similarity of 
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the amino acid sequences of these proteins to the 
Caenorhabditis elegans SMA protein (small worm) 
and the MAD (Mothers Against Decapentaplegic) 
protein, which is a member of the basic helix-
loop-helix leucine zipper family that influences the 
transcriptional activities of BMPs (163-165). BMPs 
trigger the association of type I and type II Ser/Thr 
receptors into hetero-tetrameric complexes (166). 
Type I Ser/Thr kinase receptors interact with the 
wrist epitopes of BMPs, whereas Ser/Thr kinase type 
II receptors interact with the knuckle epitopes (167). 
The binding of BMPs to type I and II receptors can 
also occur separately, i.e., where type I and type II 
receptors are not associated. However, BMPs have 
a higher affinity for hetero-tetrameric complexes 
(168). 

Upon BMP binding, the Gly-Ser repeats 
of type I receptors are phosphorylated by Ser/Thr 
kinase type II receptors and, in turn, phosphorylate 
the intracellular receptor-regulated Smad 1/5/8 
(R-Smad) (169). Phosphorylated R-Smad can 
then interact with the common-partner Smad (Co-
Smad, Smad-4) molecule to create a hetero-dimeric 
complex that translocates into the nucleus (170). 
The transcriptional activity of Smad complexes can 
regulate the expression of numerous genes, including 
those encoding molecules involved in EC functions 
such as eNOS, MCP-1, VCAM-1, ICAM-1, E-selectin 
(CD62E), NF-kappaB, VEGF, endothelin-1, Id-1, Id-2, 
and BMPER (19-22, 124, 171-178).

4.2.1.1. Ser/Thr kinase receptors of BMPs and 
type III co-receptors

Type I and II Ser/Thr kinase receptors are 
composed of a short extracellular domain with a 
cysteine residue, a single transmembrane domain, 
and a Ser/Thr kinase in the intracellular domain. To 
date, seven type I (activin receptor-like kinases 1 to 

7, ALK-1-7) and five type II (type 2 BMP receptor, 
BMPRII, type 2 activin receptor, ActRIIA, type IIB 
activin receptor, ActRIIB, TGF-betaRII, and anti-
Mullerian hormone receptor type II, AMHRII) receptors 
have been identified (179, 180). ALK-1 and ALK-5 
(TGF-beta receptor, TbetaRI) are both expressed in 
ECs, including HAEC, HUVECs and HMEC-1 cells (20, 
180-184). However, ALK-1 is expressed preferentially 
in ECs while ALK-5 is ubiquitously expressed (182). 
Both BMP-9 and BMP-10 bind to ALK-1 in HMVEC-d, 
BOEC, and HAEC cells (22, 185). Johnson et al. ana-
lyzed the genetic profiles of five families and found 
that patients suffering from a genetic vascular dyspla-
sia called Osler-Rendu-Weber syndrome or hereditary 
hemorrhagic telangiectasia present several mutations 
in the ALK-1 gene (186). 

Type III co-receptors are also influential in the 
BMP pathway (187). This subgroup of BMP receptors 
is composed of GPI-anchored RGM proteins such 
as the Dragon protein, which is expressed by COS-
1 fibroblast cells (188-190) and the transmembrane 
protein ENG, which is expressed in ECs (190-193). 
BMP-9 strongly binds to ENG in ECs such as HMECs. 
Moreover, the ENG/integrin alpha5 beta1 complex 
can increase the surface density of ALK-1 by favoring 
endocytic recycling in MEECs (20). 

4.2.1.2. Smad

Smad proteins have two conserved MAD-
homology domains, one in the N-terminal (MH1, 
except for the N-terminals of Smad6 and 7) and one 
in the C-terminal (MH2). MH1 and MH2 are linked 
together by a linker domain (194, 195). The Type I 
Ser/Thr kinase receptor phosphorylates intracellular 
R-Smad on two Ser residues (Ser-Val-Ser motif, 
Ser-Met-Ser for Smad2) in the C terminus (169, 
170). This pSer-X-pSer motif directs the association 
of R-Smad and the basic pocket in the Smad4 MH2 
domain (170). The beta-hairpins in the MH1 domains 
of R-Smad and Smad4 are involved in binding 
to the DNA molecule (170). The MH2 domain of 
R-Smad also interacts with co-factors such as FoxH, 
FoxO, Mixer, OAZ, and Smad4, which can attach 
to DNA molecules and can thus also mediate the 
transcriptional activity of Smads (170). Both R-Smad 
and I-Smad also have a PY motif (polyproline-
tyrosine rich motif) in the linker domain that paves 
the way for ubiquitination by Smurf ubiquitin ligases 
after its recognition by the Smurf WW domain. 
Ubiquinated Smads are then broken down by 
proteasome complexes (170, 196). 

4.2.1.3. Regulation of Smad pathway activation

Many events can disrupt BMP signaling. 
BMPRI and BMPRII can both be internalized by 
endocytosis and become unavailable for BMP binding. 

Figure 6. Canonical and non-canonical BMP signaling and regulation, 
adapted with permission from (53). [The figure was created using 
Servier Medical Art. https://smart.servier.com.].



BMP-9 effect on endothelial cells and atherosclerosis

1003 © 1996-2019

Endocytosis can also increase BMPRI availability by 
recycling it back to the cell membrane (12, 167). Some 
pseudo-receptors such as BAMBI (BMP and activin 
membrane-bound inhibitor) are receptors without the 
intercellular Ser/Thr kinase phosphorylation domain 
required for Smad signaling (197, 198).

BMP signaling can be inhibited by extracellular 
and intracellular factors. Extracellular BMP antagonists 
such as noggin, chordin, and Grem1 can inhibit the 
BMP signaling pathway by binding to BMP dimers and 
preventing their recognition by BMP receptors. Noggin 
can inhibit BMP-2, BMP-4, and BMP-7 but has no 
effect on the ability of BMP-9 to act on cells directing 
by example the differentiation of mesenchymal stem 
cells into osteoblasts (180, 199, 200). In the same 
way, BMP-3 can inhibit the bone formation induced by 
BMP-2, BMP-6, and BMP-7 in mice but has no effect 
on BMP-9 (159). 

BMPs can also downregulate their own 
canonical pathways by triggering the expression of 
intracellular Smad6/7. The binding of I-Smad to the 
intracellular domains of Ser/Thr kinase type I receptors 
prevents the phosphorylation of R-Smad, which blocks 
BMP signal transduction (201). Various intracellular 
phosphatases such as PP1, dullard protein, pyruvate 
dehydrogenase phosphatase (PDP), phosphatase 
methyltransferase 1 (PPM1), and small C-terminal 
domain phosphatase 1/2 (SCP 1/2) can also 
dephosphorylate and thus inactivate R-Smad (202). 
For example, it has been shown that PP1 inhibits ALK-
1/TGF-beta-induced Smad1/5 activation after 6 h in 
MEECs (203).

4.2.2. MAPK pathways

MAPK pathways are engaged in many 
aspects of cell functions, including survival, 
proliferation, and differentiation (204). These 
pathways involve three main cascades consisting 
of p38 (4 isoforms alpha, beta, gamma, and delta), 
extracellular signal-regulated kinase (ERK, 8 
isoforms ERK1 to ERK8), and c-Jun NH2-terminal 
kinase (JNK, 3 isoforms, JNK1-JNK3) (Figure 6) 
(205). The activation of the MAPK pathway following 
BMP stimulation is related to the type I Ser/Thr kinase 
receptor interacting with the X chromosome-linked 
inhibitor of apoptosis (XIAP), TGF-beta-activated 
kinase 1/MAP3K7 binding protein 1 (TAB1), and 
TGF-beta-activated kinase 1 (TAK1) (206). 

MAPKs such as ERK1/2, CDKs (cyclin-
dependent kinase), and other kinases can 
phosphorylate the linker region of R-Smad, inhibiting 
their translocation to the nucleus (207, 208). For 
example, ERK1/2 activation by BMP-9 in MSCs can 
in turn inhibit the phosphorylation of Smad1/5/8 on the 
C-terminal MH2 domain (170, 206).

4.3. Other signaling pathways involved in BMP 
signal transduction

4.3.1. Wnt pathways

Wingless-type (Wnt) pathways are involved 
in the control of EC differentiation from hematopoietic 
precursors during embryonic development and, 
especially, during the vascularization of the central 
nervous system (209). Wnt pathways also contribute 
to cell migration and polarity and cellular responses 
to shear stress (210). They are classified into at least 
three major signal transduction cascades: one is beta-
catenin-dependent (canonical) while two, the Wnt/
calcium and Wnt/planar cell polarity (PCP) pathways, 
are beta-catenin-independent (non-canonical) (211). 

The non-canonical Wnt/calcium pathway can 
be activated by the binding of Wnt ligands (a family 
of 19 secreted glycoproteins to date) such as Wnt-5a 
or Wnt-4 to Frizzled (Fz) receptors, which activates 
the disheveled protein, leading to the stimulation of 
phospholipase C and an increase in the concentration 
of intracellular calcium ions. These calcium ions in 
turn activate calmodulin-dependent protein kinase II 
and protein kinase C. The activation of the Wnt/PCP 
pathway depends on the activation of small G proteins 
such as Rac and Rho GTPases by Wnt-Frizzled 
receptor recognition (212). 

The canonical Wnt pathway is activated in 
ECs by the binding of some Wnt ligands such as Wnt1, 
Wnt-3/3a, and Wnt-7a/7b to a complex composed of Fz 
receptors and LDL receptor-related protein 5 (LRP5) or 
LRP6 co-receptor (212). This Wnt-receptor interaction 
leads to the inactivation of glycogen synthase 
kinase-3beta (GSK3beta) by favoring, for example, 
its entrapment in multivesicular bodies (213, 214). 
Canonical Wnt activation induces the accumulation 
of cytoplasmic beta-catenin that can then translocate 
into the nucleus to regulate the expression of targeting 
genes by displacing the transcription repressor 
Groucho and interacting with DNA-bound T cell factor/
lymphoid enhancer-binding factor (TCF/LEF). When 
the Wnt ligand is missing, GSK3beta remains active 
and forms a complex with Axin, APC, and CK1alpha. 
CK1alpha and GSK3beta can phosphorylate beta-
catenin at its N-terminus, inducing its ubiquitination by 
E3 ubiquitin ligase beta TrCP and its degradation in 
the proteasome (215, 216). 

GSK3beta can strongly influence the BMP 
canonical pathway by phosphorylating the linker 
domain of Smad1/5 (Figure 7), leading to Smad1/5 
ubiquitination and subsequent proteasomal degradation 
(207, 213, 217). The canonical Wnt pathway can also 
control angiogenesis during embryonic development by 
stopping the progression of the cell cycle via crosstalk 
with the Notch pathway (218).
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4.3.2. Notch pathway

The Notch pathway plays a key role in 
angiogenesis by favoring stalk ECs involved in the 
sprouting step (218). It was also recently found 
to be involved in the endothelial-to-mesenchymal 
transition, a phenomenon observed during embryonic 
cardiogenesis and atherosclerosis progression (126, 
219, 220). Signaling via the Notch pathway is initiated 
in cells by the activation of transmembrane Notch 
receptors (Notch 1-4) by specific membrane-bound 
Delta-like (Dll-1, Dll-3, Dll-4) and Jagged (Jagged-1, 
Jagged-2) ligands. Dll and Jagged ligands can also 
initiate signaling via the Notch pathway in neighboring 
cells by transactivating their transmembrane 
receptors, leading to the release of the NICD due to 
receptor cleavage by gamma-secretase complexes 
(221). NICD is then translocated to the nucleus 
where it promotes the expression of targeting genes 
of the hairy enhancer of split (Hes)/Hairy-related 
(Hey) family or the gene encoding decoy receptor 
VEGFR1 in ECs. In contrast, the Notch pathway 
can also induce a downregulation of VEGFR2 and 
VEGFR3 gene expression in stalk ECs, blocking 
VEGF signaling (222-225). 

Interestingly, the number of Dll ligands/
Notch receptors expressed by ECs changes during 
inflammation. For example, the expression of Dll4 
by ECs is involved in communication between ECs 
and macrophages (226). Dll4 and Notch1 act in 
synergy with BMP-9 to control vascular homeostasis, 
especially EC quiescence (Figure 6) (227). Laminar 
shear stress can also influence the expression of Dll4 
and its Notch transmembrane receptor, increasing 
the nuclear translocation of NICD in ECs (210). In 
addition, a non-canonical Notch pathway was recently 
discovered in ECs that uses the transmembrane 
domain of Notch to regulate AJ and EC permeability 
(228).

Figure 7. Crosstalk between BMP-9 and the Notch, Wnt, and VE-
cadherin signaling pathways, adapted with permission from (53). [The 
figure was created using Servier Medical Art. https://smart.servier.
com.].

5. ROLE OF BONE MORPHOGENETIC PRO-
TEINS IN VASCULAR HOMEOSTASIS 

BMPs such BMP-2, BMP-4, BMP-9, and 
BMP-10 can affect the survival, proliferation, and 
function of ECs (12, 19, 229-231). In the present 
review, we focus on the effect of BMP-9 on EC function 
since there is ample evidence of its effects on vascular 
homeostasis (Table 1) (18, 20, 232-236).

5.1. Effect of BMP-9 on EC proliferation

BMP-9 is mainly synthetized in the liver by 
hepatocytes and intrahepatic biliary epithelial cells, 
approximately 60% of which circulate in an active form 
in blood plasma (14). Its EC50 for Smad1/5/8 activation, 
as measured by the expression of ID1 promoter-
derived (BRE), is as low as 50 pg/mL (2 pM). Healthy 
flow shear stress (12 dynes/cm2) can reduce the 
EC50 to 3.5 pg/mL (25, 185). In addition, BMP-9 can 
induce the phosphorylation of both Smad1 and Smad2 
in HPAEC, HAEC, and HMEC-1 cells (175). Despite 
the fact that BMP-9 and BMP-10 share sequence 
homology, BMP-10 circulates in blood plasma in an 
inactivated form (206, 237). 

In addition, many studies have suggested 
that BMP-9 does not act in the same way on cells as 
BMPs from other subgroups (13, 14, 156, 238). For 
example, BMP-9, but not BMP-2 and BMP-4, is able to 
significantly induce ET-1 in HPAECs (176, 177). ET-1 
is a potent peptide involved in the process of blood 
vessel narrowing and vascular remodeling (177, 239). 

Yoshimatsu et al. reported that 65% of the 
decrease in HDLEC proliferation after 48 h can be 
attributed to a BMP-9 treatment (1 ng/mL), suggesting 
that BMP-9 has an inhibitory effect on the formation 
of new lymphatic vessels (240). On the other hand, 
blocking BMP-9 (10 ng/mL) with the recombinant 
human ALK-1 extracellular domain/Fc (ALK-1ecd) 
increases the proliferation of HMVEC-d cells (185). 
The influence of BMP-9 on EC proliferation appears 
to depend on the type II receptors involved. BMP-
9 inhibits DNA synthesis in HPAECs by binding to 
ALK1 and BMPRII receptors, while blocking the type 
II receptor ActR-II by siRNA transfection does not alter 
the ability of BMP-9 to inhibit growth (175). 

5.2. Effect of BMP-9 on vessel formation and 
sprouting 

The capacity of ECs to form new vessels 
following a treatment with VEGF can be altered by 
BMP-9 (17, 18, 184). For example, 7-day parallel 
stimulations with BMP-9 (100 ng/mL) and VEGF (50 
ng/mL) in ex vivo mouse fetus models show that BMP-
9 inhibits vascularization (17). 
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Table 1. BMP-9/EC interactions: cell proliferation, angiogenesis, and inflammation

EC Function Treatment System 
Type

Cell / Specie Method 
Highlights

Effect of Treatment Other Observations References

Proliferation BMP-9
(10 ng/mL, 48 h)

in vitro HMVEC-d 5% FBS BMP-9 ┤Proliferation 
compared to control

(185)

BMP-9
(1 ng/ml, 
48 h)
+ VEGF (30 ng/
mL, 48 h)

in vitro MESEC Serum-free BMP-9 + VEGF 
→ Proliferation 
compared to VEGF 
alone

BMP-9 + VEGF 
→ Pro-angiogenic 
↑mRNA coding 
VEGFR2, Tie2, 
VEGF, compared 
to VEGF alone in 
mouse embryonic 
stem cells

(19)

BMP-9
(1 ng/ml, 
48 h)
+ VEGF (30 ng/
mL, 48 h)
+ ALK-1-Fc (30 
ng/mL, 48 h)

in vitro MESEC Serum-free BMP-9 + ALK-1-Fc + 
VEGF ┤ Proliferation 
compared to BMP-9 
+ VEGF

(19)

BMP-9
(10 ng/mL, 72 h)
+ bFGF 
(30 ng/mL, 72 h)

in vitro BAEC Serum-free BMP-9 + bFGF 
┤ Proliferation 
compared to bFGF 
alone

(17)

Migration BMP-9
(10 ng/mL, 24 h) 
+/- bFGF 
(30 ng/mL, 24 h)

in vitro BAEC BMP-9 ┤ Migration 
compared to bFGF

(17)

BMP-9
(10 ng/mL, 48 h)

in vitro HMVEC-d 0.5% FBS BMP-9 ┤Migration 
compared to control

(185)

Migration BMP-9-
transduced 
cells vs. pWzl 
retrovirus 
treaded cells

in vitro BMP-9-
SVEC, 
Wzl-SVEC

0.5% BSA, Coll 
coating

BMP-9-SVEC → 
Migration, compared 
to pWzl-SVEC with 
little BMP-9 mRNA 
expression

BMP-9 (5 ng/
mL, 24 h) ┤ 
activation of gene 
encoding E-selectin 
in HMVEC-d, 
compared to control

(233)

BMP-9
(2 ng/mL, 168 
h), +/- control Fc 
protein (20 µg/
ml, 168 h)

ex vivo Mice & MS1 
EC

Serum-free, 
Matrigel

BMP-9 ┤Migration, 
compared to control 
Fc protein

(246)

Sprouting BMP-9
(10 ng/mL, 144 
h) + 
VEGF 
(25 ng/mL, 
144 h)

in vitro HUVEC 2% FBS, 3D fibrin 
gel

BMP-9 + VEGF ┤ 
Sprouting compared 
to VEGF alone

(184)

anti-BMP-9 
(RAP-041)

in vitro HUVEC Complete 
medium+ 0.1% 
methylcellulose, 
Coll I 

anti-BMP-9 had no 
effect on sprouting, 
compared to control

(246)

anti-BMP-9 
(RAP-041)
+ VEGF-A (50 
ng/mL)

in vitro HUVEC Complete 
medium + 0.1% 
methylcellulose, 
Coll I 

anti-BMP-9 + 
VEGF-A ┤Sprouting, 
compared to VEGF-A 
alone

(246)

anti-BMP-9 (18h) 
+ VEGF (50 ng/
ml, 18h)

in vitro HUVEC EGM2 + 2% 
FCS + 0.1% 
methylcellulose, 
Coll I

anti-BMP-9 + 
VEGF ┤Sprouting, 
compared to VEGF 
alone

anti-hALK-1 (40 µg/
mL, 18 h) + VEGF 
┤HUVEC sprout 
lengths, compared to 
VEGF alone

(247)

BMP-9
(0.5 mg/mL, 
16 h)

in vivo Postnatal 
mice 

BMP-9 ┤ Hyper-
sprouting compared 
to control

(184)
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Cord 
formation

anti-BMP-9 
(RAP-041, 
10 µg/mL, 
16 h)

in vitro HUVEC 4% FBS, Matrigel 
plug

anti-BMP-9 ┤Cord 
formation, compared 
to control

(246)

Angiogenesis BMP-9
(100 ng/mL, 
168 h) 

ex vivo Metatarsals 
of mouse 
foetuses

BMP-9 
┤Angiogenesis 
compared to control

(17)

BMP-9
(100 ng/mL, 168 
h) + VEGF
	 (50 
ng/mL, 168 h)

ex vivo Metatarsals 
of mouse 
foetuses

BMP-9 + VEGF 
┤Angiogenesis  
compared to VEGF 
alone

(17)

BMP-9
(4 ng/mL, 
48 h)

ex vivo Mouse 
embryos

BMP-9 → 
Angiogenesis 
compared to control

(19)

Endo-MO 
(blocking ENG 
translation, 
5 ng/nL, 
48 h)

in vivo Zebrafish 
embryos

Endo-MO 
┤Angiogenesis 
compared to control

(20)

BMP-9
(55 ng, 24 h)

in vivo Chick 
embryos

BMP-9 
┤Angiogenesis 
compared to control

(232)

BMP-9
(20 ng, 168 h)
 +/- FGF-2 (200 
ng, 168 h)

in vivo Balb-C mice BMP-9 
┤Angiogenesis 
compared to FGF-2

(232)

BMP-9
(10 ng/mL, 
168 h)
+ FGF-2 
(1 µg/mL, 168 h)

in vivo BALB/c mice Matrigel BMP-9 + FGF-2 
→ Angiogenesis 
compared to FGF-2 
alone

(19)

BMP-9
(BMP-9 
encoding 
lentivirus, 
35 days)

in vivo BALB/c nude 
mice

Subcutaneously 
inoculation of 
BxPC3 human 
pancreatic 
adenocarcinoma 
cells, infected 
with lentiviruses 
encoding BMP-9 
or GFP (control)

BMP-9 → 
Angiogenesis, 
compared to control

(19)

Angiogenesis BMP-9 
(adenoviral over-
expression)

in vivo Postnatal 
mice 
	

BMP-9 
adenovirus 
injection vs. 
control siRNA 
adenovirus 
injection

BMP-9 
┤Angiogenesis 
compared to control

(184)

BMP-9
(2 ng/mL, 168 h) 
+/- TGF-beta (2 
ng/mL, 
48 h)

in vivo Mice Subcutaneously 
injected Matrigel 
plugs

BMP-9 + TGF-
beta had no effect 
on angiogenesis 
compared to control

(246)

BMP-9
(2 ng/mL, 168 h) 
+ TGF-beta (2 
ng/mL, 
48 h) +/- 
VEGF-A (300 ng/
mL, 168 h)
+/- bFGF-2 (700 
ng/mL, 168 h)
+/- control Fc 
protein (20 µg/
ml, 168 h)

in vivo Mice Subcutaneously 
injected Matrigel 
plugs

BMP-9 + TGF-beta 
┤Angiogenesis 
compared to BMP-9 + 
TGF-beta + VEGF-A 
+ bFGF-2 + control Fc

(246)
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Inflammation BMP-9
(5 ng/mL, 
16 h) + TNF-
alpha (0.05 ng/
mL, 4 h)

in vitro HAEC
BOEC

BMP-9 + TNF-alpha 
→ Inflammation 
compared to TNF-
alpha alone and 
control

(22)

BMP-9
(5 ng/mL, 
4 h)

in vitro PAEC
HMEC

Serum-free BMP-9 ┤ 
Inflammation 
compared to control

BMP-9 ┤IL-6 
and MCP-1 gene 
expression 

(124)

BMP-9
(5 ng/mL, 
16 h) + LPS (100 
ng/mL, 4 h)

in vitro BOEC
HPAEC

BMP-9 + LPS 
→ Inflammation 
compared to LPS 
alone and control 

(243)

BMP-9
(50 µg/kg, 
240 h)

in vivo Rat pups Hyperoxia BMP-9 ┤ 
Inflammation 
compared to control

(124)

Abbreviations: activin receptor (ActR), bovine aortic endothelial cell (BAEC), basic fibroblast growth factor (bFGF), bone morphogenetic protein (BMP), 
bone morphogenetic protein receptor (BMPR), blood outgrowth endothelial cell (BOEC), bone morphogenetic protein‐responsive element Luciferase 
(BRE-Luc), bovine serum albumin (BSA), collagen (Coll), endothelial cell (EC), endothelial cell growth medium (EGM2), endoglin (ENG), endothelial 
selectin (E-selectin), fetal bovine serum (FBS), fragment crystallizable (Fc), fetal calf serum (FCS), green fluorescent protein (GFP), human aortic 
endothelial cell (HAEC), human activin receptor-like kinase (hALK), dermal human microvascular endothelial cells (HMEC-d, HMVEC-d), human pulmonary 
artery endothelial cell (hPAEC), human umbilical vein endothelial cell (HUVEC), DNA-binding protein inhibitor (ID), interleukin (IL), lipopolysaccharide 
(LPS), intercellular monocyte chemoattractant protein-1 (MCP-1/CCL2), mouse embryonic-stem-cell-derived endothelial cell (MESEC), messenger RNA 
(mRNA), mouse microvascular endothelial cell (SVEC), MILE SVEN 1 (MS1), phosphorylated Smad (pSmad), stromal-derived factor 1 (SDF1, CXCL12), 
small interfering (siRNA), tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), 
Signs: [→ increase/activation] [↑ increase/more] [┤block/decrease]

The anti-angiogenesis effect of BMP-9 on ECs 
has been reported in several studies (17, 20, 232, 241). 
Larrivee et al. reported a 9-fold decrease in the number 
of tip cells in mice retina 16 h after a BMP-9 (10 ng/
mL) treatment by intraocular injection (184). They also 
showed that VEGFR1 mRNA levels were 4-fold higher 
in HUVECs treated for 24 h with BMP-9 (10 ng/mL) and 
that there was a 0.5-fold decrease in VEGF-induced 
HUVEC tube formation, indicating that BMP-9 has an 
inhibitory effect on VEGF-mediated sprouting (184).

Tian et al. reported that the effect of BMP-
9 on sprouting may also involve FN via an integrin 
alpha5 beta1/ENG/ALK1 complex (20). They used 
murine embryonic endothelial cells (MEEC+/+ ENG 
wild-type and -/- ENG knockout cells) cultured on FN 
(40 µg/mL) to show that Smad1/5 activation mediated 
by BMP-9 (2 ng/mL) is ENG-dependent (20). The 

results of this study suggest that the blockade of BMP-
9/ENG signaling contributes to abnormal disrupted 
intersegmental vessel (ISV) sprouting. In the same way, 
when type I receptor ALK-1 expression is disrupted by 
small interfering RNA, the Smad1/5-mediated BMP-9 
anti-angiogenic effect is blocked (175).

In contrast, Tachida et al. ‎reported that BMP-9 
(10 ng/mL) mediates the upregulation of pro-angioge-
nesis signaling (i.e., a 5-fold increase in HEY1 mRNA 
levels) in co-cultures of HASMCs and HAECs (242). 
However, the authors did not perform any experiments to 
determine whether there is an increase in angiogenesis. 

5.3. Effect of BMP-9 on inflammation 

BMP-9 influences the role of ECs in 
inflammation (Figure 8) (22, 124). Chen et al. reported 
that there is a downregulation of MCP-1 mRNA, 
which is involved in ECs monocyte recruitment, in 
HPAECs (~5 fold) and HMECs (~2 fold) in in vitro 
cultures following a BMP-9 treatment (5 ng/mL, 4 
h) (124). Unlike the anti-inflammatory role of BMP-
9 mentioned above, Mitrofan et al. reported that a 
pre-treatment with BMP-9 (5 ng/mL) 16 h prior to 
adding TNF-alpha (0.05 ng/mL for 4 h) upregulates 
the mRNA and protein levels of adhesion molecules 
(E-selectin, ICAM-1, VCAM-1) (22). The upregulation 
of the adhesion proteins was followed by an increase 
in monocyte recruitment (~1.6 fold) in HAECs. An 
increase in monocyte recruitment (~1.4 fold) has also 
been reported in BOECs (22). The discrepancy in the 
effect of BMP-9 on monocyte recruitment reported by 
Mitrofan et al. and Chen et al. may be related to the 
TNF-alpha used in the later study (22, 124). Appleby 
et al. also observed an increase (~2-fold) in neutrophil 

Figure 8. Effect of BMP-9 on risk factor or inflammation involved in 
atherosclerosis, adapted with permission from (244). [The figure was 
created using Servier Medical Art. https://smart.servier.com.].
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recruitment in BOECs and HPAECs following a pre-
treatment with BMP-9 (5 ng/mL, 16 h), although only 
when an endotoxin (LPS, 100 ng/mL, 4 h) was added 
to the cell culture (243).

5.4. Effect of BMP-9 on factors involved in athero-
sclerosis

The effect of many players involved in the 
development of atherosclerosis, ranging from risk 
factors to soluble cytokines, may also be influenced 
by BMP-9 (Figure 8). Akla et al. recently reported that 
an increase in D-glucose concentration (from 5 to 11 
mM) can block the Smad 1/5 activation induced by 
BMP-9 (1 ng/mL) bound to type 1 receptor (ALK-1) 
(244). D-glucose at 11 mM also significantly reduced 
the expression of ALK-1 at the cell membrane. 
Interestingly, hyperglycemia had no effect on BMP-9/
ALK-1 signaling for BMP-9 concentration >1 ng/mL. 
Using C57BL/6J mice with or without induced diabetes 
mellitus (blood glucose >17 mM), Akla et al. also found 
that the concentration of BMP-9 in blood was similar 
in control and diabetic mice. In contrast, a decrease 
in circulating BMP-9 levels has been observed in the 
plasma of newly diagnosed Type 2 diabetes mellitus 
patients, and may be linked to insulin resistance (245). 
BMP-9 can also prevent hyperglycemia-induced 
vascular permeability as shown by Akla et al both 
in vitro (HUVECs with D-glucose at 25 mM) and in 
vivo (mouse model with induced diabetes mellitus) 
(244). Thus, BMP-9 signaling plays a crucial role in 
the regulation of glucose homeostasis and diabetes 
diseases and vice-versa, diabetes being a major risk 
factor for the development of atherosclerosis. 

Furthermore, BMP-9 signaling appears to 
be associated with other major atherosclerosis risk 
factors and with atherosclerotic complications. For 
instance, in advanced lesions, fibrous cap formation 
in atherosclerotic plaques requires the formation of 
new vessels while BMP-9 can be an anti-angiogenic 
factor (123, 184). The inhibition of cap formation 
makes plaque less stable in complicated lesions (127, 
128). Furthermore, the matrix calcification induced 
by VSMCs (also called calcification of VSMCs), a 
phenomenon involved in advanced atherosclerotic 
lesions, is intensified by in vitro BMP-9 treatments, 
further indicating that BMP-9 signaling is involved in 
the progression of atherosclerosis (26, 132).

6. CONCLUSION 

Many studies have shown that BMP-9 
markedly affects EC behavior, either directly or by 
regulating the effects of other factors such as VEGF. 
BMP-9 may thus have the capacity to influence the 
progression of atherosclerosis. During the genesis 
of atherosclerosis, BMP-9 combined with TNF-alpha 
may increase the expression of adhesion molecules 

that facilitate leukocyte extravasation and, in turn, 
foam cell formation. BMP-9 may also regulate plaque 
development and growth by blocking angiogenesis. 
However, this anti-angiogenetic property can enhance 
the risk of plaque rupture in more advanced plaques, 
where BMP-9 may also promote VSMC calcification. 
These observations suggest that BMP-9 may play a 
complex role in the progression of atherosclerosis in 
the early and advanced stages. The involvement of 
BMP-9 in atherosclerosis needs to be investigated 
further using systems that study the effect of a 
combination of atherosclerosis-related factors. For 
instance, BMP-9 treatments in a dynamic system 
(WSS) of an EC/VSMC co-culture with a mixed FN/
Coll coating could pave the way for designing more 
effective in vitro models. 
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