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1. ABSTRACT 

Cancer associated fibroblasts (CAFs) are 

the most abundant stromal cell-type in solid tumor-

microenvironment (TME) and have emerged as key 

player in tumor progression. CAFs establish 

communication with cancer cells through paracrine 

mechanisms or via direct cell adhesion as well as 

influence the cancer cell behaviour indirectly by 

remodelling the extracellular matrix. Although 

numerous studies have strongly suggested the tumor 

promoting role of CAFs, few recent reports have 

revealed the heterogeneity in CAFs. Here, we have 

summarized the recent findings on the mechanisms 

related to the heterogeneous behaviour of CAFs 

serving as positive or negative regulator of tumor 

progression. Further, reports related to the targeted 

therapy against CAF-mediated mechanisms are also 

summarized briefly. 

2. INTRODUCTION 

A growing body of evidence suggests that 

tumor development not only involves the malignant 

cancer cells but also the cells and the molecules of 

surrounding stroma, termed as tumor-

microenvironment (TME) (1, 2). TME plays important 

roles in facilitating malignant cancer cells to acquire 

hallmarks properties through bidirectional 

communication between cancer cells and the 

components of TME. TME is composed of cellular 

component and extracellular matrix (3, 4). The 

extracellular matrix of TME provides scaffold for its 

structure. The main components of this are 

collagens, fibronectins, proteoglycans, elastins, and 

laminin. Apart from these, other molecules are also 

trapped inside the matrix. These include matrix 

metalloproteinases (MMPs) secreted by transformed 

cancer and cells of the TME (5, 6).The cellular 

components of tumor microenvironment include the 

endothelial cells, infiltrating immune cells, pericytes 

and fibroblasts. In normal tissues, fibroblasts are 

elongated, spindle shaped cells which are present in 

the extracellular matrix in a suspended form (3). They 

provide architectural scaffold to the tissue by 

secreting components of the extracellular matrix. 

They help in regulating interstitial pressure and fluid 

volume and actively involved in the tissue 

remodelling and wound repair. Within the TME, 

cancer associated fibroblasts (CAFs) also known as 

the stromal fibroblasts or tumor associated 

fibroblasts are the most abundant stromal cell types. 

CAFs are activated mesenchymal cells present in 

tumor stroma (7). They are present in almost all the 

solid tumors in varying proportions and constitute up 

to 70% volume of the breast, prostate and pancreatic 
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tumors whereas they are present in less proportion in 

brain, kidney and ovarian cancers (8). These cells 

interact with tumor cells in a reciprocal manner and 

are involved in tumor development at each stage. 

CAFs evolve alongside tumor as it progresses and 

help the tumor cells to evolve (1, 5). Here, we have 

reviewed the recent advancement in understanding 

the mechanisms specifically with respect to diverse 

phenotypes and function of CAFs. 

3. CAFs ARE DERIVED FROM DISTINCT 

ORIGIN AND EXHIBIT HETEROGENEITY IN 

IDENTIFICATION MARKERS 

The origin of CAFs can be highly 

heterogeneous. The main source of CAFs in the TME 

is the resident normal fibroblasts which get converted 

to CAFs. Tumor cells secrete growth factors such as 

TGFβ1, SDF1 and PDGFRβ to promote conversion 

of normal fibroblasts into CAFs (9-12). CAFs are 

recruited to the tumor site in the similar fashion as 

they are recruited to the site of wound healing. At the 

site of the wound, platelets migrate and secrete 

growth factors such as PDGF and TGFβ1 to recruit 

the normal fibroblasts at the site of injury. The 

fibroblasts (resident as well as distant) respond to the 

signals and start migrating to the injury site. After 

reaching to the injury site, normal fibroblasts acquire 

activated phenotype under the influence of various 

growth factors such as TGFβ1. The activated CAFs 

helps in wound healing process by providing growth 

factors, cytokines and by producing components of 

extracellular matrix(13, 14). Unlike the normal wound 

healing process where activated fibroblasts undergo 

apoptosis, the activated fibroblasts in tumor stroma 

do not follow the same fate. They continue to interact 

with tumor; therefore, tumors are also termed as 

“wound that never heals” (15, 16). 

There are several other sources by which 

CAFs are found to be originated. CAFs can be 

generated directly from mesenchymal stem cells 

(MSCs). MSCs migrate to the tumor site in the similar 

manner like fibroblasts migration during processes of 

wound healing. Theses migrating cells have been 

reported to recruit to the tumor site and differentiate 

into CAFs. These CAFs express activation marker 

αSMA, FAP, tenascin-C and thrombosponding-1 in 

their cytoplasm (17). CAFs can also be generated 

through the process of epithelial to mesenchymal 

transition (EMT) from the epithelial cells. CAFs 

arising through EMT have also been shown to retain 

genetic alterations of their parental genome. Somatic 

mutations in the CAFs is debated (18, 19). Though, 

EMT-derived CAFs may contribute rarely to the total 

CAF population in tumor, certain reports suggest the 

accumulation of mutations in CAFs. Mutations in the 

TP53 and PTEN genes in CAFs isolated from breast 

cancer is demonstrated helping CAFs to acquire pro-

tumorigenic behaviour (20-24). CAFs can also be 

generated from other cell-types such as pericytes 

and endothelial cells. These cells can trans-

differentiate and contribute to CAFs population. 

Proliferating endothelial cells can undergo 

endothelial to mesenchymal transitions under the 

effect of tumor secreted TGFβ1 to give rise to CAFs 

(25). CAFs can also be generated from pericytes 

through the process of pericyte to fibroblast transition 

(PFT) under the influence of PDGF-BB (26). All these 

sources of CAFs are not mutually exclusive and may 

produce a vast heterogeneous population of CAFs 

within individual cancer-type. This could be the 

reason for the reported variations in the identification 

markers for CAFs. 

Fibroblasts express various cell surface 

and intracellular proteins by which they are identified 

in different tumors. Normal fibroblasts and the CAFs, 

both being mesenchymal cell type, express vimentin 

in their cytoplasm. CAFs are identified by expression 

of fibroblast specific protein 1 (FSP1), also called as 

S100A4. However, it is also widely expressed by 

carcinoma cells in different tumor types (27) or due to 

the process epithelial to mesenchymal (EMT) 

transition in these cells (28). CAFs are also identified 

by expression of fibroblast activation protein alpha 

(FAPα). However, it is also not exclusively expressed 

only in CAFs but also reported to be expressed by 

normal fibroblasts and quiescent mesodermal cells 

(29, 30). CAFs express platelet derived growth factor 

receptor alpha and beta (PDGFRα/β). However, like 

other markers, it is also not exclusive for the CAFs as 

it is expressed by tumor cells undergoing EMT and 

by vascular smooth muscle cells, myocardial cells 

and skeletal muscles (31, 32). Expression of 

CD90/Thy1 has been reported on fibroblasts cells as 

cell surface marker. Fibroblasts expressing CD90 on 

their cell surface have been reported to function as 
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myofibroblastic cells compared to CD90 negative 

fibroblasts. Expression of CD90 can be a potential 

marker to identify CAFs in TME (33-36). Other 

markers which are expressed by CAFs are NG2 

(neural glial-2), Desmin and discoidin domain 

receptor-2 (DDR2). CAFs are also identified by 

expression of stress fibres of αSMA. Activated CAFs 

express αSMA in their cytoplasm in most of the tumor 

types (3). Normal fibroblasts express αSMA during 

wound healing and it is also expressed by smooth 

muscle cells surrounding the blood vessels, 

pericytes, visceral smooth muscle cells and 

cardiomyocytes (37).  

4. ROLE OF CAFs IN INVASION AND 

METASTASIS 

Although, only a small percentage of 

disseminated cancer cells are capable of forming 

detectable metastatic tumor; it accounts for a 

significant number of cancer related mortality and 

morbidity (27). Metastasis involves a number of 

sequential events. For this process cancer cells must 

detach from the surrounding cells and intravasate 

into blood circulation system and lymphatic system, 

evade immune response, extravasate into the 

capillary beds of appropriate site and secondary 

tumor formation (38). The orchestration between 

tumor and stromal cells through secreted molecules 

and interactions with matrixes is demonstrated to 

facilitate the formation into metastatic tumors (1, 39). 

The process of intravasation involves direct 

interactions between cancer cells, stromal cells and 

ECM. CAFs play significant role in tumor metastasis 

from the first step of breaching the basement 

membrane to formation of micrometastasis (40). 

CAFs can remodel the extracellular matrix by 

secreting ECM proteins such as collagens as well as 

ECM degrading enzymes such as matrix 

metalloproteinases (MMPs) leading to invasion and 

metastasis (41). Degradation of ECM creates a path 

for cancer cells to the vasculature (42).  

CAFs show distinct expression of genes 

which are specifically involved in cell adhesion and 

migration. Also, through matrix remodelling, CAFs 

help in making the tracks in the stroma and help 

tumor cells to move to other sites (43). Both these 

mechanisms collectively facilitate cell migration and 

invasion. Studies by Y Hassona et al suggested that 

senescent CAFs secrets active MMP2, which is 

instrumental to induce keratinocyte dis-cohesion and 

epithelial invasion into collagen gels in a TGF-β 

dependent manner (44). They express N-cadherin on 

their surface which binds with E-cadherin of tumor 

cells and pulling them along the tracks (33). This help 

in directional movement of tumor cells which is 

necessary for successful invasion and metastasis 

(34). In colorectal cancer, cancer stem cells have 

been shown to express CD44v6 cell surface marker 

which facilitates cells to attach to hyaluronan which is 

the component of extracellular matrix (45). In case of 

breast tumor, increased stiffness of the matrix 

correlated with poor survival. Yes associated Protein 

(YAP) is an important player of mechanotransduction 

pathway. If the stiffness of ECM is high, it influences 

the nuclear localization of Yap1 and facilitate 

activation of CAFs (35). Additionally, CAFs are also 

shown to express factors required for 

neoangiogenesis and neolymphogenesis to promote 

metastasis (36).  

CAFs are also shown to induce metastasis 

through paracrine signalling to induce epithelial to 

mesenchymal transition (EMT) (46). EMT plays an 

important role during the course of tumor initiation, 

malignant progression, metastasis and therapy 

resistance (47). Loss of epithelial marker E-cadherin 

and the expression of mesenchymal marker vimentin 

is a cardinal sign of EMT (48). In a study, CAFs were 

found to help the premalignant epithelial cells to 

acquire mesenchymal traits leading to invasion and 

metastasis whereas fibroblasts isolated from benign 

mammoplasty failed to do so (49). In prostate cancer, 

IL-6 secreted by tumor cells recruited CAFs to the 

tumor niche which secreted metalloproteinase 

thereby inducing EMT and invasion in cancer cells 

(50). In pancreatic ductal adenocarcinoma, IL-6 

secreted by CAFs helped tumor cells to undergo EMT 

and ultimately metastasize. When secretion of IL-6 

was inhibited by retinoic acid treatment, the induction 

of EMT by CAFs was lost (51). In breast cancer, 

CAFs induce TGFβ/SMAD pathway in breast cancer 

cells by secreting TGFβ1 leading to EMT mediated 

invasion and metastasis. This effect was reversed 

when secretion of TGFβ1 was blocked (52). Study 

has shown that CAFs secrete some pro-invasive 
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factors in hepatocellular carcinoma and activate 

TGF-β/PDGF signaling crosstalk to support the 

process of EMT and transform into an invasive 

phenotype. Additionally, co-transplantation of 

myofibroblasts with Ras-transformed hepatocytes 

strongly enhanced the growth of tumor. However, 

genetic-interference of PDGF signaling pathway 

reduced tumor growth and EMT (53). Another recent 

study suggested that CAFs secret IL32 which 

promotes breast cancer cell migration by binding to 

integrin β3 through RGD motif. Interaction between 

IL32 & integrin β3 induced P38-MAPK signaling 

pathway, resulting in enhanced EMT marker 

expression and promote invasion (54).  

The rate and type of EMT within a tumor is 

not differ within the population of tumor cells. 

Different EMT population is shown to exist in distinct 

tumor regions associated with a specific 

microenvironment in skin SCC and mammary tumors 

(13). Additionally, other cell types within stroma may 

also play crucial role during the process of EMT. In 

vivo depletion of macrophages in skin and mammary 

primary tumours helped in increased population of  

EpCAM+ epithelial tumor cells and inhibition of the 

EMT process (14, 15). 

5. ROLE OF CAFs IN TUMOR GROWTH 

AND MAINTENANCE OF STEMNESS 

As discussed before, CAFs facilitate 

tumor growth by secreting growth factors and 

cytokines/chemokines and remodel extracellular 

matrix. Tumor cells interact with CAFs in a 

reciprocal manner and activate them to acquire 

pro-tumorigenic functions. Intriguingly, CAFs were 

shown to initiate malignant properties in 

morphologically and genotypically normal 

epithelial cells. Olumi et al., showed that CAFs 

through its secreted factors could promote tumor 

progression in an immortalized but non-

tumorigenic prostate cell whereas normal 

fibroblasts were failed to do so (55). CAFs secrete 

various factors such as hepatocyte growth factors 

(HGF), stromal derived growth 1 (SDF-1) and 

TGFβ1 which modulate the tumor progression (56-

58). CAFs isolated from breast tumors could 

promote breast tumor growth efficiently compared 

to matched normal fibroblasts. This increased 

tumor growth was associated with SDF1 secreting-

CAFs which promoted angiogenesis through 

recruitment of endothelial progenitor cells at tumor 

sites (56, 59). CAFs secretes VEGF which helps in 

formation of new blood vessels to supply and 

manage cellular metabolites (60). CAFs interact 

with other cells in the stroma such as endothelial 

and inflammatory cells. It alters their functions of 

secreting chemokines such as monocyte 

chemotactic protein 1 (MCP1) and interleukins 

such as IL-1 which affect the functioning of 

inflammatory cells (61, 62).  

CAFs have been shown to affect the stem 

cell-like properties of tumor cells of different origins. 

CAFs promote lung tumor cells to undergo 

dedifferentiation and acquire the stem cell-like 

properties. To study the effect, Chen et al., 

established a co-culture model of CAFs and lung 

cancer cells. CAFs were isolated from lung cancer 

patients and used as feeder layer. Study showed that 

CAFs regulate stem cell-like properties in a paracrine 

manner by expressing IGF-II in the TME and increase 

Nanog expression in tumor cells expressing IGF1R. 

Blocking IGF-II/IGF1R signalling affected the 

expression of Nanog resulting in loss of stem cell 

characteristics. Lung cancer cells when grown in co-

culture with CAFs demonstrated enhanced capacity 

of self-renewal shown by sphere formation assay and 

expressed stem cell markers Oct4/Nanog. The effect 

was not seen when the tumor cells were grown with 

normal fibroblasts (63). Stassi et al, have reported in 

colorectal cancer that CAFs secrete growth factors 

OPN, HGF, and SDF1 which helped colorectal 

cancer cells to acquire the CD44v6 phenotype as well 

as cancer stem cell-like phenotype by activating 

Wnt/β-catenin pathway. CD44v6 expressing 

colorectal cancer stem cells showed increased 

migration and metastasis. Colorectal cancer patients 

with low CD44v6 expression predicted better survival 

than with high CD44v6 patients (64). In breast 

cancer, tumor cells educate stromal fibroblasts to 

express chemokine ligand 2 (CCL2). CCL2 

stimulated tumor cells, expressed NOTCH1 and 

showed cancer stem-like cells phenotype such as 

increased self-renewing ability shown by sphere 

formation assay. In this study, patients with increased 

CCL2-NOTCH1 expression showed grade of poorly 

differentiated breast cancer tissues (65).  
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Burman et al., have studied the role of CAF-

CSC interaction in prostate cancer. They developed 

conditional PTEN-deleted mouse model of prostate 

adenocarcinoma to study reciprocal role of CAFs and 

cancer stem-like cells isolated from this model. The 

isolated epithelial cells showed the characteristics of 

stem-like cancer cells and expressed established 

markers of CSC as well as demonstrated self-

renewing abilities under in vitro conditions. CAFs 

isolated from the same mouse, significantly promoted 

stem cell-like properties in CSC including better 

sphere forming ability (66). Wang et al, have studied 

the role of CAFs in breast cancer progression. CAFs 

secreted chemokine (C-C motif) ligand 2 induced 

NOTCH1 expression in breast cancer cells and 

helping them to acquire cancer stem cell features. 

Fibroblasts co-cultured with breast cancer cells 

promoted stem cell like features in breast cancer cells 

compared to normal fibroblasts cells. Breast cancer 

cells secreted cytokines induced CCL2 expression in 

CAFs activating STAT3 in CAFs (65). In another 

study, cancer associated fibroblasts from esophageal 

squamous cell carcinoma (ESCC) secreted IL-6 

which conferred chemoresistance to ESCC cells by 

upregulating C-X-C motif chemokine receptor 7 

(CXCR7). Silencing of CXCR7 in ESCC cells 

significantly decreased the stem cell related gene 

expression suggesting the involvement of CXCR7 in 

stemness (67).  

In addition, CAFs have been shown to 

directly affect the sensitivity of cancer cells towards 

therapeutic agents. Golub et al have reported 

resistance to RAF-inhibitors in BRAF-mutant 

melanoma cells mediated through HGF secreted 

from stromal microenvironment (68). Similar 

observations were reported by Delorenzi et al., they 

have found that increased stromal gene expression 

signature confers resistance to widely used drugs 

such as 5-fluorouracil and other drugs (69). Karin et 

al co-cultured CAFs with HNSCC and showed that 

soluble factors from CAFs help tumor cells to acquire 

resistance to cetuximab (70). CAFs secreted high 

mobility group box 1 (HMGB1) helped breast cancer 

cells to develop resistance against doxorubicin (71). 

Gemcitabine resistant CAFs in PDAC secrete 

exosomes with SNAIL which help tumor cells in 

proliferation and drug resistance (72). These studies 

demonstrate the potential of CAFs in the 

development of drug resistance to tumor cells to most 

commonly used anticancer drug.  

6. TUMOR RESTRAINING ROLE OF CAFs 

Apart from tumor-promoting role, CAFs 

have also been shown to harbour tumor-restraining 

functions (73, 74). In pancreatic ductal 

adenocarcinoma (PDAC), tumor cells secrete sonic 

hedgehog (Shh) and direct fibroblasts cells to form a 

desmoplastic rich stroma. Shh-deficient tumors 

showed reduced stroma and aggressive, proliferating 

and more vascular tumors (75). In another study, 

Özdemir et al. generated transgenic mice with ability 

to delete αSMA-positive cells in PDAC. Depletion of 

αSMA-positive cells gave rise to invasive and 

undifferentiated tumors with increased hypoxia and 

EMT as well as increased cancer stem cells 

behaviour. Further, PDAC patients with low αSMA-

positive cells showed decreased survival (76). CAFs 

expressing FSP1 have been shown to inhibit tumor 

development by encapsulating carcinogen. Here, 

FSP1+ve fibroblast cells helped in limiting the 

exposure of epithelial cells to carcinogen which could 

otherwise resulted in DNA damage and tumor 

development (43).  

Further to these findings, elegant work 

reported by D.A. Tuveson and colleagues has 

demonstrated spatially separated distinct populations 

of inflammatory fibroblasts (iCAFs) and 

myofibroblasts (myCAFs) in PDACs. myCAFs were 

found to be dependent on the juxtacrine interactions 

with cancer cells and were located in the peri-

glandular region; whereas iCAFs were distantly from 

cancer cells and myCAFs populations in PDA and 

were induced by secreted factors from cancer cells 

through paracrine manner. iCAFs produced IL6, IL11 

and LIF and stimulated STAT pathway in cancer 

cells; whereas, myCAFs were defined by high-αSMA 

expression. This study predicted the pro and 

antitumorigenic properties of CAF-subpopulations 

within the tumors (77). More recently, tumor secreted 

IL-1 is found to upregulates LIF which ultimately 

promote CAFs to gain inflammatory phenotype by 

activating JAK/STAT downstream molecules, 

whereas TGFβ is shown to work oppositely by 

downregulating IL-1R1, which induces myofibroblast 

phenotype in CAFs in PDACs (78).  
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Daniela et al., have shown functional 

heterogeneity among CAFs subpopulations. They 

established two types of CAFs from OSCC patients, 

CAF-N with transcriptome and secretome similar to 

normal fibroblasts and CAF-D with different 

expression pattern than normal fibroblasts. Both 

CAFs promoted tumor growth in NOD/SCID mice but 

CAF-N were more tumor-promoting than CAF-D. 

CAF-N showed more motile phenotype and inhibition 

of motility reduced the invasion of oral tumor cells. 

CAF-D were less motile and higher TGFβ1 secreting 

CAFs help to obtain EMT phenotype in oral tumor 

cells. Inhibiting TGFβ1 secretion in CAF-D, reduced 

keratinocyte invasion (79).  

Recently, we have demonstrated the 

presence of two, functionally heterogeneous 

subtypes of CAFs in established cell cultures and 

primary human tumor samples of gingivobuccal-oral 

cancer. The low- or high-αSMA score in tumor stroma 

has been shown to correlate with better or poor 

survival of patients respectively. Gene expression 

pattern based unsupervised clustering analysis 

resulted in identification of two subtypes of CAFs 

which were named as C1-type or C2-type CAFsQ. 

The C1-type CAFs demonstrated low-αSMA (non-

myofibroblastic) phenotype compared to C2-type 

CAFs with myofibroblastic phenotype. Co-culture 

experiments between C1-type of CAFs and oral 

cancer cells exhibited higher percentage of 

proliferating cells with concomitant lower frequency 

of stem-like cancer cells, compared to the co-culture 

with C2-type CAFs. Our study has indicated that a 

small set of differentially expressed genes between 

these subtypes of CAFs may be responsible for their 

characteristics and distinct functions in oral tumors. 

Importantly, BMP4 expression by C1-type CAFs was 

found as one of the possible mechanisms for 

suppressed stemness and CAFs-mediated protective 

role in gingivobuccal tumors (80).  

As discussed above, fibroblasts are 

shown to undergo myofibroblastic differentiation 

upon TGFβ stimulation (6, 81). In our study, 

several genes which were differentially 

upregulated in C2-type CAFs were related to 

TGFβ-pathway activation (80). Therefore, here we 

have examined if TGFβ stimulation can induce 

transition of C1-type CAFs to C2-type CAFs and 

the transitioned CAFs can reciprocate differently in 

maintaining stemness of oral cancer cells. We 

stimulated C1-type CAFs with 10ng/ml TGFβ for 48 

hours and determined the myofibroblastic 

differentiation of CAFs by αSMA stress fibre 

formation (6, 82). As expected, TGFβ stimulated 

CAFs expressed more stress fibres suggesting 

that they can be activated by TGFβ treatment 

(Figure 1A). Next, we tested whether TGFβ-

stimulated myofibroblastic CAFs act similarly as 

C2-type CAFs with increased stemness in oral 

cancer cells (80). TGFβ-stimulated or unstimulated 

CAFs were co-cultured with SCC029b oral cancer 

cells for 4 days in low-serum media and compared 

for the frequency of cancer cells with high 

aldehyde dehydrogenase activity by Aldefluor 

assay. Interestingly, oral cancer cells 

demonstrated significantly higher frequency of 

ALDH-Hi cells upon co-culture with TGFβ-induced 

myofibroblastic (C2-type) CAFs as compared to 

non-myofibroblastic (C1-type) CAFs (Figure 1B 

and C). Overall, data indicates that the 

microenvironmental TGFβ may be one of the 

responsible factors for heterogeneity in stromal 

CAFs determining the presence of tumor 

suppressive or supportive type CAFs in oral tumor 

tissues.  

7. TARGETING CAFs IN TUMOR 

MICROENVIRONMENT 

Surgery and radiotherapy are the major 

treatment strategies for solid cancers. Combining 

both treatment modality have provided improved 

outcomes for patients (83). Since, TME plays crucial 

role in tumorigenesis, it offers a great opportunity to 

therapeutically target these cells. Strategies have 

been made to specifically target different 

components of TME. CAFs being the major 

components of TME, draws major attention in this 

direction. Head and neck cancer patients with higher 

score for αSMA expression in tumor stroma are 

associated with decreased disease free and overall 

survival; suggesting CAFs as plausible target for 

these patients (84). Lee and Gilboa et al., have 

shown that targeting FAP expressing CAFs, could 

inhibit tumor formation ability in mice which were 

immunized against FAP (57). Similar approach was 

adopted by Loeffler and Reisfeld. They constructed 
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oral DNA vaccine against FAP and demonstrated 

that CD8+ T-cell mediated targeting of FAP 

expressing CAFs suppressed tumor formation and 

metastatic ability of multidrug resistant colon and 

breast carcinoma (58). Wen and Nakamura, have 

shown that inhibition of tumor-stroma interaction by 

specifically targeting HGF by NK4 impaired the colon 

cancer growth and liver metastasis (76). Targeting 

HGF by monoclonal antibody could reduce glioma 

formation in murine models (85). 

Immune evasion is one of the major 

hallmark characteristics of tumors. CAFs 

contribute in acquiring these characteristics and 

they could be used as a target for immunotherapy. 

Fujiwara et al., recently reported that CAFs 

regulated infiltrating lymphocytes by IL-6 and 

blocking IL-6 or targeting CAFs could improve 

immunotherapy (86). FAPα is a marker of CAFs 

and has been utilized as target in immunotherapy 

directed against CAFs (87). Targeting FAP positive 

CAFs in PDAC helped the antitumor activity of α-

CTLA-4 and α-PD-L1 which ultimately helped  T 

cells to move to  TME and act on tumor cell 

clearance (30). Hanks et al., have shown in 

melanoma that inhibition of TGFβ in CAFs resulted 

in an increase in the number of CAFs and MMP-9 

secreted from CAFs cleaved PD-L1 resulting in 

development of anti-PD-L1 resistance (88).  

Very recently, Hynes et al., have shown 

the differential function of extracellular matrix 

proteins based on their source of origin in PDAC of 

mouse and human tumors. Their group suggested 

that ECM-protein matrisome derived from tumor 

cells correlated with poor prognosis compared to 

majority of ECM-protein matrisome derived from 

stromal cells showed both pro- and anti-

tumorigenic behaviour. The IPA analysis showed 

that  tumor-cell ECM proteins were regulated by 

FGF10, FAK1, EGF and MAP2K1 while stromal-

cell ECM proteins were regulated by α-catenin, 

AHR, BIRC5 and SMAD3 (89). Similarly, Carvalho 

et al., has reported cancers with mutations in 

BRAF, SMAD4 and TP53 mutation and MYC 

amplification activated a distinct ECM transcription 

profile which correlated with poor prognosis and 

immunosuppressive behavior (90).  

 There are various chemotherapeutic drugs 

are being tested for targeting stromal compartment. 

Sibrotozumab is antagonist of FAP and functions by 

inhibiting CAF differentiation (91). AMD-3100 and 

IPI-926 target SDF1/CXCL2 and smoothen of sonic 

hedgehog pathway, respectively and demonstrated 

to impair the tumor-stroma crosstalk in multiple 

myeloma, Non-Hodgkin’s lymphoma and pancreatic 

cancer (1, 92). Specifically targeting the stromal and 

its derived components such as PDGF-C, Tenascin-

C, and COX-2 has been tested in model systems of 

multiple myeloma, PDAC, and astrocytoma and Non-

Hodgkin’s lymphoma with exciting results (67). 

Targeting NOX4 by RNA interference or by 

pharmacological inhibition impairs the trans-

differentiation of CAFs with reduced tumor growth 

(93).  

 
 

Figure 1. (A) Expression of αSMA was analyzed after treatment with TGFβ. Images were taken at x200 magnification. (B) TGFβ stimulated 

cells were co-cultured with SCC029b for 4 days in low serum media. Frequency of ALDH-Hi cells were determined by flow cytometry using 

Aldefluor assay and shown as dot plots. (C) Bar graph represents the average frequency of ALDH-Hi cells from three biological repeats. p 

value was calculated by Student’s t-test. 
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The clinical trials to target CAFs have 

been attempted with few degree of success. The 

iodine 131-labeled monoclonal antibody F19 (131I-

mAbF19) which targets FAP in colon cancer has 

proved to be useful in diagnostics therapeutics 

(94). The phase III trial has been done for 

Bevacizumab against malignant pleural 

mesothelioma and it has shown improvement in 

overall survival of the patients (95). A phase II trial 

of Ruxolitinib, an inhibitor of myelofibrosis, was 

done for PDAC patients. The results suggest that 

it affects directly to tumors and it is also effective 

in those patients who have systemic inflammation 

(96). 

These studies provide an opportunity to 

intervene stromal fibroblasts leading to cancer 

therapy, although they present a great challenge 

to carefully design the patient trails (97, 98). 

Various strategies to target CAFs in TME is 

depicted in Figure 2.  

8. CONCLUDING REMARKS 

Collectively, we have highlighted the 

recent findings on the mechanisms of CAFs 

mediated role in tumor progression (Table 1). Due 

to their pro-survival or pro-metastatic functions, 

CAFs have become an attractive target for 

achieving more effective response of standard 

treatment. However, caution has to be applied in 

targeting CAFs as uniform cell type. we discussed 

that the stromal components of the tumor may also 

evolve side by side along with the cancerous cells. 

The stromal cells upon getting distinct instructions 

from other components of tumor in the form of 

cytokines, chemokines or growth factors may give 

rise to heterogeneous population of CAFs with 

distinct phenotype and functions. The traditional 

view of considering the CAFs as pro-tumorigenic 

niche has been recently challenged in some tumor 

types. Clearly, more basic research is needed in 

comprehending the role of heterogeneous 

subpopulations of CAFs. Reciprocation between 

various other cellular and non-cellular components 

during the course of tumor evolution may lead to 

high degree of dynamic complex interactions. 

Therefore, deeper molecular characterization 

specifically from the patient samples may lead to 

define the cellular subsets of CAFs. Overall, 

understanding the heterogeneity in CAFs 

Table 1. Functions of CAFs in tumor microenvironment 

Sl. No. Functions References 

1 Invasion and Metastasis (33, 34, 40, 43) 

2 Extracellular matrix remodeling (41, 42) 

3 Secretion of MMP (44) 

4 Attachment to the matrix (45) 

5 Angiogenesis (36, 60) 

6 Epithelial to mesenchymal transition (EMT) (49-54) 

7 Stemness (1, 63-67, 85, 92) 

8 Growth Factor secretion (55-59, 61, 62, 64, 65) 

9 Drug Resistance (68, 69, 70, 71, 72) 

10 Anti-tumorigenic (43, 73, 75, 76, 74) 

 

 
 

Figure 2. Targets against CAFs in tumor microenvironment: Direct 

depletion of cancer associated fibroblasts (CAFs) via 

immunotherapies / chemotherapies or targeting crucial signals 

responsible for CAFs-mediated function can be adapted as 

approach in CAFs-directed anticancer strategies. FAP, fibroblast 

activation protein; mAB, monoclonal antibody; HGF, hepatocyte 

growth factor; SDF1, stromal-derived factor1; CXCL-2 (C-X-C motif) 

ligand 2. 
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subpopulations and related complexity in 

reciprocal cross-talk within TME may possibly 

provide best treatment advantage to cancer 

patients.  
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