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1. ABSTRACT 

The progression of a solid cancer from a 

localised disease to metastatic stages is a key reason 

for mortality in patients. Amongst the drivers of 

cancer progression, Epithelial-to-Mesenchymal 

Transition (EMT) has been shown to be of crucial 

importance. EMT results in the phenotypic shift of an 

immotile, treatment-sensitive epithelial cell into an 

elongated, metastatic and treatment-resistant 

mesenchymal cell. Depending on the cellular and 

molecular setting, a myriad of studies have 

demonstrated that EMT causes increased cancer cell 

motility, invasiveness, resistance to therapies, 

dormancy and cancer-stem cell phenotypes, all of 

which are prerequisites for metastasis. The alteration 

of non-canonical intercellular signalling events in 

cancer EMT is a phenomenon that is not completely 

understood. Recently, extracellular vesicles, 

especially small vesicles called exosomes, have 

shown to be involved in cancer cell EMT. Most 

intriguingly, across different cancer types, cancer-

derived exosomes have demonstrated to be capable 

of transferring a mesenchymal phenotype upon 

recipient epithelial cells, including epithelial cancer 

cells. The uptake of EMT-inducing exosomes results 

in molecular changes, altering miRNA, mRNA, and 

protein levels, either through direct transfer of these 

components, or by altering gene expression 

networks involved in EMT. In this review, we are 

presenting the current state of research of exosomes 

in cancer EMT, highlight gaps in our current 
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knowledge and propose strategies for future 

experiments in this area. 

2. INTRODUCTION 

Cancer incidence is continually increasing, 

with 33% of men and 25% of women developing 

cancer in their lifetime (1). Cancer is one of the 

leading causes of death worldwide due to untreatable 

disease progression (2). Cancer cells display a wide 

array of phenotypes during cancer progression, 

which may be caused by epigenetic alterations, 

oncogenic transformation, or even altered 

environmental cues (3). Even within a cancer patient, 

a tumour is highly heterogeneous, reflected by 

various molecular alterations. These environmental 

cues and heterogeneous nature of cancers influence 

cancer cell plasticity, treatment resistance and the 

propensity of cancer cells to metastasise (3-5).  

Metastasis is the most common cause of 

cancer morbidity and mortality, accounting for 

approximately 90% of cancer-related deaths (6, 7). 

Metastasis is a complex multistage process, in 

which cancer cells disseminate from the primary 

tumour, and travel via the vascular systems to 

neighbouring tissues and distant organs. Cancer 

cells evade immune attack and proliferate in 

distant tissues, establishing a microenvironment 

that enables the formation of metastatic deposits 

(7). Despite the progression and development of 

cancer therapies and treatments, there has been 

little impact in reducing morbidity and mortality 

rates for patients with metastatic cancer. This 

failure emphasises the need for a greater 

understanding of the biological mechanisms of the 

metastatic cascade in order to advance strategies 

that target metastasis (7, 8). 

It has become clear that cancer cells can 

prime metastatic sites before the arrival of 

metastatic cells. We and others have 

demonstrated that primary tumours can condition 

the microenvironment of tissues prior to invasion 

by cancer cells through secreted factors (9-14). 

This supports the notion of Stephen Paget, who 

first proposed this phenomenon in 1889, the ‘seed 

and soil’ hypothesis (15). This concept described 

that cancer cells (the ‘seeds’) of the primary 

tumour interact and communicate with specific 

organ microenvironments (the ‘soil’) prior to 

colonisation by metastatic cancer cells (13, 16). 

These organ-specific microenvironments are 

called the pre-metastatic niche (13).  

Although primary tumours enhance 

metastatic outgrowth by priming secondary sites, 

cancer cells have to obtain specific traits to initiate 

the metastatic cascade. It has been suggested that 

epithelial-to-mesenchymal transition (EMT) of 

cancer cells facilitates this phenotypic transition 

and plays a major role in metastasis (17). EMT is 

a biological process that describes the phenotypic 

shift of an epithelial cell into an elongated 

mesenchymal cell, due to a series of biochemical 

changes (18). The EMT process was first 

described by Gary Greenburg and Elizabeth Hay 

in 1982 (19), as an epithelial-to-mesenchymal 

transformation (20). However, subsequent studies 

revealed EMT to be a reversible process thus 

“transformation” was replaced with “transition” 

(20). EMT contributes to the phenotypic 

heterogeneity present within the primary tumour 

and can be induced by oncogenic transformation, 

as well as autocrine and paracrine signals within 

the primary tumour microenvironment (3, 21).  

EMT is a multifaceted process, causing 

profound phenotypic changes within the cell 

thereby promoting cancer progression. However, 

EMT also perturbs the extracellular environment 

by altering the secretion of canonical and non-

canonical factors from cells undergoing EMT. We 

have recently demonstrated that non-canonical 

extracellular signalling events can promote EMT 

and drive cancer progression (18). This non-

canonical signalling is driven through secreted 

extracellular vesicles (EVs) that play a critical role 

in intercellular signalling. EVs are composed of 

large (100-1,000 nm) microvesicles and smaller 

(30-150 nm) vesicles termed exosomes. These 

EVs carry nucleic, protein and lipid information of 

the cell of origin they are derived from, and are 

capable of contributing to EMT, thereby promoting 

drug resistance, cancer recurrence and 

metastasis. This review will detail the complex 

events of EMT and how EVs can contribute to this 

process. Moreover, how EVs can inform about the 
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extent of EMT in a primary tumour and contribute 

to clinical management will be discussed. 

3. THE PROCESS OF EMT 

3.1. The epithelial phenotype 

Epithelial cells are immotile, polarised cells 

arranged in a single-cell “cobblestone” monolayer or 

in multi-layered sheets (22). Epithelial cells are 

connected by intercellular junctions and interact with 

an intact basement membrane (BM) through integrin 

receptors, thus movement is quite restricted (23, 24). 

There are four different types of intercellular 

junctions; (I) adherens; (II) tight; (III) gap; and (IV) 

desmosomes (25), and the expression of these 

junctions is critical in describing the epithelial 

phenotype (Table 1). Adherens junctions play a role 

in regulating the cytoskeleton and stabilising 

adhesive connections for effective intercellular 

signalling (26). The formation of the adherens 

junction results in the establishment of the tight 

junction (26), which forms cell-cell barriers to limit 

paracellular transport of molecules (27). Gap 

junctions not only have adhesive qualities, but also 

allow intercellular passive transport of ions and small 

molecules (28). Desmosomes attach to the 

cytoskeleton, thus provide strength to tissues for 

resistance against mechanical stress (29, 30). The 

intercellular junctions provide the structure and 

rigidity required for the primary function of epithelial 

cells to line the surfaces of body cavities (31). In 

addition to contributing to structural integrity, 

intercellular junctions are composed of key protein 

complexes that control epithelial function (24). The 

expression of these key proteins maintains epithelial 

cell integrity and adhesive properties, and prevents 

differentiation (32, 33). Importantly, these 

biochemical traits of an epithelial cell restrict cancer 

cells from entering into the metastatic cascade, and 

it is the loss and destabilisation of these key proteins 

that contributes to EMT and thereby cancer 

metastasis (3-5, 34). 

A significant event that occurs during EMT 

is the downregulation of epithelial cadherin (E-

cadherin). E-cadherin is a major transmembrane 

glycoprotein of the adherens-type junction. E-

cadherin is a critical component in intercellular 

adhesion, inducing the formation of both the 

adherens junction and desmosomes by pairing 

cadherins in lateral epithelial cells (24, 26, 35, 36). E-

cadherin also binds proteins of the cytoplasm called 

catenins, including p120 catenin, β-catenin, and α-

catenin (26). This allows cadherins to connect to the 

cytoskeleton and be involved in signalling pathways 

(24, 26). Cleavage and subsequent degradation of E-

cadherin prevents interaction with β-catenin. As a 

result, β-catenin may translocate to the nucleus with 

p120 catenin for transcriptional activation of Wnt 

genes, which drives EMT (25, 37, 38). Desmosomes 

are very similar to adherens junctions, with 

desmosomal cadherin proteins connected to 

intermediate filaments through desmoplaskin, which 

are disrupted during EMT (25). The main 

components of tight junctions are the family of 

transmembrane proteins, occludin and claudins, and 

the intracellular scaffold protein, zonula occludens 1 

(ZO-1) (27). Occludin and claudins regulate ion 

selection and permeability of the intercellular 

pathway connecting adjacent cells, whereas ZO-1 

binds to the cytoskeleton and proteins of the 

adherens and tight junctions (26). Downregulation of 

these proteins in EMT results in the loss of the 

epithelial cell polarity (39). Furthermore EMT 

decreases the expression of connexin – a major 

protein in gap junctions – which causes a loss of 

junction integrity (25). The inhibition of the expression 

of these proteins disrupts the epithelial phenotype 

and leads to the onset of EMT.  

3.2. The epithelial-to-mesenchymal 

transition 

EMT is associated with normal, 

homeostatic events that are spatially and temporally 

regulated (24, 40). EMT occurs in normal 

developmental processes such as embryogenesis 

(22), embryo implantation during pregnancy (41) and 

organ development (36). EMT also occurs in wound 

healing, tissue regeneration, and organ fibrosis (36). 

These processes are initiated to recruit and activate 

fibroblasts to aid in the healing of tissues that have 

undergone trauma and inflammation (36). However, 

in the state of disease, EMT is hijacked and results in 

disturbing epithelial integrity and producing 

mesenchymal cells that sustain and exacerbate the 

disease (24). In the cancer setting, EMT is activated 
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in order to produce cancer cells that exhibit both 

epithelial and mesenchymal qualities or cells with 

only a mesenchymal phenotype to propel cell 

invasion and metastasis (36).  

Prior to EMT initiation, cells that will 

undergo EMT must be primed and conditioned 

towards a mesenchymal phenotype. For example, 

cell division may cease so that the cytoskeleton can 

be used to drive the changes in cell morphology and 

motility required for EMT (42). This induces major 

changes in gene expression necessary for EMT 

initiation (42). Temporal and spatial patterning of the 

epithelial region encourages morphogenic 

rearrangement to enable cell transportation to the 

EMT site (43). It also ensures that the integrity of the 

remaining epithelium is uncompromised (42). 

Following this, intercellular junctions and cell-BM 

connections must be disrupted (24). Dissolution of 

adherens, tight, gap junctions and desmosomes 

results in the loss of BM integrity (44). The disruption 

of these connections allows cells undergoing EMT to 

detach from the epithelial structure and for the 

remaining cells to close the gap (24). The detached 

cells then undergo cytoskeletal changes and 

differentiate into spindle-shaped mesenchymal cells 

(42).  

Transformation into a mesenchymal 

phenotype results in the loss of apical and basal 

polarity, and the acquisition of an elongated 

morphology allows for fluid cellular movement, thus 

enables migration (45). A complete transition is 

characterised by changes in (i) cell morphology; (ii) 

functionality markers; and (iii) differentiation. 

Classical mesenchymal markers include N-cadherin, 

vimentin and fibronectin (Table 1). Downregulation of 

E-cadherin results in the upregulation of the 

mesenchymal N-cadherin, facilitating the transition of 

the cell towards a mesenchymal phenotype, 

increasing migration and invasion (25). This is 

commonly referred to as ‘cadherin switching’ and is 

Table 1. Function of EMT markers and regulators 

EMT markers and regulators Function 

Epithelial  

E-cadherin Regulates the formation of adherens junction and desmosomes, and has an important role in 

intercellular adhesion 

β-catenin Connects cadherins to cytoskeleton 

Occludin Stabilises tight junctions  

Claudins Determine tight junction barrier properties 

ZO-1 Scaffold protein  

Mesenchymal  

N-cadherin Facilitates transition of cell towards a mesenchymal phenotype, increasing migration and invasion 

Vimentin Cytoskeletal intermediate filament that induces changes in cell morphology, migration and 

adhesion 

Fibronectin Extracellular glycoproteins that acts as a scaffold for the fibrillar ECM of mesenchymal cells 

α-SMA Controls cell motility and differentiation 

Transcription  factors 

SNAIL 

Transcriptionally represses epithelial markers such as E-cadherin, and activates mesenchymal 

markers such as N-cadherin 

SLUG 

TWIST 

ZEB1 

ZEB2  

Regulators 

TGF-β Induces EMT by controlling regulation of EMT transcription factors 

HIF1α Promotes EMT by modulating genes associated with EMT 
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an important stage in EMT-driven metastasis. 

Vimentin is a cytoskeletal intermediate filament 

protein that induces changes in cell morphology, 

migration and adhesion (46). Fibronectin is an 

extracellular glycoprotein that acts as a scaffold for 

the fibrillar ECM of mesenchymal cells (47). EMT 

results in enhanced cell motility, migratory potential, 

invasiveness, resistance to apoptosis and alterations 

of cell-ECM interactions and ECM components (20, 

24). The degradation of the BM and formation of a 

mesenchymal cell marks the completion of an EMT 

(20). 

Depending on the tissue or signalling 

mechanisms, a ‘partial’ or ‘quasi’ EMT of epithelial 

cells may take place. This is when epithelial cells 

lose only some of their traits or exhibit both 

epithelial and mesenchymal traits. Cancer cells 

that exhibit this partial EMT phenotype have the 

ability to move as clusters, which can become 

more aggressive than the cancer cells that have 

undergone complete EMT (48). Cells in the 

clusters exhibit enhanced tumour-promoting 

properties as they are resistant to apoptotic 

mechanisms, can exit the bloodstream in a more 

efficient manner and increase plasticity (49). This 

poses a problem for detection of partial EMT 

cancer cells as epithelial and mesenchymal 

markers may be expressed equally or at varying 

levels.  

4. EMT AND METASTASIS 

It has been suggested that EMT is a critical 

mechanism responsible for the malignant 

transformation of epithelial cancer cells as well as 

metastasis (40). Numerous in vitro and in vivo studies 

have demonstrated that epithelial cancer cells 

undergoing EMT exhibit decreased expression of 

epithelial markers, such as E-cadherin, occludin, 

claudins, ZO-1, connexins, and the acquisition of 

mesenchymal markers such as N-cadherin, vimentin 

and fibronectin (50-57). These morphological and 

molecular alterations correlate with more aggressive 

cancer cell phenotypes and metastatic potential (58). 

The acquisition of a mesenchymal phenotype 

increases the invasiveness and motility of cancer 

cells, allowing them to escape apoptosis, cellular 

senescence and immune system activation (36).  

A significant amount of research has 

been directed in characterising the events of EMT 

in the primary tumour and how this contributes 

toward cancer progression (50-57). In fact, EMT 

has been linked to subpopulations of cancer cells 

within a tumour, referred to as cancer stem cells 

(CSCs), which exploit EMT mechanisms to 

promote metastasis, resist current treatments, and 

drive cancer recurrence (59). Chemokines and 

cytokines, generated by either the transformed 

cancer cells themselves or stromal constituents of 

the primary tumour microenvironment, are thought 

to promote the CSC phenotype (60). CSCs exhibit 

self-renewal properties and the ability to 

differentiate (61). CSCs are thought to display a 

partial EMT phenotype. Moreover, CSCs are 

characterised by a low proliferation rate, 

CD24low/CD44high phenotype, and are able to 

escape the harmful effects of chemo- and 

radiotherapy due to the high levels of drug export 

systems (61, 62). CSCs are able to undergo EMT 

to extravasate and invade target tissues, then 

induce mesenchymal-to-epithelial transition (MET) 

in order to produce secondary epithelia and 

establish metastatic tumour sites (20, 61).  

It is thought that cancer cells that have 

undergone substantial genetic modifications 

during primary tumour formation are 

hypersensitive to EMT signalling compared to 

untransformed cells (39). Interestingly, it has been 

observed that the secondary tumour cells 

established by supposed EMT-derived migratory 

cells are similar to the primary tumour site, 

meaning they do not resemble the mesenchymal 

phenotype proposed for the transitional stage (40). 

This implies that cancer cells undergo 

phenotypical changes equivalent to MET in order 

to allow secondary tumour formation. This may 

occur due to the loss of EMT transcription factor 

signalling that are present in the primary tumour 

(41). EMT signalling has predominantly focussed 

on classically secreted factors such as 

transforming growth factor beta (TGF-β) or 

microenvironmental conditions that induce EMT 

transcription factors that promote the phenotypic 

depolarisation of epithelial cells. However, it is 

becoming clear that there are several non-

canonical intercellular processes that contribute to 
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EMT and cancer progression. In particular, the 

secretion of EVs can either inhibit or promote EMT 

through the transfer of nucleic acids or protein 

information from one cell to the other.  

The effects of TGF-β signalling depend on 

the stage of cancer progression. In the early stages 

of tumour formation, TGF-β can act to inhibit tumour 

development by preventing cancer cell proliferation 

and activating apoptotic pathways (63). However, as 

cancer progresses, TGF-β promotes tumour 

progression by regulating the pathways that activate 

the EMT transcription factors (64). TGF-β activates 

Smad2 and Smad3, which then bind Smad4 to form 

complexes that regulate transcription of pro-

metastatic genes. TGF-β can also induce signalling 

via activation of phosphatidylinositol 3-kinase 

(PI3K)/AKT/mitogen activated protein kinase (MAPK) 

pathways (63). Both the SMAD and PI3K/AKT/MAPK 

pathways control the activation of EMT transcription 

factors SNAIL and SLUG (64). SNAIL downregulates 

epithelial markers like claudins, and also interacts 

with EMT transcription factors, TWIST and ZEB1 to 

enhance EMT metastasis (63).  

Hypoxia is a crucial feature of the tumour 

microenvironment that plays a significant role in 

mediating the promotion of EMT and metastasis in 

multiple cancers (65). Most tumours have an 

inadequate blood supply, hence the tumour 

microenvironment becomes hypoxic (65, 66). 

Hypoxia-induced EMT causes an increase in CSC 

formation during cancer development, which further 

stimulates invasive and metastatic properties (65). 

Importantly, this has been linked to poor patient 

outcome (65). Pro-EMT signalling is maintained 

through hypoxia inducible factor 1 alpha (HIF1α), an 

important regulator of EMT (65, 66). HIF1α 

modulates the expression of EMT transcription 

regulators in order to promote metastasis (67). In 

addition, intermittent hypoxia - common in solid 

malignancies - has been linked to EMT in breast 

cancer (68). EMT transcription regulators induced by 

hypoxia repress E-cadherin, resulting in a shift of 

gene expression that favours the EMT state (25). HIF 

activity switches cancer cell metabolism in order to 

benefit proliferation, expansion and survival. A major 

sign of altered metabolism is increased glucose 

consumption due to the use of aerobic glycolysis 

(69). Aerobic glycolysis is the conversion of glucose 

to ultimately form lactic acid (70, 71). In order to 

counteract the intracellular acidification, cancer cells 

export lactic acid and H+ ions into the extracellular 

space. This results in the acidification of the tumour 

microenvironment (71). The acidity of the tumour 

microenvironment has shown to alter cancer cell 

phenotype. One study demonstrated that an acidic 

pH facilitated EMT in melanoma cells. This was 

accompanied by an increase in invasiveness, 

acquisition of mesenchymal morphology, apoptotic 

resistance and activation of mesenchymal markers 

N-cadherin, vimentin and TWIST (72).  

The relevance of EMT in metastasis has 

been questioned by many, as there is limited in vivo 

evidence demonstrating that cancer cells undergoing 

EMT within the primary tumour are responsible for 

metastatic growths. A recent study conducted in mice 

with pancreatic ductal adenocarcinoma revealed that 

suppressing EMT had no effect on cancer cell 

dissemination and metastasis (73). This study 

designed an in vivo model of EMT inhibition by 

knocking down the expression of TWIST1 and 

SNAI1. Knockdown of TWIST1 and SNAI1 resulted 

in the suppression of ZEB1, ZEB2, SOX4 and SNAI2. 

This had no significant effect on the rate of tumour 

progression, proliferation, invasion and systemic 

dissemination of tumour cells to lung and liver (73). 

Also, in vivo studies are typically conducted in 

rodents, thus clinicians and pathologists express 

uncertainty on the relevance of EMT and its 

contribution to cancer in the clinical setting (74). 

Further studies that experimentally validate the 

relationship between EMT and metastasis in vivo in 

humans need to be conducted to comprehensively 

address this. Despite these doubts, there is a growing 

amount of evidence for the role of EMT in cancer 

progression (74). The induction of EMT and its role in 

the metastatic cascade has been reported in lung, 

breast, prostate, colorectal cancer and many more 

(75-78). It is important that the results obtained from 

in vitro experiments are validated in in vivo and 

clinical settings, thereby providing greater 

understanding of the necessary approaches for 

cancer therapies and improving clinical outcome.  

Measuring EMT markers in primary 

tumours may reveal the processes that drive 
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metastasis and may also act as a determining 

factor in establishing a patient’s risk for developing 

metastatic disease (79). Currently, tumour tissue 

biopsies are the standard method used to obtain 

molecular information of the tumour (80). There 

are a variety of methods used on tissue biopsies 

for the confirmation of cancer diagnosis. These 

include immunohistochemical (IHC) staining, flow 

cytometry, transmission electron microscopy 

(TEM), and genetic testing. IHC staining is used to 

evaluate cancer cell type and the site of origin of a 

metastatic cancer cell (81). Flow cytometry can 

quantitatively analyse cancer cell phenotype and 

content (82). TEM is typically used as an additional 

measure to provide further information about the 

tumour that other methods failed to uncover. TEM 

assesses aspects such as intercellular interactions 

and localisation of proteins (83). Assays for 

genetic testing evaluates gene expression, 

mutational signatures, DNA damage and much 

more (84). Biopsies have the potential to improve 

diagnosis, discover other primary cancers and 

confirm the expression/absence of biomarkers 

which impact choice of therapy (85). Tissue 

biopsies have been clinically validated, however, 

they can be very invasive and are potentially risky 

surgical procedures to perform that may be painful 

for patients (80). Additional tissue biopsies are 

ideal for additional analysis or subsequently during 

therapies, but are difficult to repeat due to the 

potential danger for patients and limited cancer 

material (80, 86). In addition to this, tissue biopsies 

may provide an inaccurate representation of 

tumour heterogeneity and generally fail to detect 

distant metastatic sites, requiring additional 

imaging studies (85). Tumour cells undergoing 

EMT can be observed in tissue biopsies by IHC 

staining to study for the expression of EMT 

markers (87). However, it is debatable as to 

whether the cells observed can be readily and 

accurately differentiated from the mesenchymal 

stromal cells in the tumour microenvironment (88). 

Also, there is great variation in the methods 

employed for measuring EMT markers in tumour 

cells (79). However, given these limitations of 

sampling tumour biopsies, an alternative approach 

is to sample liquid biopsies, which is gradually 

becoming a reliable, fast and non-invasive 

diagnostic approach.  

5. EXTRACELLULAR VESICLES  

EVs are membrane-bound lipid vesicles 

secreted by most cell types into the extracellular 

space (89). They are present in most bodily fluids 

such as blood, urine and saliva (90). The lipid bilayer 

structure of EVs is enriched in cholesterol, 

phosphatidylserine and glycosphingolipids, which 

confers increased stability, unlike the more fluid 

nature of cellular plasma membranes (91). This aids 

efficient transport of EVs through bodily fluids and 

ensures the protection of complex cargo (91). EVs 

can be categorised into different subtypes, based on 

the biogenesis, size, morphology, cargo and method 

of isolation (92). There are three main subtypes; 

apoptotic bodies, microvesicles and exosomes (93). 

EV release is a normal, homeostatic process, 

however, an increase in EV production has been 

described for various pathophysiologies, including 

certain cancers (94). The unique molecular content 

of EVs and its elicited effects on recipient cells, 

makes cancer-derived EVs promising candidates as 

potential cancer biomarkers (92). EV cargo includes 

lipids, proteins, genetic materials (miRNA, lncRNA, 

mRNA, RNA, DNA, etc.), metabolites and other 

molecules derived from the parental cell (95). EV 

cargo is reflective of the cell-of-origin and its 

biological status (96, 97). Once secreted from cells, 

EVs transport their cargo to recipient cells for uptake, 

which can result in the alteration of the recipient cell’s 

function and physiology (18, 92, 97). Thus, EVs play 

an important role in intercellular communication (98). 

The communication function employed by EVs may 

be attributed to its diverse components (99). Thus, it 

has been suggested that cancer-derived EVs can be 

involved in intercellular communication to promote 

EMT and metastasis (100).  

Cells undergoing apoptosis randomly 

assort their contents into vesicles, which are known 

as apoptotic bodies. Therefore, the content of 

apoptotic bodies secreted from the same cell can 

vary greatly, consisting of cytoplasmic molecules and 

organelles, with phosphatidylserine as the only 

characterising marker (101, 102). Apoptotic bodies 

are the largest of the extracellular vesicles as they 

can range from 800-5,000 nm in size (103). Once in 

the circulation, they are quickly degraded by 

phagocytosis, thus apoptotic bodies seem to have no 
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significant role in intercellular communication (101). 

Microvesicle populations display incredible 

heterogeneity as they are irregular in shape, range from 

100-1,000 nm in size and are formed from the budding 

of the plasma membrane. They express surface 

markers such as CD40, integrin-β and selectins (104). 

Exosomes are the smallest of the EV subtypes and are 

more of a homogenous population compared to 

microvesicles (102). Exosomes have a size range of 30-

150 nm and are of endocytic origin (105, 106). Exosome 

biogenesis begins with the formation of early 

endosomes. Early endosomes mature into 

multivesicular bodies (MVBs), as intraluminal budding 

by invagination of the membrane generates intraluminal 

vesicles. MVBs either fuse with lysosomes for 

degradation, or fuse with the plasma membrane, thus 

releasing its contents as exosomes (107, 108) (Figure 

1). Exosomes are characterised by the presence of 

marker proteins, such as tetraspanins (CD63, CD9, 

CD81), HSP70, flotillin-1 and by ESCRT proteins 

TSG101 and Alix (97) (Figure 1). Furthermore, the 

absence of cell organelle marker proteins, such as 

calnexin and GM130, is used to assist in characterising 

the purity of exosomes (109). There is evidence that 

exosome biogenesis can occur in either an ESCRT-

dependent or ESCRT-independent manner (110), 

however, further research is required to understand the 

exact mechanisms involved. For uptake by recipient 

cells, it has been suggested to occur via mechanisms 

such as endocytosis, receptor-mediated endocytosis, 

direct fusion with the plasma membrane and 

phagocytosis (111).  

Although the EV subtypes differ in physical 

properties and mode of biogenesis, there is a grey area 

due to the overlap in characteristics, with a heavy 

emphasis on the lack of tools to accurately differentiate 

EVs from each other. The specified size range of the EV 

subtypes differs greatly amongst researchers in the 

field. Current methods of EV isolation, such as 

ultracentrifugation and filtration, rely heavily on 

separation by density and size, respectively. However, 

relying on density and size may exclude potential EV 

populations that are of interest, which can alter results 

based on the isolation method used (112). Factors such 

as yield, purity and quality must be taken into 

consideration for the effective concentration and 

isolation of exosomes (109, 113). We have developed 

an optimised protocol for the isolation of human- and cell 

culture-derived exosomes (109). When comparing 

 
 

Figure 1. Exosome biogenesis begins with invagination of the plasma membrane to form early endosomes. Early endosomes mature into 

multivesicular bodies (MVBs), with invagination of the membrane generating intraluminal vesicles. MVBs either fuse with lysosomes for 

degradation, or fuse with the plasma membrane, thus releasing the intraluminal vesicles as exosomes. Exosomes carry proteins, lipids and 

genetic materials such as mRNA, miRNA, lncRNA and DNA. Exosomes are characterised by the presence of marker proteins, such as 

tetraspanins (CD9, CD63, and CD81), heat shock proteins (HSPs), lipid raft proteins (flotillin-1, flotillin-2), adhesion molecules (annexins) and 

by endosomal sorting complexes required for transport (ESCRT) proteins (TSG101, Alix, and Syndecan).  
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exosome yield from cell culture supernatant, 

concentrating devices driven by ultracentrifugation 

produced a greater yield than devices driven by 

pressure. In comparison to ultracentrifugation, 

ultrafiltration was more effective for particle yield and 

recovery, as well as time efficiency. For the purification 

of exosomes from concentrated cell culture media, size 

exclusion chromatography (SEC) proved to be the most 

efficient method, compared to that of polymer-based 

precipitation reagents. Exosome precipitation reagents 

produce high particle yields but also result in the co-

isolation of larger, contaminating particles. SEC selects 

particles based on size, providing a pure exosome 

sample in a reasonable time-frame that can be used to 

accurately assess the specific content of exosomes 

(109).  

Tumour heterogeneity can make the isolation 

of cancer-derived exosomes slightly difficult, which can 

alter final results and hinder translation to the clinical 

field (114). Hence universal biomarkers of cancer-

derived exosomes would assist in the proper detection 

of the desired cancer exosome populations and 

distinguish non-cancer from cancer. Many studies have 

shown the increased expression of particular genetic 

materials that serve as biomarkers of cancer-derived 

exosomes (115).Currently, a global consensus has yet 

to be reached on specific EV markers. One study 

revealed that exosomal protein markers HSP70, flotillin-

1, MHCI and MHCII were not only expressed in what 

was considered the “exosomal” fraction, but was also 

highly enriched in fractions containing larger EVs (99). 

This implies that these exosomal markers may be non-

specific and cannot truly define this subset of vesicles. 

Also, with the lack of detailed knowledge on exosome 

biogenesis, markers are not ubiquitously expressed 

(116). Therefore, studies that utilise methods that solely 

focus on the presence of certain markers may be 

inaccurate. Developing a method that can identify the 

pathway of EV biogenesis of the isolated EVs would be 

a better approach for differentiation; however, it is 

extremely challenging and only somewhat feasible for in 

vitro studies (112). Another issue with focusing on one 

EV subtype is that the effects measured in that particular 

EV may also occur in other EVs. The International 

Society of Extracellular Vesicles suggests that 

researchers quantitatively compare EV fractions to 

determine whether the results are specific and truly 

representative of the EV type of choice (112). Lack of 

methodological consistency prevents comparison 

between studies. Thus, a large focus is on establishing 

appropriate EV markers and improving methods of 

isolation. Many publications group EVs together, or use 

terms like ‘EVs’, ‘microvesicles’ and ‘exosomes’ 

interchangeably (105, 117-120). However, grouping EV 

subtypes together provides no clarity due to the diverse 

and heterogeneous nature of EVs. Therefore, this 

review will only refer to exosomal studies that have 

confirmed exosome isolation by size, morphology and 

presence of marker proteins.  

6. EXOSOMES 

Exosomes were once thought to merely 

function as vesicles for the disposal of unwanted 

cellular material (121). Recent findings have shown 

that exosomes play an important role in maintaining 

both homeostatic and pathological states through 

intercellular communication (122). Exosomes are 

involved in normal physiological processes, such as 

the immune response, neuronal synaptic function 

and lactation, as well as being involved in the 

pathophysiology of diseases, such as cancer (123, 

124). Cancer cells can sort oncogenic material, 

including miRNA and proteins, into exosomes, which 

can then be transferred to neighbouring or distant 

recipient cells, contributing to tumour growth and the 

transformation of cells to pro-metastatic phenotypes 

(53, 94, 122). Exosomes act in an autocrine, 

paracrine and endocrine fashion, enabling horizontal 

transfer of proteins, lipids and genetic information 

(122, 125). Cancer-derived exosomes have shown to 

play a major role in the promotion of metastasis, from 

the initial stages of dissemination, to formation of the 

pre-metastatic niche, and to the development of 

secondary tumours (100). The cargo, function, 

stability and abundance of exosomes in a variety of 

bodily fluids make them ideal targets for uncovering 

EMT-related and metastatic mechanisms during 

cancer progression (122). 

Cancer-derived exosomes assist in 

shielding tumour cells from the immune system and 

promoting pro-metastatic processes, including cell 

invasion, migration, proliferation and EMT (53, 126). 

Recently, it has been revealed that cancer-derived 

exosomes carry EMT factors to recipient cells, 

resulting in alterations in morphology, phenotype and 
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function, thereby enabling metastatic progression in 

a variety of cancer types (50-57, 111). These pro-

EMT factors include TGF-β, HIF1α, β-catenin and 

vimentin, all of which facilitate tumour progression, 

partly through pre-metastatic niche formation (127, 

128). Pre-metastatic niches are permissive changes 

to tissues promoting the growth of subsequently 

arriving circulating tumour cells (CTCs) (129-131). 

Although the phenotypic and functional alterations 

that occur during the EMT process have been 

characterised, there are many gaps in the literature 

that require further investigation.  

6.1. In vitro models of exosome-induced 

EMT and metastasis 

There is a significant association 

between metastatic, mesenchymal cell-derived 

exosomes and EMT initiation in epithelial cells, 

which has been demonstrated by numerous in vitro 

studies (52-57, 93) (Table 2, Figure 2). A study on 

hepatocellular carcinoma (HCC) demonstrated 

that exosomes derived from highly metastatic HCC 

cells were taken up by HCC cells with low 

metastatic propensity (54). This resulted in the 

recipient cells undergoing EMT through the 

activation of the MAPK/ERK pathway, associated 

with a more malignant phenotype and facilitating 

HCC progression (54). The ability of the low 

metastatic cells to migrate, form colonies, follow 

chemotaxis and invade was significantly 

increased, co-occurring with high expression of the 

mesenchymal markers α-SMA and vimentin, and a 

low expression of the epithelial marker E-cadherin 

(54). Similarly, another study found that both 

melanoma and lung cancer-derived exosomes 

increased the migratory and invasive capacity of 

primary melanocytes, suggesting that effects of 

cancer-derived exosomes is not limited to certain 

cancer types (55). The invasive phenotype of 

exosome-treated melanocytes is regulated by let-

7i, which may induce its effects through LIN28B 

and HMGA2 (55). These two targets have been 

suggested to contribute to the EMT process (55, 

132). Two EMT-related miRNAs, miR-191 and let-

7a, were significantly upregulated in the serum 

exosomes of stage I melanoma patients, 

compared to healthy control patients, suggesting 

that these miRNAs are potential biomarkers for 

early-stage melanoma (55). This study also 

showed treatment of primary melanocytes with 

melanoma-derived exosomes caused an 

upregulation of SNAI2 and ZEB2, which led to the 

subsequent downregulation of E-cadherin and 

upregulation of vimentin (55). Furthermore, in lung 

cancer, it has been established that treatment of 

epithelial lung cancer cells with exosomes derived 

from mesenchymal lung cancer cells resulted in 

their transition to a metastatic, mesenchymal 

phenotype (52, 53). The epithelial cells gained an 

elongated, spindle-like shape, and had exhibited 

increased migratory and invasive abilities. Also, 

the downregulation of E-cadherin, and 

upregulation of N-cadherin and vimentin was 

observed (52, 53). In addition to these findings, 

numerous miRNA were differentially expressed in 

the mesenchymal cell-derived exosomes (52). 

Interestingly, it was found that the most enriched 

pathways represented by the miRNA were 

significantly associated with EMT factors, such as 

TGF-β and intercellular junctions (52). This study 

suggests that these differentially expressed 

miRNAs could serve as EMT biomarkers in lung 

cancer (52).  

The EMT process and the transformation 

of lung cancer cells into a metastatic phenotype 

has also been induced in human bronchial 

epithelial cells (HBECs) by exosomes derived from 

the serum of late stage lung cancer patients (53). 

In vitro application of the serum-derived exosomes 

resulted in increased migration and invasion of the 

HBECs along with decreased expression of E-

cadherin and ZO-1, and increased activity of N-

cadherin and vimentin. Knockdown of exosomal 

vimentin reduced cell migration which suggests 

that vimentin may behave as an activator of 

exosome-mediated metastasis in lung cancer (53). 

Similar findings have been reported in a study that 

assessed the risk of pregnancy-associated breast 

cancer (56). Exosomes derived from healthy 

human milk were found to express significantly 

increased concentrations of TGF-β2, which, when 

incubated with benign and malignant epithelial 

breast cancer cells, led to the initiation of EMT 

(56). Morphological changes were observed in the 

benign and malignant cells, with the loss of the 

cytoskeletal structure and disruption of the 

intercellular junctions. This was accompanied by 
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the loss of E-cadherin and increase in α-SMA and 

vimentin (56). These results suggest that women 

who secrete high amounts of TGF-β2 in their 

breast milk-derived exosomes may be at an 

elevated risk of breast cancer (56). Increased 

concentrations of TGF-β2 have also been 

described in exosomes derived from hypoxic 

prostate cancer cells compared to exosomes 

derived from normoxic prostate cancer cells. In 

addition to TGF-β2, pro-EMT factors IL-6 and β-

catenin were also significantly expressed in the 

hypoxic exosomes. This resulted in the 

downregulation of E-cadherin and upregulation of 

β-catenin in recipient prostate cancer cells along 

with increased invasiveness, movement and 

stemness (127).  

Table 2. The effects of exosomes in the promotion of EMT in cancer  

Cancer Type Exosomal Source Recipient Cell/ 

Animal 

Biological Effects References 

Breast Serum of tumour-

bearing mice 

Wildtype Mice  Increased IL-6, IL-17  Tumour formation 

 Increased tumour 

metastasis 

(60) 

Healthy human milk Benign and 

malignant 

epithelial breast 

cancer cells 

 Decreased E-

cadherin 

 Increased α-SMA, 

vimentin 

 Loss of cytoskeletal 

structure 

 Disruption of intercellular 

junctions 

(56) 

Breast CSCs, and 

breast cancer cells 

resistant to 

tamoxifen, 

metformin, 

doxorubicin and 

paclitaxel 

Sensitive breast 

cancer cells 

 Decreased E-

cadherin, TGF-β, 

FOXO-3a 

 Increased SLUG, 

SNAIL, SOX9, BMI1, 

EZH2 

 Activation of NF-κB, 

SNAI1, AKT 

 Increased resistance to 

tamoxifen, metformin, 

doxorubicin and paclitaxel 

(145), (149) 

 

Liver Highly metastatic 

HCC cells 

Low metastatic 

HCC cells, and 

mice 

 Decreased E-

cadherin 

 Increased α-SMA, 

vimentin 

 Activation of 

MAPK/ERK pathway 

 Increased migration, 

invasion, colony formation, 

chemotaxis 

 Tumour recurrence in the 

liver 

 Increased  tumour size, 

weight 

(54) 

Lung Mesenchymal lung 

cancer cells, and 

serum of late stage 

lung cancer patients 

Epithelial lung 

cancer cells 

 Decreased E-

cadherin, ZO-1 

 Increased N-

cadherin, vimentin 

 Increased ZEB1, 

TWIST1 

 Acquisition of an elongated, 

spindle-like shape 

 Shift towards 

CD24low/CD44high 

phenotype 

 Increased migration, 

invasion 

 Increased resistance to 

gemcitabine, and 

cisplatin/gemcitabine 

(52), (18), 

(53) 

Oesophageal Irradiated T cells Oesophageal 

cancer cells 

 Increased NF-κB, 

SNAIL, β-catenin 

 Increased migration, 

invasion 

 

(148) 

Ovarian 

 

Hypoxic 

macrophages 

Epithelial 

ovarian cancer 

cells, and mice 

 Activation of PTEN-

PI3K/AKT pathway 

 Increased resistance to 

cisplatin 

(146) 

Skin Melanoma and lung 

cancer cells 

Primary 

melanocytes 

 Decreased E-

cadherin 

 Increased SLUG, 

ZEB2, vimentin 

 Increased migration, 

invasion 

(55) 
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6.2. In vivo models of exosome-induced 

EMT and metastasis 

Currently, there is a paucity of in vivo 

studies and reports in the literature showcasing the 

effects of cancer-derived exosomes on EMT and 

metastasis. It has been shown that exosomes 

derived from a highly metastatic pancreatic cancer 

cell line can cause an increase in primary tumour 

volume in mice (133). Injection of these exosomes 

also caused a greater metastatic burden and cancer 

cell metastasis to various organs compared to control 

mice and mice injected with exosomes derived from 

poorly metastatic cells (133). In breast cancer, 

infusion of exosomes derived from the serum of 

tumour-bearing mice into wildtype mice resulted in 

tumour formation and increased metastasis of the 

tumour (60). The tumours themselves and the 

tumour-derived exosomes displayed an altered 

cytokine profile compared to exosomes derived from 

the wildtype mice, with IL-6 and IL-17 significantly 

upregulated (60). Inhibition of IL-6 and IL-17 resulted 

in the attenuation of exosome-induced 

micrometastases in the lung and draining lymph 

nodes (60). It has been demonstrated in in vitro 

studies that IL-6 and IL-17 drive EMT in breast, 

oesophageal, lung and brain cancer (134-140). This 

growing body of in vitro and in vivo evidence 

demonstrating exosomes as key mediators of EMT 

and metastasis suggests a direction for potential 

translation into the clinical field. However, there is a 

need for more extensive in vivo investigations, as it is 

imperative to understand the role of exosomes in 

physiological settings before clinical application 

aimed at the improvement of cancer treatments.  

7. EXOSOMES CONFER THERAPY 

RESISTANCE AND CANCER RECURRENCE 

THROUGH INDUCTION OF EMT 

Therapy resistance and recurrence have 

become complicated obstacles to overcome in the 

treatment of cancer, despite initial successful 

attempts at treating the primary tumour by either 

 
 

Figure 2. Exosomes derived from metastatic, mesenchymal cells carry pro-EMT factors to recipient epithelial cells, consequently inducing 

EMT. Pro-EMT factors include Vimentin, TGF-β, β-catenin, interleukins-6 and -17, and several miRNA. Uptake of these factors result in the 

activation of EMT pathways and subsequently EMT transcription factors. Numbers listed refer to citations in the reference list.  
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surgical resection, chemotherapy, radiotherapy or 

adjuvant therapy (141-143). Tumour cell resistance 

to therapy can be attributed to genetic mutations 

and/or mechanisms employed by elements of the 

tumour microenvironment that induce protection 

against treatment (142). Cancer-derived exosomes 

exploit their intercellular signalling function in order to 

manipulate both parent and recipient cells to confer a 

therapy-resistant phenotype through EMT (142). 

EMT is strongly linked with therapy resistance and 

cancer recurrence (144). Tumour cells resistant to 

therapy often enter a dormant state, then exit this 

state causing clinical recurrence (54). Tumour 

recurrence is frequently caused by metastasis with 

secondary tumours exhibiting decreased sensitivity 

to the effects of chemo- and radiotherapy compared 

to their corresponding primary lesions (54, 141).  

7.1. Exosomes Promote EMT-Induced 

Resistance to Chemotherapy and Radiation 

Research has shown that exosome uptake 

can modify recipient cells to adopt a therapy-resistant 

phenotype (18, 142, 145-150). A study on human 

breast cancer cells demonstrated that exosomes 

derived from cells resistant to the drugs tamoxifen 

(MCF-7/T) and metformin (MCF-7/M), induced 

resistance to these drugs in the parental MCF-7 cells 

(145). Exosome-induced resistant MCF-7 cells were 

characterised by the downregulation of E-cadherin, 

and activation of NF-κB, SNAI1 and AKT. 

Interestingly, addition of parental MCF-7-derived 

exosomes had no effect on the resistant properties of 

MCF-7/T and MCF-7/M cells (145). Another study on 

epithelial ovarian cancer (EOC) showed that 

exosomes derived from hypoxic macrophages 

increased the resistance of EOC cells to cisplatin, 

linking the impact of the primary tumour 

microenvironment on the interaction between 

infiltrating immune cells and cancer cells (146). 

These exosomes were highly enriched with miR-223, 

which increased cisplatin resistance through the 

PTEN-PI3K/AKT pathways, both in vivo in mice, and 

in vitro. In EOC patients, those with a high expression 

of HIF-1α had higher intertumoural levels of miR-223. 

Furthermore, circulating exosomal miR-223 levels 

were closely associated with EOC recurrence. 

Intriguingly, it has been shown that EMT is regulated 

by the miR-223 pathway (146). In pancreatic cancer 

cells, downregulation of miR-223 reverses EMT in 

cells resistant to gemcitabine (147). Overall, these 

studies suggest that exosomal content can influence 

chemotherapy responses in cancer by modifying 

EMT.  

Another interesting phenomenon is that 

radiation triggers an immune response that causes 

immune-derived exosomes to promote metastasis. 

Irradiated T cell-derived exosomes caused 

oesophageal cancer cells to gain a migratory and 

invasive phenotype (148). The higher the radiation 

dose, the more invasive the cancer cells were. The 

metastatic-like phenotype of the cells was associated 

with an upregulation of NF-κB, SNAIL, and β-catenin 

(148). Activation of NF-κB is associated with the 

stabilisation of SNAIL, which is known to suppress E-

cadherin expression (151). The onset of EMT is 

induced by activation of Wnt signaling which prevents 

GSK-3β from phosphorylating β-catenin and SNAIL. 

The combined effect of these two factors promotes 

cancer cell survival during dissemination and 

invasion (152). The findings of these studies suggest 

that exosomes induce EMT to facilitate therapeutic 

resistance to radio- and chemotherapies.  

Many studies demonstrating therapy 

resistance are strongly associated with CSCs (18, 

142, 143). A key attribute of CSCs is their ability to 

enter dormancy, then re-emerge into the circulation, 

metastasise and form a secondary tumour by 

undergoing MET (142). Our previous work was first 

to demonstrate that exosomes derived from 

oncogenically-transformed, mesenchymal HBECs 

can transfer chemoresistant traits to, and induce a 

CSC-like phenotype in recipient untransformed 

HBECs (18). The mesenchymal HBECs displayed an 

elongated, spindle-like morphology, along with a 

decrease in the expression of CDH1, and an increase 

in the expression of SNAI1, SNAI2, TWIST, ZEB1 

and ZEB2. Additionally, the mesenchymal HBECs 

exhibited significantly elevated resistance to 

commonly used lung cancer therapies, cisplatin, 

gemcitabine, and a combination of cisplatin and 

gemcitabine treatment, compared to the epithelial 

HBECs. Exosomes derived from the chemoresistant, 

mesenchymal oncogenic HBECs promoted 

resistance to gemcitabine and the combination of 

cisplatin and gemcitabine, in the epithelial, 
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untransformed HBECs. The treatment of exosomes 

also increased expression of ZEB1 and TWIST1, and 

promoted “stemness” by shifting the cells towards a 

CSC-like CD24low/CD44high phenotype (18). Another 

study showed that exosomes derived from breast 

CSCs and cells resistant to doxorubicin and 

paclitaxel promoted EMT-mediated chemoresistance 

of the recipient sensitive breast cancer cells (149). 

The exosomes derived from both the CSCs and 

chemoresistant cells were highly enriched with miR-

155, which was transferred to the recipient cells. It 

has been suggested that miR-155 acts as a regulator 

of EMT and CSCs as it targets FOXO3a and 

regulates the loss of C/EBP-β, which can result in the 

loss of TGF-β (149, 153). These exosomes also 

induced an increase in the mRNA levels of SLUG, 

SNAIL, SOX9, BMI1 and EZH2, alongside a 

decrease in E-CAD, TGF-β and FOXO-3a in the 

recipient sensitive cells. BMI1 and EZH2 are 

stemness-related transcription factors (149). These 

results show that the acquisition of a CSC-like 

phenotype is a major contributing factor of 

chemoresistance. 

Another causative element of 

chemoresistance is tumour microenvironment pH. 

An acidic microenvironment has been associated 

with poor patient prognosis, suppressing the 

function of cytotoxic lymphocytes and NK cells, 

and a therapy-resistant phenotype (70, 142). 

Acidic environments are thought to significantly 

increase exosome release and facilitate uptake of 

exosomes by recipient cells in vitro (154-156). 

Extracellular acidity affects the mechanisms of 

anticancer therapies that are weak base drugs 

(157). Cellular uptake of weak base drugs is 

reduced as a high intracellular pH causes an influx 

of H+ ions from the extracellular space into the cell 

(157, 158). Weak bases are ionised in acidic 

environments which reduces its ability to permeate 

cell membranes (157). The acidic tumour 

microenvironment also assists exosomes in 

promoting therapy resistance (142). Some cancer-

derived exosomes express ATP-binding cassette 

(ABC) transporters (159). Exosomal ABC 

transporters have shown to sequester 

chemotherapeutic drugs into exosomes (142). The 

chemotherapeutic drug docetaxel, used for the 

treatment of breast and prostate cancer, can 

actually increase the number of exosomal ABC 

transporters (159). It has also been revealed that 

cisplatin is sequestered into melanoma exosomes 

in a pH-dependent manner (160). 

Chemoresistance is often seen in breast cancer as 

the multidrug pump ABCG2 is localised in the 

membrane of breast cancer-derived exosomes 

(150). Expression of ABCG2 mediates multidrug 

resistance as it enables sequestration of the drugs 

mitoxantrone and topotecan into the exosomal 

lumen. The PI3K-AKT signalling pathway 

regulates ABCG2, as inhibition of this pathway 

causes ABCG2 to relocalise to the cytoplasm, thus 

restores breast cancer cell drug sensitivity (150).  

7.2. Exosomes promote EMT-induced 

cancer recurrence 

There are not many studies on the 

relationship between exosomes, EMT and cancer 

recurrence. One study looked at the effects of highly 

metastatic exosomes on tumour recurrence in 

hepatic cellular carcinoma (HCC) (54). Surgical 

resection is the primary treatment for HCC patients 

who do not have cirrhosis (54, 161). Despite 

resection, the five-year risk of recurrence is 70%, 

which often arises within two years after surgery 

(162). Injection of highly metastatic HCC cell-derived 

exosomes into the tail vein of mice resulted in  

recurrence in the remnant liver in 100% of the mice, 

compared to the control group in which only 40% 

experienced recurrence (54). Tumour size and 

weight was also significantly higher in the group 

injected with the exosomes compared to the control 

group. As mentioned earlier these exosomes induced 

EMT in HCC cells via MAPK/ERK signalling (54). 

Furthermore, a study on colorectal cancer uncovered 

that there was a significantly higher count of GPC1+ 

plasma exosomes in CRC patients with relapse, 

compared to patients without relapse (163). 

Moreover, patients that died with relapse compared 

to patients that survived with relapse, and patients 

that survived with relapse compared to patients that 

survived without relapse had altered levels of GPC1+ 

plasma exosomes (163). There was also an 

increasing trend with GPC1+ plasma exosomes in 

patients who relapsed nine months post-surgery. In 

order to investigate the role of GPC1 in cancer 

recurrence, GPC1 was overexpressed in CRC cells, 
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which resulted in decreased E-cadherin, increased 

vimentin and upregulated SNAI1 and SLUG 

expression, ultimately causing increased migratory 

and invasion abilities (163). These findings suggest 

that the upregulation of GPC1 in plasma exosomes 

may be involved in CRC relapse through induction of 

EMT (163). A study on urothelial bladder cancer 

(UBC) found that exosomes derived from the urine of 

UBC patients had significantly increased expression 

of the lncRNA HOX transcript antisense RNA 

(HOTAIR) (164). HOTAIR aids tumour initiation and 

progression, and is closely linked with poor prognosis 

in various cancers (165-167). Knockdown of HOTAIR 

decreased migration and invasion of UBC cell lines 

(164). It also resulted in the reduction of SNAI1 and 

ZEB1, TWIST1, MMP1, LAMB3 and LAMC2 and 

increased expression of ZO1 (164). Previous studies 

have shown that a high level of expression of 

HOTAIR is associated with cancer recurrence and 

even has the potential to act as a biomarker for 

recurrence in HCC, bladder cancer (165-167). These 

retrospective studies examining patient-derived 

exosomal cargo are beneficial for understanding the 

pathogenesis of cancer recurrence and there is a 

great urgency for additions to the literature.  

Together, these studies have highlighted 

the involvement of cancer-derived exosomes in the 

initiation and promotion of EMT, metastasis, therapy-

resistance and cancer recurrence (Table 2). Whether 

exosomes are the driving force behind these factors 

still requires more research, however, it is evident 

that exosomes are important contributing factors. In 

order to determine this, future studies will need to  

confirm that the effects observed are a true 

representation of exosomes and not of other 

elements of the tumour microenvironment, for 

example by inhibiting exosome release. It is essential 

that more animal and patient studies are conducted 

in order to determine the alterations in exosomal 

cargo induced by cancer. Identifying these changes 

in exosomal cargo may provide insight into the 

disease and act as potential biomarkers of cancer to 

guide prospective patient studies. Early detection of 

cancer onset, metastatic progression, therapy-

resistance and recurrence would allow for early 

intervention and tailored therapies, thus the 

requirement for accurate biomarkers is essential. The 

rapid progression of cancer going undetected can be 

attributed to the current tissue biopsy and imaging 

methods used for diagnosis and prognosis. Real-time 

detection of exosomes using liquid biopsies promises 

being a suitable, better alternative.  

8. LIQUID BIOPSY 

Liquid biopsy in the cancer setting is a 

process that involves isolating and analysing 

biomarkers present in bodily fluids, such as blood, 

urine, saliva and ascites, in order to provide 

information about the tumour (168, 169). Currently, 

liquid biopsies based on cancer marker proteins (e.g. 

CA125 for ovarian cancer (170)) and cytokine 

responses to therapies (171) are used in cancer 

diagnostics. Unlike tissue biopsies, liquid biopsies 

promises the detection of metastasis and cancer 

responses to therapies in real-time (172). Due to the 

non-invasiveness of liquid biopsies it is safe for 

patients, rapid to perform and easily repeatable. 

Importantly, liquid biopsies may provide a more 

accurate representation of tumour heterogeneity, as 

it is assumed that the mutant molecules derived from 

the circulation originate from the variety of cancer 

cells present in the lesion (173). The abundance of 

exosomes in blood and other body fluids, and the fact 

that their content is reflective of their parent cells, 

make exosomes an ideal target for liquid biopsy 

approaches (174). However, in addition to 

exosomes, liquid biomarkers are also based on a 

variety of other entities, such as circulating tumour 

cells (CTCs) and circulating tumour DNA (ctDNA) 

(168). 

8.1. CTCs and ctDNA 

Circulating tumour cells are cancer cells 

that detach from the primary tumour, invade the BM 

and surrounding tissues, and disseminate into blood 

vessels (6, 175). CTCs are considered “predestined 

sources” of metastasis (175), representing the stage 

between the acquisition of an invasive phenotype 

and the formation of metastatic sites (176). EMT 

transcription factors, such as SNAIL, SLUG, TWIST 

and SIP1 promote the survival and formation of CTCs 

by preventing apoptosis, escaping senescence, and 

enhancing invasiveness and intravasation (175, 

176). Circulating tumour DNA (ctDNA) is released by 

apoptotic and necrotic tumour cells (177). ctDNA 
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therefore contains the entire tumour genome, serving 

as reservoirs of genetic mutations and alterations 

(177). It has been proposed that ctDNA may induce 

oncogenic alterations and promote transformation of 

normal, non-cancer cells, thus contributing to 

metastasis (178). Therefore, CTCs and ctDNA have 

become of interest for their potential to act as 

diagnostic, prognostic and predictive biomarkers 

(172). Although CTCs and ctDNA have potential as 

liquid biopsy biomarkers, there are many limitations. 

CTCs and ctDNA are difficult to detect as 

they are rapidly cleared from bodily fluids due to 

their short half-lives of 1-2.5 hours and less than 

1.5 hours, respectively (179, 180). Up to 99.9% of 

CTCs go undetected by the current CTC assay 

methods available, as CTCs are only released into 

the blood at low concentrations (1-10 CTC/mL), 

often enter dormancy and are easily clogged in 

small blood vessels (181, 182). Typically, 7.5 mL 

of blood is extracted from patients to be used for 

CTC experimentation. One study analysed the 

differences in the detection of CTCs derived from 

7.5 mL of blood and 30 mL of blood, in 15 patients 

with colorectal liver metastasis (183). Using the 

CellSearch® System, it was revealed that a median 

of 1 CTC was detected in the 7.5mL samples and 

a median of only 2 CTCs was detected in the 30mL 

sample (183). The CellSearch® System 

recommends a minimum CTC count for certain 

types of cancer for assay specificity and prognostic 

relevance (184). Therefore, patients with a low 

CTC count are excluded for clinical application, 

although they may have clinical relevance. During 

early stage disease, few cancer cells are dying, 

hence a very low level of ctDNA circulates in the 

blood (185). This poses a major problem for early 

cancer detection (186). Similarly to CTC detection 

methods, ctDNA assays can generate false-

positive and false-negative errors (187-189). CTCs 

and ctDNA abundances are often below detection 

thresholds after cancer therapies, however, this is 

not necessarily an indicator of a complete removal 

of the cancer (190). Although CTCs and ctDNA 

may act as an alternative to the traditional tissue 

biopsy, they require validation in large for clinical 

application of these biomarkers in advanced 

cancer and numerous obstacles are yet to be 

overcome.  

8.2. Exosomes 

Exosomes provide significant 

advantages over CTCs and ctDNA, making them a 

good candidate for liquid biopsy methods (174). 

The most important feature of exosomes is that 

they sensitively reflect the phenotype of the 

primary tumour in real-time, thus are an accurate 

representation of tumour heterogeneity (174, 191). 

Unlike CTCs and ctDNA, exosomes are present in 

most bodily fluids at high concentrations during all 

stages of cancer, as exosome release is an active 

process (174, 182, 192). This allows for disease 

monitoring over extended time periods (182). 

Exosomes are stable and can be preserved and 

maintained in blood ex vivo. Their stability allows 

for the protection of their complex cargo derived 

from the tissue of origin (168, 182). This stability, 

and the presence of EMT associated nucleic acids 

and proteins within exosomes provides a unique 

insight into EMT and potential metastasis of the 

primary tumour, allowing for potentially earlier and 

more targeted therapy (191). Only a small volume 

of blood is required for their highly sensitive 

detection in early-stage disease (168, 182). 

Studies have identified exosome content derived 

from cancer patients as potential cancer 

biomarkers. One study reported elevated levels of 

GPC1 in exosomes derived from the serum of 

pancreatic ductal adenocarcinoma patients, 

compared to healthy donors. These GPC1+ 

exosomes had a sensitivity and specificity of 100% 

for all stages of pancreatic cancer, demonstrating 

its potential as a liquid biopsy biomarker for early 

cancer detection (193). As mentioned earlier, 

GPC1 plays a role in the progression of EMT, 

which correlates with the mesenchymal phenotype 

often found in pancreatic tumours (163, 194). The 

unique features of exosomes make them a 

promising source of cancer biomarkers for early 

diagnosis and prognosis, monitoring metastatic 

progression and assessing treatment responses 

(191).  

9. CONCLUSION 

Functionally, cancer-derived exosomes 

carry EMT factors capable of promoting 
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metastasis, and facilitating therapy resistance and 

recurrence. The tumour microenvironment is an 

important contributor of altering exosomal 

intercellular communication, which often 

contributes to the pathogenesis of cancer. 

Although a general consensus of the definition of 

exosomes and its isolation methods have yet to be 

reached, it is evident that these extracellular 

vesicles are important mediators in a variety of 

cancer-related processes. Because of their 

specific EMT cargo, exosomes are predestined 

sources for liquid biopsy approaches which in the 

future will lead to the improvement of cancer 

monitoring, and thereby decrease cancer-related 

morbidity and mortality.  
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