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1. ABSTRACT 

Aging in mammals results in numerous age 

related pathologies such as diabetes, and 

Alzheimer’s disease which ultimately lead to organ 

failure and the demise of the organism. Numerous 

cell-centric hypotheses have attributed the disorders 

of aging to lie downstream to age dependent cellular 

damage to biologic signaling pathways, bio-

informational molecules, telomeres, organelles, and 

stem cells. Here, we review these cell-centric causes 

of aging that range from the disposable soma theory, 

to somatic mutation theory, and free radical theory, to 

theories that ascribe aging to DNA damage and 

methylation (DNAaging and DNA superaging), 

impairment of autophagy (GarbAging), telomeric 

attrition, senescence, immunoscencence and 

inflammaging. Others view that aging is caused by 

MitoAging, NutrimiRaging and miRagings to 

exhaustion of stem cell pool. Together, the current 

models of aging, show the existence of damage to 

different cellular compartments. However, it is not yet 

clear which, if any, of these cellular damages 

represent the most proximal cause of aging.  

2. INTRODUCTION 

At the organismal level, aging is evident in 

all human beings by loss of the ability to reproduce, 

and damage and loss of function in organs, tissues, 

and cells. Many theories of aging have been offered, 

yet, none of these theories can explain all the cellular 
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and organismal changes which occur with aging. 

Importantly, the most proximal cause of aging is 

currently unknown and it is not yet evident as why the 

epigenetic clock that accounts for the methylation 

status of a host of genes so precisely, can predict 

aging and how these methylations are induced and 

drive the aging process. Here, we discuss the current 

theories of aging.  

3. CELL-CENTRIC HYPOTHESES OF AGING 

3.1. Disposable soma theory 

Perhaps one of the earliest theories of 

aging is the so-called disposable soma theory. 

According to this theory life maintains a balance in 

investing its energy resources between maintaining 

itself by repair processes and those which are 

required for procreation and that aging occurs when 

the body invests more of its energy for somatic repair 

or forgoes of such an investment leading to cell death 

(1-2). 

3.2. Somatic mutation theory 

The somatic mutation theory proposes that 

accumulation of DNA mutations can lead to 

tumorigenesis and senescence (3). Consistent with 

this theory, studies in prokaryotes, yeast, and 

mammalian cells have demonstrated that oxidants 

are mutagens and although, there is no argument 

that indeed point mutations in oncogenes or tumor 

suppressor genes can cause cancer, there is as yet 

no definitive proof that such mutations in the DNA can 

drive all the hallmarks of aging. Yet, the anti-oxidant 

mechanisms are sufficiently robust and can revert 

back to normal, the oxidized lipids, proteins and 

nucleic acids (4-8).  

3.3. Free radical theory and rate of living 

hypothesis 

According to the free radical theory 

proposed by Denham Harman, oxidative stress is 

one of the most important drivers of aging. He drew 

parallels between the effects of aging and those 

that are inducible by ionizing radiation, 

mutagenesis, cancer, and cellular damage (9). 

This theory gained further traction with the 

identification of the enzyme, superoxide dismutase 

(SOD), which provided the first compelling 

evidence, that superoxide anions (O−2.), can be 

generated in vivo, and got further boost from the 

subsequent identification of a host of anti-oxidant 

defense mechanisms (7,10). This concurred with 

the idea, that species with a high metabolic rate, 

age faster and have a shorter life-span (11-12). 

This theory was also consistent with the “rate of 

living” hypothesis that senescence results from 

energy consumption (11,13). These two 

hypotheses merged when it was shown that 

mitochondria are the principal source of 

endogenous oxidants and generate O−2. and that 

faster respiration leads to the generation of more 

oxygen radicals, which drive significant damage to 

cell and its constituents (14-20).  

In mammalian cells, reactive oxygen 

species (ROS) are comprised of O−2., H2O2, and .OH. 

ROS are generated by 5-lipoxygenase and NADPH 

oxidase in the mitochondria and by the mitochondrial 

electron transport chain (ETC) by donation of 

electrons by NADH or succinate to complexes I and 

II. Peroxisomal fatty acid metabolism generates 

H2O2 , and reactions by cytochrome P-450 that 

metabolize xenobiotic compounds, mostly of plant 

origin, by catalyzing their univalent oxidation or 

reduction can also generate oxidants. Phagocytic 

cells release ROS as a mixture of oxidants and free 

radicals, including O−2., H2O2, NO. and release 

hypochlorite as a “respiratory burst” in response to 

and in attempt of killing pathogens (3). Other sources 

of oxidants are enzymes that, often, in a tissue-

specific manner, generate ROS under normal or 

pathological conditions (21). 

Under normal conditions, the on·slaught 

damage by ROS is prevented by a host of anti-

oxidant defense mechanisms that include enzymatic 

scavengers such as sodium dismutase (SOD), which 

cause the dismutation of O−2. to H2O2, as well as 

catalase and glutathione peroxidase (GPX), which 

convert H2O2 to water. Also included in these 

defense mechanisms are GSH reductase, and 

dehydroascorbate reductase which are involved in 

the reduction of oxidized forms of small molecular 

anti-oxidants as well as thioredoxin reductase which 

maintains protein thiols. Ascorbate (vitamin C), urate, 
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and glutathione (GSH) act as hydrophilic radical 

scavengers whereas tocopherols, the major forms of 

vitamin E, phenolic compounds, flavonoids, 

carotenoids, and ubiquinol act as lipophilic radical 

scavengers. Glucose-6-phosphate dehydrogenase 

regenerates NADPH and maintains a reducing 

environment (3). Although diverse lines of evidence 

exist that support Harman’s theory, this idea can not 

explain all the age related pathologies, and although 

ROS is widely accepted to contribute to aging, 

substantial gaps in our knowledge still persist (22). 

3.4. DamAging 

According to the damage theory of aging, 

aging is due to the occurrence of widespread genetic 

changes and instability of the major informational bio-

molecules, including DNA, RNA, proteins, 

carbohydrates and lipids (23). Such damages are 

considered to be major causal factors that drive the 

age-related alterations and diseases, and lead to 

decreased health-span and life-span (24-27). 

Random alterations in the synthesis and change in 

the structure of bio-molecules are thought to be the 

underpinning of some, but not all, of the physiological 

changes that we witness in aged tissues. However, 

the full extent of the frequency, and characteristics of 

changes that occur in the cellular and molecular 

machinery and their driving forces have not been fully 

realized.  

Particularly vulnerable to damage are long 

lived molecules that exist within cells or persist for a 

long time in the extracellular matrix. However, it is not 

clear as whether such damages are causal or casual 

and more work is clearly needed to define the 

importance of such damages and whether they are 

unique to all cells or a subset of cells and tissues. 

Also, there is a need to know whether such changes 

cause damage or are ways that cells protect 

themselves from further damage. The cause of these 

damages have long been considered to be ROS, 

however, the possibility that not all damages might be 

related to ROS and that some damages might be due 

to other causes such as UV, impact of different 

wavelengths and environmental toxic agents can not 

be ruled out. Indeed, these damages might be due to 

the inherent and progressive failure of the damage 

response pathways. Based on existing models, it is 

clear that failure of damage repair can lead to the 

shortening of life-span and progeria. For example, 

mice with defects in DNA repair genes show 

premature aging that are indistinguishable from those 

that are displayed by wild-type aged mice (27). 

Similarly, a defective ubiquitin ligase/co-chaperone 

(Carboxyl terminus of HSP70-interacting protein) 

reduces life-span and causes accelerated age-

related pathologies in mice (28).  

3.5. DNAging and super DNAging 

There are other causes for damage to 

biomolecules, by endogenous factors such as 

replication errors, oxygen free radicals, glucose and 

oxidative sugars and body heat and exogenous 

factors such as ionizing radiations and DNA 

damaging agents, UV rays, xenobiotics, viruses, 

chemicals and dietary carcinogens. Although cells 

have developed defense mechanisms to protect the 

biomolecules from these damages and have 

mechanisms to repair them, aging leads to the 

erosion of the robustness of such systems, and 

hence, with age, the rapidity by which such changes 

occur and the number of damaged molecules, 

increases progressively. 

The DNA damage theory arose from the idea 

that aging might result from DNA damages that remain 

un-repaired and that such damages contribute to the 

age related pathologies. Consistent with such a theory, 

defects in the DNA nucleotide excision repair are 

associated with accelerated aging in mice while certain 

single nucleotide polymorphism in DNA repair genes 

are associated with extended life-span in humans (28-

32). DNA endures damage such as single- and double-

strand breaks, adducts, and crosslinks and mutations 

throughout life by a host of internal and environmental 

factors (33). Single strands of DNA are repaired via 

base excision repair (BER) and nucleotide excision 

repair (NER) and its subpathways. Double strand DNA 

breaks (DSB) are repaired by the non-homologous end-

joining (NHEJ) and homologous recombination (HR) 

pathways. DNA damage is identified by the 

accumulation of 8-hydroxydeoxyguanosine (oxo8dG) 

residues and polycyclic aromatic hydrocarbon adducts, 

while mutations, which may be caused by imperfect 

DNA replication, are specific changes that occur in 

specific nucleotide sequence. 
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It has been estimated that DNA damage 

occurs in mice at a rate of 25 to 115 times per minute 

in each cell, or about 36,000 to 160,000 per cell per 

day (34). Although, DNA replicates with a fairly high 

fidelity, the DNA polymerase in humans is subject to 

making errors at a rate of 1 per every 100,000 

nucleotides which are then mostly corrected by 

various DNA enzyme repair processes (35). After the 

cell division is finalized, any incorrectly paired 

nucleotides remain as permanent mutations. Once 

the genes of DNA repair enzymes, themselves, are 

damaged, the mutation rate increases at a faster rate. 

Some of such enduring mutations are carcinogenic 

while other types of damage might change the gene 

expression, increase the rate of senescence or 

apoptosis and shorten the life-span (36-39). 

Damage to the ataxia-telangiectasia 

mutated (ATM) kinase which detects DSBs is 

associated with genomic instability, DNA repair 

defects, immune deficiency, and premature 

cellular senescence that can be rescued by p53 

deficiency. This disease also generates elevated 

ROS levels that cause further damage to the DNA. 

At the organismal level, the disease causes 

cerebellar degeneration, progeroid aging and 

cancer (40-41). Lending credibility that DNA 

mutations can be pathogenic and may shorten life-

span, are a spectrum of human diseases such as 

Hutchinson-Gilford progeria syndrome (HGPS) 

that all cause premature aging. HGPS syndrome is 

caused by a mutation at the LMNA locus that 

encodes proteins of the nuclear laminae. 

Mutations in LMNA have also been reported in 

several other atypical progeroid syndromes (42). 

Werner syndrome (WS) that also causes progeria 

is due to mutations in the WRN genes (43-44). 

There are reports of other progeroid disorders 

including neonatal progeroid syndrome (NPS) or 

Wiedemann-Rautenstrauch syndrome that present 

with an “old-man” appearance since birth or 

childhood. These are thought to be potentially 

caused by DNA repair defects (45-46). Although, 

DNA mutations might be pathogenic, their overall 

contribution to age related shortening of life-span 

is debatable. For example, increased genomic 

instability has not been found to be necessary for 

shortened life-span in DNA repair deficient mice. 

Defects in the Pms2 gene, that normally corrects 

DNA base pair errors, increases the frequency of 

DNA mutations in all tissues by about 100-fold, yet, 

it does not shorten life-span in mice (47-48). 

As compared to “averagely” aged humans, 

in nonagenarians (90–99 years), centenarians (100–

109 years) and super-centenarians (110 years and 

older), the prevalence of diseases, such as cancer, 

cardiovascular disease, diabetes and dementia, is 

lower (49). This suggests that such long lived 

individuals possess better defense and 

housekeeping mechanisms and superior genetics, 

and chromosomal, telomeric and DNA stability that 

curtails the extent of such damages. Additional 

environmental factors such as diet, physical activity, 

and stress free life-style might be at work in keeping 

the damage to molecules at bay in these long lived 

humans (49).  

3.6. DNAMethylAging 

One of the cardinal features of aging, is the 

progressive and relentless life-time methylation of the 

DNA. The epigenetic theory of aging emerged from 

the observation that baseline DNA methylation levels 

progressively drift by aging, a process, named as 

“epigenetic drift”. These changes can be observed in 

the identical genetic backgrounds such as 

monozygotic twins (50). There are other locus-

specific DNA methylation changes that are not 

dependent on gender or tissue type and reproducibly 

occur in all aged people. In fact, the process is so 

precise that the true biological aging can be 

deciphered from the methylation state of a handful of 

CpG sites (51). The DNA methylation, is deeply 

embedded in nature as an evolutionarily conserved 

process in diverse species, not only for epigenetic 

modification for gene silencing but also for regulation 

of longevity and aging (52-54). In some aging tissues, 

one can observe, a stochastic age-associated 

increase in gene expression, that is referred to as 

transcriptional noise (55).  

Aging appears to be plastic and not fixed, 

to be inducible and yet reversible and longevity is 

known to be epigenetically controlled by specific 

alterations in the chromatin state. It is remarkable that 

epigenetic changes, not only are responsive to aging, 

they can act as potent drivers of the aging processes. 



Cell-centric models of aging 

5 © 1996-2021 
 

In fact, DNA methylation patterns that are associated 

with gene repression are known to be dynamically 

changing with age and epigenome appears to act as 

a sensor that gauges age dependent changes due to 

DNA damage, environmental stresses, or 

inflammation and sets the cellular response to the 

development of metaplasia to senescence (56-58). 

The idea, that the DNA methylation and aging are 

intertwined, dates as far back as the 1987, when it 

was realized that aged tissues and senescent 

fibroblasts exhibit low levels of 5mC (59-60). This 

initial idea has been expanded remarkably by 

genome-wide analysis of methylome that clearly 

shows, that DNA methylation patterns, are age 

dependent in aging tissues and across many species 

(50, 61). The erosion of DNA methylation patterns 

involves both locus-specific hypermethylation and 

hypomethylation (50, 62-64). Global hypomethylation 

appears to signify the loss of integrity of constitutive 

heterochromatin, that is seen in various eukaryotes, 

ranging from yeasts to humans (65). The first 

genome-wide analysis on aging revealed, that there 

is an equal extent of 5hmC gain or loss, in 

human mesenchymal stem cells (hMSCs). These loci 

had distinct distribution patterns with hypo-

hydroxymethylated sites being highly represented at 

CG-poor regions whereas the hyper-

hydroxymethylated sites occurred mainly at CGIs 

and gene bodies (66).  

Some epigenetic changes such as 

hypomethylation foci or methylation changes that 

develop at specific CGIs and may lead to 

transcriptional deregulation during aging are also 

represented in replicatively senescent cells (67-

71). There are some specific epigenetic signatures 

that are independent from the age of the individual 

that correlate well with the number of replications 

in both fibroblasts and hMSCs (72-75). Some of 

these changes may play a causal role since it is 

known that treatment of cells with inhibitors of DNA 

methylation causes senescence (76). Both 

replicative and oncogene inducible forms of 

senescence have been shown to lead to an 

increase in the biological age as gauged by the 

epigenetic clock (77). However, such changes are 

not universal, since DNA damage induced 

senescent cells, do not endure such changes (77).  

Foci of hypermethylation mainly occur at 

gene specific CG islands during aging which 

sometimes alter gene expression (78). Some of 

these hypermethylated genes also appear in age 

induced diseases, impaired immunocompetence in 

the elderly and in cancer cells (79-88). The age 

inducible hypomethylations occur in heterochromatic 

regions of the DNA. In human DNA, this includes 

repetitive elements and transposons which contain 

the majority of methylated CG dinucleotides as well 

as CG-poor regions which reside close to certain 

genes (61, 89-91 ). The so-called “open sea regions” 

include megabase regions that also have a low CG 

content (92). 

Moreover, the methylation of histone which 

is controlled during the development, and is required 

for the maintenance of stem cell plasticity, is also 

intimately linked to aging (93-98). Histone 

methylation is an active process that requires the 

trithorax group of proteins, which trimethylate histone 

H3 at lysine 4 (H3K4me3), a histone mark that is 

required for gene activation. Indeed, whereas in-

activation of a H3K4 demethylase shortens life-span, 

in-activation of trithorax and several H3K4 

methylases has been shown to extend life-span in C. 

elegans (99). 

The epigenomic changes start early in life 

as early as fertilization, continue during the 

development and in the pre-implantation embryos, 

when massive de-methylation, renders germ cells 

totipotent (50, 100). Even during prenatal 

development, the methylome is exquisitely 

responsive to the maternal diet (101). The Dutch 

Hunger Winter study showed, that embryos from 

mothers who experience famine, develop 

hypomethylation and hypermethylation of several 

DNA loci, and later in life, develop many health issues 

such as cardiovascular disease, hypertension, 

impaired glucose homeostasis to obesity (102-103). 

Even depression of the mother can alter the 

methylation status of the imprinted genes which, later 

in life, exposes the individual to diseases (104). 

Throughout the life of an adult, the methylation status 

of DNA. is also known to drift with age based on such 

lifestyle choices as diet and calorie intake, physical 

activity as well as a host of chemical, physical, 

biological, psychological and behavioral factors (105-
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106). For example, physical activity has been shown 

to reduce the risk of developing cancer and mortality 

(107-110). 

Unfortunately, the epigenome which molds 

genomic information. loses its luster with age due to 

the multitude of nutritional and intracellular and 

extracellular, environmentally driven, stresses that 

deteriorate the genomic integrity. Although, this loss 

of genomic integrity persists, there is hope that 

rejuvenating interventions can be instituted that 

reverse the age-dependent epigenetic and gene 

expression drifts, as well as to normalize the 

biochemical changes, including protein aggregation, 

oxidation of informational macromolecules, and 

glycation (111). For example, some epigenetic 

changes that occur both in aging and by senescence 

have been shown to be reversible by reprogramming 

of cells into induced pluripotent stem cells (iPSCs) 

(112-115). 

3.7. GarbAging and impairment of 

autophagy 

Autophagy is a housekeeping and protein 

quality control mechanism that is required for the 

maintenance of cellular health by removing damaged 

or defective proteins and organelles by the process 

of macroautophagy and mitophagy. Autophagy gets 

activated by stress including caloric restriction, and 

endows cells stress resistance and longevity (116-

120). It has been shown that in C. elegans, increased 

autophagy and expression of autophagy genes, such 

as bec-1, Atg-7 and Atg-12, are required for the 

extension of life-span (121-124). Unfortunately, the 

action of removal of damaged parts degrades with 

aging, leading to the accumulation of waste products 

by impaired autophagy, accumulation of defective 

mitochondria due to decreased mitophagy 

(GarbAging), with the final outcome of development 

of cellular senescence and age-related degenerative 

diseases (125-133). In mammalian liver, autophagy 

declines during aging, by a progressive decrease in 

the expression of lysosomal-associated membrane 

protein 2 (LAMP2) which acts as a receptor for 

chaperone-mediated autophagy (134). Prevention of 

this age induced decline in LAMP2 suppresses the 

accumulation of damaged proteins and improves 

hepatic function (135).  

AMPK signaling a positive regulator for 

autophagy, controls autophagy through mTOR and 

ULK1 signaling, and leads to reduction in 

metabolism (136-137). AMPK regulates the 

formation of autophagosomes whereas mTOR 

inhibits autophagy (137-138). mTORC1 interacts 

with ULK1 complexes and regulates the metabolic 

balance between protein and ribosome synthesis, 

and the catabolic processes that require 

autophagy. Mammalian ULK1, an orthologue of 

yeast Atg1, acts as a gatekeeper for 

autophagosome formation by binding to 

phagophoric membranes and enhancement of the 

function of autophagic conjugation systems (139). 

PI3K-AKT which activates the mTOR-mediated 

biosynthetic processes, represses autophagic 

degradation. Active mTORC1 becomes associated 

with the ULK1/ATG13/FIP200 complex, 

phosphorylates ULK1 and represses its protein 

kinase activity. On the other hand, AMPK can 

induce autophagy by directly binding to the ULK1 

complex and phosphorylating ULK1 and by 

inhibiting the activity of mTOR complex (mTORC1) 

by dissociating mTORC1 from the ULK1 complex, 

phosphorylating the Raptor, a regulatory 

component of mTORC1, or by phosphorylation of 

tuberous sclerosis protein 2 (TSC2) (137, 140-

143). AMPK enhances autophagosome formation 

by the activation of SIRT1 signaling. SIRT1 

participates in autophagy by complexing and 

deacetylating several autophagy proteins including 

Atg5, Atg7, and Atg8, that in the absence of SIRT1, 

are acetylated leading to the accumulation of 

damaged organelles in SIRT1−/− mice (144). The 

activation of FoxO1 and FoxO3a transcription 

factors also increases the expression of several 

autophagy-related genes leading to enhanced 

autophagocytosis (145-146).  

3.8. MitoAging 

Following the free radical theory, in the 

early 1980s, Jaime Miquel proposed oxyradical-

mitochondrial DNA damage hypothesis. According to 

this hypothesis since the synthesis of the 

mitochondrial DNA (mtDNA) takes place at the inner 

mitochondrial membrane, at the vicinity of the sites 

that highly reactive oxygen species are formed, the 

mtDNA is subject to oxidative damage. In irreversibly 
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differentiated cells, the damage entails mutation, and 

in-activation or loss of the mitochondrial genome 

leading to changes in the structural mtDNA genes for 

the 13 hydrophobic proteins of the respiratory chain 

and ATP synthase and the mitochondrial rRNAs and 

tRNAs. This, in turn, prevents the macromolecular 

turnover and organelle fission and ceases the 

‘rejuvenation’ of the mitochondria (147). Thus, the 

fixed post-mitotic cells, deprived from the ability to 

regenerate their mitochondria, sustain a decrease in 

the number of functional organelles, develop 

dwindling ATP production, and curtail ATP-

dependent protein synthesis and specialized 

physiological functions. Such an extensive decline in 

the cell energy reservoirs, therefore, confers to cells 

an aging phenotype that ultimately leads to age 

related degenerative diseases. In fact, mitochondrial 

integrity deteriorates as a function of age and defects 

in the mitochondrial function have been implicated in 

over 100 diseases. Mitochondrial DNA mutations and 

impaired oxidation have been shown in aging and 

age-related degenerative diseases such as 

atherosclerosis, Parkinson’s disease, Alzheimer’s 

disease, and Huntington’s disease, amyotrophic 

lateral sclerosis (ALS), cardiomyopathies, and more 

importantly diabetes mellitus that further drives multi-

organ and systemic damages (148).  

Mitochondrial dysfunction can be caused 

by a host of causes namely, defects in ETC enzymes 

(Complexes I - IV), loss of of the electron carrier, 

coenzyme Q10, insufficient energy fuel supply or 

oxygen due to ischemia or anemia, or excessive 

membrane leakage, that results in insufficient 

mitochondrial inner membrane potential for ATP 

synthesis by the F0F1-ATPase. Although such 

defects, to some extent, can be overcome by 

mitochondrial biogenesis, at certain critical ATP level, 

cell death ensues. Defective OXPHOS may be 

caused by abnormal the mitochondrial function 

resulting from inherited or acquired mutations in the 

nuclear (nDNA) or mitochondrial (mDNA) (149). 

Aging has also been shown to lead to the 

accumulation of point mutations and large-scale 

deletions of mtDNA, decrease in mitochondrial 

respiratory function, increase in mitochondrial 

production of ROS, which in turn, leads to oxidative 

damage to DNA, proteins, and lipids and enhanced 

apoptosis. Tissues that are highly dependent on 

oxygen and mitochondrial OXPHOS including 

cardiac, skeletal and smooth muscles, central and 

peripheral nervous system, kidney, and the insulin-

producing pancreatic beta-cells are particularly 

susceptible to the mitochondrial dysfunction (149-

150). 

The decline in the mitochondrial function 

might emanate from mutations in mtDNA. Somatic 

mutations in mtDNA, senescence and associated 

age related decline in the mitochondrial function and 

aging at the organismal level appear to result from 

several causes namely, the oxidative environment 

within mitochondria, absence of protective histones 

in mtDNA, and the lack of efficient repair mechanisms 

for mtDNA (151-152). Consistent with this, mutations 

in mtDNA is associated with aging phenotypes in 

humans. Moreover, a mutation in the proofreading 

exonuclease domain of the mtDNA polymerase γ, 

which is associated with mtDNA mutations, leads to 

a decline in the mitochondrial function, premature 

aging and a reduced life-span in mice (153-158).  

In post-mitotic tissues the levels of oxo8dG 

are significantly higher in mDNA than nDNA, likely 

due to the absence of protection shields such as 

histones and lack of systems that maintain the 

integrity of DNA replication (159). Although 

mitochondrial DNA can bear mutations, there is as 

yet no available evidence that such DNA mutations 

are the direct cause of cellular aging nor there is any 

evidence that repair of such mutations can prolong 

the life-span (160). Moreover, mitochondrial mutator 

mice that exhibit 500-fold higher mutation burden 

than normal mice, fail to show rapidly accelerated 

aging indicating that mtDNA mutations do not shorten 

the life-span (161). Additionally, despite age 

dependent accumulation of a higher level of oxo8dG 

in nDNA and mtDNA, mice which are heterozygous 

for a mutation in the mitochondrial enzyme that 

processes superoxide, Sod2, and exhibit life-long 

reduction in MnSOD activity, fail to show an 

accelerated aging (162).  

The mammalian nuclear factor-erythroid 2-

p45 derived factor 2 (Nrf2) and skinhead family 

member 1 (SKN-1) in C. elegans represent potent 

defense against oxidative stress and are known to 
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increase life-span in model organisms (163-168). 

These pathways erode and become less active or get 

dysregulated in aging and in age-related 

degenerative diseases (163, 169-170). Nrf2/EpRE 

signaling regulates the basal and inducible 

expression of many antioxidant enzymes and the 

proteasome. The antioxidant defense enzymes 

responsive to Nrf2, include NAD(P)H:quinone 

oxidoreductase-1 (NQO1), heme oxygenase 1 (HO-

1), glutathione S-transferase (GST), glutamate 

cysteine ligase catalytic subunit (GCLC) and the 

cystine/glutamate (xCT) transporter which is involved 

in the adaptive up-regulation of GSH synthesis (171-

175). Although, under normal conditions, Nrf2 is 

targeted for proteasomal degradation, by its binding 

to the Kelch-like ECH-associated protein (Keap1), 

activators of the Nrf2 pathway unleash stress-

induced proteasomal activity that leads to the 

removal of oxidized proteins. Disruption of the basal 

ubiquitin-dependent degradation of Nrf2 by the 26S 

proteasome, leads to its nuclear accumulation and 

gene induction and restores redox homeostasis by 

increasing antioxidant/electrophilic response 

element-mediated (ARE/EpRE) expression of phase 

II and antioxidant enzymes (176). The overall activity 

of Nrf2 is regulated by modulation of its transcription 

by PI3K, P62, CBP, and BRCA1, post-translational 

mechanisms, and its interactions by other proteins 

(177). Nrf2 is negatively regulated by, Keap1, Bach1, 

c-Myc and a host of microRNAs. Nrf2 has been 

identified by siRNA screen to be the driving 

mechanism for the Hutchinson-Gilford progeria 

syndrome (HGPS), that is caused by constitutive 

production of progerin, a mutant form of the nuclear 

architectural protein, lamin A, that leads to the 

nuclear sequestration of Nrf2 and impairs its 

transcriptional activity and consequently increases 

chronic oxidative stress, premature aging, and 

ultimately, invariably, causes death (178). An 

additional determinant of progeria in HGPS appears 

to be related to the impaired transcriptional activity of 

Nrf2, and the abnormal nuclear lamina-mediated 

mislocalization in MSCs (178). There are additional 

evidence that directly places Nrf2 as being involved 

in age related pathologies such as age induced 

fibrosis and for this reason, Nrf2 is a promising target 

for the development of novel pharmacologic or 

genetic therapeutic regimes (179). Nrf2 was recently 

found to be responsive to the apocarotenoid, bixin, 

an FDA-approved food additive derived from the 

seeds of the achiote tree (Bixa orellana). Bixin 

suppressed acute UV-induced photodamage and 

reduced epidermal hyperproliferation and oxidative 

DNA damage in Nrf2+/+ but not Nrf2-/- mice (180). 

Preserving the mitochondrial function by a 

cellular stress response pathway which involves 

activating the mitochondrial unfolded protein 

response (UPRmt), leads to increased life-span 

in C. elegans (181). Proper the mitochondrial 

function appears also to be significant to the 

maintenance of tissue homeostasis. For example, 

cell proliferation appears to be intimately linked to the 

mitochondrial 1C metabolism-induced redox 

homeostasis (182). Fortunately, age-associated 

damage to the mitochondrial respiration can be 

counteracted by exercise and it is becoming clear 

that the maintenance of the mitochondrial function 

can be used to delay age related decline and as a 

successful avenue to extend human life-span (183).  

3.9. Telomeric attrition 

Telomeres are molecular clocks that count 

the number of cell divisions and are comprised of 

repetitive TTAGGG sequences at the ends of the 

chromosomes. In mammalian cells, telomeric ends 

have a a protective “t loop” a higher-order structure, 

comprised of a terminal 3′ single-stranded tail, the so-

called “G” strand overhang, which is buried into 

adjacent double-stranded repetitive telomeric DNA. 

This loop, in turn, is stabilized by a displacement of 

“D” loop that is formed between the invading end of 

the telomere into adjacent double-stranded DNA 

(184). The deterioration of G strand overhangs is 

protected by a specialized complex that maintains 

their integrity, and prevents their shortening and 

fusion with neighboring chromosomes during 

replication. This complex is made of reverse 

transcriptase, telomerase (TERT, or hTERT in 

humans) and its catalytic RNA sub-unit, TERC that 

extends telomeres during S phase, therefore, 

preventing the natural shortening of telomeres (185). 

While telomerase is expressed in embryonic and 

adult male germline cells, it is absent in normal 

somatic cells such as fibroblasts. These cells have 

very low levels of telomerase activity, and following 

each round of cell division, telomeres shorten in each 
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successive generations. Senescence ensues when 

cells ultimately end up having critically short 

telomeres through a process that may involve loss of 

the t loop structure and/or “uncapping” due to the loss 

of protective proteins. Such uncapped telomeres are 

then recognized by the cell cycle checkpoint 

machinery as DNA damage, which causes cell cycle 

arrest (186). Lack of repair of the telomeric ends 

leads to the erosion and shortening of telomeres 

following each cell division. In cells with an intact cell 

cycle checkpoints (G1 cell cycle block), shortening of 

telomeres, leads to senescence. In cells that have in-

activated cell cycle checkpoints and exhibit 

chromosome breakage and mitotic catastrophe, and 

shortened telomeres and telomeric end-to-end 

fusions, lead to the cellular crisis (185).  

The use of telomerase deficient mice has 

served as a model system for examining the adverse 

organismal and cellular consequences of lack of the 

telomeric maintenance. Besides mechanisms which 

maintain the integrity of DNA and prevent its damage, 

it appears that the capping function of telomeres is 

required to prevent the tell-tale signs of aging 

including activation of p53, and for prevention of stem 

cell depletion and decline in stem cells that cause 

tissue atrophy and compromised mitochondrial 

function, and loss of maintenance of bioenergetic 

homeostasis in tissues (187). 

Dysfunction of the telomeric maintenance 

leads to various diseases such as dyskeratosis 

congenita that results from mutations in the gene 

encoding dyskerin (DKC). DKC is proposed to be a 

ribosomal RNA similar to the yeast protein which is 

involved in production of rRNA and it interacts with 

telomerase and stabilizes the RNA in this complex 

(188). On the other hand, mutation in TERT has been 

shown to lead to dysfunction of highly proliferative 

bone marrow cells resulting in aplastic anemia (189). 

Late-generations of TERC-deficient mice show some 

signs of accelerated aging (190-191).  

3.10. Senescence 

Hayflick and Moorhead (192) discovered 

that, after a limited number (50-80) of cell divisions, 

fibroblasts experience a permanent loss of cell 

proliferation and enter a state of replicative 

senescence. Besides replicative senescence which 

occurs in aging tissues, for example as a result of 

telomere shortening, mitogenic signals, oxidative 

stress or other types of damage, there are other 

forms of senescence. This includes DNA damage 

induced senescence and oncogene induced 

senescence which remain largely indistinguishable 

from replicative senescence (193-196). Senescence 

is intimately linked to the remodeling during 

embryonic development, in normal placental function 

as well as wound healing, and stress response (197). 

In healthy tissues, damaged cells undergo apoptosis 

and are replaced by freshly divided cells and, this 

division, not only removes the damaged cells, cell 

division, dilutes persisting damage in daughter cells. 

In case, that the damage is more severe, senescence 

is engaged to stop the cell replication, and, to prevent 

premalignant cells with one or two oncogenic 

mutations, to undergo further tumorigenic changes. 

Senescent cells exhibit phenotypic and 

morphological changes and expansion of their 

cytoplasm. They also have shortened telomeres, and 

show an increased expression of senescence 

markers including senescence-associated β-

galactosidase (SA-β-Gal) and of cyclin-dependent 

kinase inhibitors including p16 and p21 (198-200). 

CDKN2A locus is under epigenetic control by the 

gene-silencing complex, polycomb group proteins. 

Polycomb-repressive complex 2 (PRC2) along with 

its catalytic sub-unit, EZH2 trimethylates lysine 27 of 

histone H3 (H3K27me3). This, in young cells, in turn, 

recruits PRC1 which further modifies chromatin to a 

state that silences genes including cyclin-dependent 

kinase inhibitor, p16 (201). However, upon aging, the 

levels of EZH2 mRNA and protein levels, and the 

level of H3K27me3 at the CDKN2A locus dwindles, 

and this leads to a progressive increase in p16 

expression, that causes an irreversible cell-cycle 

arrest and cellular senescence (202-203). JMJD3, 

which is inducible by replicative exhaustion, the 

transcription factor NFκB, or oncogenic stress can 

compete with EZH2 in occupying the CDKN2A, and 

by virtue of demethylating H3K27me3 can allow p16 

expression and senescence (204-206). 

p16 and p21, are well established 

senescence-associated markers that their 

expression is increased, during replicative 
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senescence and DNA damage induced senescence 

(207). The activation of the p53 and Rb proteins is 

thought to be required for induction of senescence to 

prevent and suppress tumor development and, for 

this reason, senescence is regarded as a tumor 

suppressor response mechanism (208-210). Despite 

being a predominant tumor suppressor, once tumors 

occur, senescent cells provide a pro-oncogenic 

milieu and promote the growth of epithelial tumors 

(211).  

Senescent cells exhibit a specific 

senescence secretome, the so-called Senescence-

Associated Secretory Phenotype (SASP). The  true 

microenvironmental impact of SASP and its 

composition varies based on the tissue and cell types 

which reinforces cell cycle arrest. SASP amplifies the 

innate immune responses, particularly those that 

involve the cyclic GMP-AMP synthase (cGAS)-

stimulator of interferon genes (STING) signaling 

pathway (cGAS-STING pathway) in response to the 

accumulation of cytoplasmic DNA (cytoplasmic 

chromatin fragments, mtDNA and cDNA)(212). 

SASP also leads to the immune mediated clearance 

of cells that have the potential to cause cancer (213). 

Attaining SASP, is driven by and requires, a host of 

cellular activity including metabolic regulators and 

cell survival-related transcription factors, miRNAs, 

RNA stability, autophagy, chromatin components, 

and metabolic regulators as well as DNA damage 

response (DDR), stress kinases, alarmin, 

inflammasome and inflammation. Temporally, SASP 

matures through an early DDR associated phase, 

early self amplification phase and a late phase. It is 

this latter phase that produces the hallmarks of 

SASP, namely, the anti-proliferative state, clearance 

of senescent cells, as well as chromatin remodeling. 

This stage also impacts the control of mRNA 

translation and intracellular trafic, and is responsible 

for the activation of transcription factors such as 

NFκB, c/EBP, release of inflammatory cytokines 

such as IL-6 and TNF-α and of chemokines, 

extracellular proteases, growth factors and bioactive 

lipids (214-215). p38MAPK has been described as an 

independent regulator of SASP phenotype (216). 

Many mouse models and human diseases 

that cause early senescence also lead to premature 

aging (217). Senescent cells contribute to aging 

through separate mechanisms. Cellular senescence 

renders cells replicatively in-active and senescent 

cells through release of inflammatory cytokines and 

secretion of proteases and other factors to their 

environment can disrupt tissue function. Senescent 

cells seem to induce senescence in neighboring cells 

and contribute to the age related pathologies. For 

example, transplanting a relatively small number of 

senescent cells into young mice led to the spread of 

cellular senescence in host tissues and caused 

persistent physical dysfunction while introduction of 

fewer senescent cells to old animals reduced their 

life-span (218). Senescence in progenitor or stem 

cells is actively suppressed for example, Polycomb 

group repressor, Bmi1, negatively controls 

senescence in hematopoietic stem cells (211, 219). 

However, these cells are not immune to this process 

and their senescence occurs with normal aging, DNA 

damage, environmental stress, and telomeric 

dysfunction. Cease in stem cell replication, due to 

senescence, halts the normal tissue renewal and 

leads to tissue atrophy which is typical of aging 

tissues.  

3.11. Immunosenescence, inflammaging 

and senoinflammation 

Aging leads to a progressive decline in the 

immune responses leading to a state of dysregulated 

immune function (immunosenescence), and 

development of a low grade and sterile inflammation 

(inflammaging) in aging tissues as a result of an 

imbalance between pro- and anti-inflammatory 

responses to environmental pathogens including gut 

microbiome or endogenous, self, misplaced, or 

altered molecules. The prevailing view is that during 

aging, the immune cells fail to mount an efficient 

innate and adaptive immune program in response to 

antigens or environmental stimuli (e.g. ROS). As a 

consequence, the inflammatory response does not 

subside and becomes chronic in aging tissues 

(inflammaging) and provokes molecular inflammatory 

signals in such tissues (220-222). Inflammaging is 

the expansion of the network and the remodeling 

theory of aging (223-225). 

Immunosenescence is primarily 

characterized by involution of the thymus, reduced 

reactivity of immune cells and response to 
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vaccination or a new antigen load, auto-reactivity, 

autoimmunity and a lower anti-cancer and anti-

microbial responses and phagocytosis (226). 

Immunosenescence also reduces cellular superoxide 

production, and naïve:memory cell ratio and leads to 

the expansion of mature cell clones (227). Together, 

the failure of autoreactive and autoimmune 

processes, loss of ability to remove damaged 

molecules and organelles and emergence of 

senescence, progressively fuels a chronic state of 

inflammation locally and systemically. These events 

result in a greater susceptibility of aging population to 

cardiovascular disease, Alzheimer's disease, and a 

greater rate of mortality (228-230). Thus, 

inflammaging and immunosenescence are 

considered as major targets for devising strategies to 

reverse age related pathologies and disorders.  

The adaptive arm of immunity is more 

severely impacted by age than the innate immunity, 

(231). However, only a limited number of phenotypic 

and functional changes have been observed in the T 

cell arm of the adaptive immunity (232). Moreover, 

cross-sectional studies of young and old population 

show a vastly varied distribution of immune cell types 

in the blood, and to some extent, a diverse aberrancy 

in the functional integrity of these cells (231).  

Some studies have revealed biomarkers of 

immune aging 'immune signatures' (233). These 

include several parameters of the adaptive immune 

response, the so-called ''immune risk phenotype" 

(IRP) as well as assessment of NK cell markers and 

functions. IRP is used as a predictor of mortality in 

the elderly people (234). One idea that has emerged 

is that a significant activity of the human immune 

system is progressively invested heavily to control 

cytomegalovirus (CMV) in aging which accounts for 

the higher systemic levels of inflammatory mediators 

(233). In fact, CMV infection makes a significant 

contribution to the IRP (231).  

The precise mechanisms that lead to 

inflammaging have remained elusive and are poorly 

characterized. However, it is believed that the 

inflammation may be caused by a life-time exposure 

to clinical and sub-clinical infections, and non-

infectious antigens (235). It has been suggested that 

chronic activation of immune cells, leads to 

remodeling of the immune system which favors 

induction of a chronic state of inflammation leading to 

tissue injury and pathology (235). Alternatively, the 

so-called “cellular exhaustion” as a result of reduced 

thymic output and T cell repertoire and concomitant 

increased oligoclonal expansion of memory and 

effector-memory cells contributes to inflammaging 

(236). Together, the inability to forcefully respond to 

novel pathogens as well as an increase in functionally 

distinct T-cell populations significantly prolongs 

infection, induces a pro-inflammatory phenotype and 

evokes a robust cytokine production in elderly 

population (237). The importance of the tissue injury 

that results from the chronic accumulation of 

polymorphonuclear neutrophils (PMN), their release 

of ROS and oxidative damage also appear to play a 

significant role in inflammaging (238).   

The molecular inflammation hypothesis of 

the aging considers that the derangement in redox is 

the major factor for upregulation of NFκB, IL-1beta, 

IL-6, TNFα, cyclooxygenase-2, adhesion molecules, 

and inducible NO synthase and increased risk for 

age-related inflammation (239). The term 

“senoinflammation” is applied to the emergence of 

pro-inflammatory senescence-associated secret-

ome, inflammasome, ER stress, Toll-like receptors 

(TLR)s, and microRNAs in aging tissues. The 

activators of seno-inflammation, the redox-sensitive 

core transcription factor NFκB, polarized 

macrophages, and a host of miRNAs are 

metabolically linked to the pro-inflammatory 

processes such as ER stress and autophagic activity 

(240). Single cell transcriptomics in aging rats 

showed that aging leads to the infiltration of aged 

tissues by neutrophils and by the macrophages that 

attain a pro-inflammatory (M1) state (241). M1/M2 

macrophage activation occurs in a wide number of 

age related diseases including obesity, 

atherosclerosis or pulmonary fibrosis (242). 

However, CR blocks such responses and promotes 

the anti-inflammatory M2 profile in macrophages 

(241).  

A complex array of inter-related genetic, 

environmental and age-related factors appear to 

account for the vulnerability or resilience of people to 

inflammaging. These factors include, but are not 

limited to, the responsiveness of promoter regions of 
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cytokines, cytokine receptors and antagonists, age-

related decreases in autophagy and obesity (243). 

The inflammatory signals include damaged 

molecules (self garbage), an array of nDNA, mtDNA, 

and miRNA that are encompassed in extracellular 

vesicles that freely enter the bloodstream. 

Continuous activation of macrophages by these 

damaged molecules (GarbAging) ultimately exhausts 

their ability to clear them and that surface receptors 

of macrophages sense the mis-placed self molecules 

and activate the inflammaging by activation of 

inflammasome (133). NLRP3 inflammasome is 

comprised of an intracellular multi-protein complex 

that recognizes pathogen-associated molecular 

patterns (PAMPs) and damage associated molecular 

patterns (DAMP), which when activated, it leads to 

the release of IL-1β as well as IL-18 (244). The 

NLRP3 inflammasome is activated in age related 

disorders including obesity, insulin resistance, and 

inflammation (245-246). Another factor involved in 

aging is the failure to remove the host of cell debris 

and damaged organelles, by autophagy or mitophagy 

due to a progressive failure of proteasome.  

Aging is associated with the release of a large 

number of pro-inflammatory cytokines such as IL-1, IL-

2, IL-6, IL-12, IL-15, IL-18, IL-22, IL-23, TNF-α, and IFN-

γ in aged tissues that likely contribute to aging 

pathologies (227, 247-249). The inflammatory response 

is initiated by inflammasome, cytosolic multi-protein 

oligomers that are required and activate the 

inflammatory responses of cells of the innate immune 

system, and is significant in protection against 

pathogens and in recovery from injury. Inflammasome 

leads to the proteolytic cleavage, maturation and 

release of pro-inflammatory cytokines. The 

inflammasome can lead to the oxidative stress that 

occurs with aging and to a form of programmed cell 

death related to the inflammatory response, known as 

pyroptosis (250). The inflammasome proteins including 

NLRC4, caspase-1, apoptosis-associated speck-like 

protein containing a caspase recruitment domain 

(ASC), and IL-18 are shown to be elevated in the cytosol 

of cortical lysates in aged mice (251). The nucleotide 

metabolites have been shown to activate the NLRC4 

inflammasome in old individuals (252).  

The canonical Nlrp3 inflammasome 

controls a systemic low grade age-related ‘sterile’ 

inflammation in both periphery and brain that appears 

to be independent from the non-canonical caspase-

11 inflammasome. Nlrp3 knockout has been shown 

to protect mice from age-related increases in the 

innate immune activation, alterations in CNS 

transcriptome and astrogliosis. Thus, Nlrp3 appears 

to link the systemic low grade inflammation to a 

significant  functional decline that is observed in 

aging.  

Progressive decrease in subcutaneous 

tissues and loss of muscle mass (sarcopenia) during 

aging are associated with sequential increase in fat 

that is deposited in viscera, or infiltrates major organs 

including liver, bone and muscle. These fat depots 

are not inert and they act as an endocrine or 

paracrine organ by release of hundreds of 

adipokines, and pro-inflammatory peptides (253-

256). For example, leptin, which has a primary role in 

energy homeostasis, leads to the release of a 

number of proinflammatory cytokines, including TNF 

and IL-6, stimulates differentiation of monocytes into 

macrophages, and activates NK-lymphocytes (256). 

On the other hand, declining levels of adrenal steroid 

dehydroepiandrosterone (DHEA) and anti-

inflammaging strategies such as higher levels of 

cortisol, as a result of upregulation of the 

hypothalamic-pituitary axis in response to 

inflammaging, appear to exert an adverse effect in 

aging population (243). Long lived individuals and 

centenarians have developed anti-inflammaging 

strategies that oppose the adverse consequences of 

sub-clinical tissue inflammation (227).  

An arsenal of different approaches 

including cytokine therapy, hormonal replacement, 

anti-oxidant supplementation, and caloric restriction 

have all been proposed for attenuating or potentially 

reversing immunosenescence (257). 

3.12. Stem cell exhaustion 

Other than long lived cells such as neurons 

and myofibers, all the cells in the body are subject to 

wear and tear and must be replaced periodically to 

maintain the normal function and physiology of 

tissues and organs (258-260). This task is assigned 

to the adult stem cells, such as hematopoietic stem 

cells (HSCs), intestinal stem cells (ISCs), 
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mesenchymal stem cells (MSCs), neural stem cells 

(NSCs), muscle stem cells (MuSCs), hair follicle stem 

cells (HFSCs) and germinal stem cells (GSCs) and 

satellite cells that maintain tissue regeneration and 

homeostasis (261-266). Therefore, the decline in 

stem cell number or function, the so-called stem cell 

exhaustion, is an important driver of aging (267). For 

example, consistent with a general decline in cell-

cycle activity, HSCs show reduced cell division in 

aged mice (268). Also, age-associated decline in the 

differentiation of HSC populations generates fewer 

adaptive immune cells and leads to anemia in aged 

organisms (269). Defects in cell-cycle by DNA 

damage or chromosome disorganization also 

significantly and adversely reduce the functional 

activity of HSCs, and decreases blood production in 

aged organisms (270). Like other aged cells, aging 

population of stem cells with declined function, show 

evidence of age related DNA damage and exhibit an 

increased levels of p16INK4a (271-272). Accelerated 

proliferation in stem cells, for example, by 

p21 prematurely exhausts the population of HSCs 

and NSCs (273-274). 

In recent years, many causes of stem cell 

exhaustion have been defined. Stem cells appear to 

be under the control of the same signaling pathways 

that are disturbed by aging and those that can 

manipulate aging such as nutrient sensing pathways, 

telomere attrition, oxidative and mitochondrial 

damage, and genetic and epigenetic modulators of 

aging (275-281). One of the critical cause of stem cell 

exhaustion is aberrant nutrient signaling since it is 

known that Calorie Restriction (CR), Dietary 

Restriction (DR) and pharmacological manipulations 

of metabolic pathways that slow the metabolism and 

modify the epigenetic landscape can extend life-span 

whereas enhanced anabolic signaling and obesity 

have a reverse consequence (282-285). It has been 

shown that DR promotes the proliferation of ISCs 

through the nutrient signaling, mTORC1 and Sirtuin 

1 (SIRT1), whereas rapamycin that inhibits mTOR 

prevents the exhaustion of these stem cells (286).  

Other types of stem cell exhaustion have 

been attributed to the impaired autophagy that 

normally preserves quiescence and stemness and 

prevents stem cell senescence (287). For example, 

impaired autophagy leads to an imbalance in 

proteostasis, causes mitochondrial dysfunction, 

ramps up oxidative stress and causes satellite cells 

to senesce (288). SIRT1 which also regulates 

autophagy, is required for activation of MuSC that 

normally sustain a quiescent state (289). Conversely, 

the transcription factor, FOXO3, plays an important 

role in maintaining the quiescent state of NSCs and 

MuSCs, and is known to induce autophagy in HSCs 

under conditions of starvation by regulating genes 

involved in autophagy (290-294). Also, mTOR 

signaling which activates quiescent MuSCs and 

HSCs in nutrient-rich environments, is known to 

suppress autophagy and to limit life-span (295-297). 

Thus, it appears that autophagy is involved in stem 

cell aging by coordinately impacting their metabolism 

and epigenetic changes. 

Stem cells express telomerase, yet, the 

telomeres of HSCs, NSCs, HFSCs and GSCs have 

been shown to shorten with aging (298-

299). However, the real impact of telomere 

shortening in stem cells is not yet clear since mice 

that lack telomerase RNA component, TERC, fail to 

show any specific phenotype for three generations, 

and only in the fourth generation, they start to exhibit 

aberrant HSC lineage potential and stem cell 

exhaustion emerges only in their sixth generation 

(300-301). 

The metabolome has an intimate link to 

epigenetic modifiers since it is, by now, clear that the 

metabolites derived from cellular metabolism can act 

as co-factors of epigenetic enzymes that induce 

chromatin modifications such as methylation or 

demethylation of histones or DNA or acetylation and 

deacetylation of histones (285). Thus, metabolism is 

one of most influential driving force that shapes the 

epigenetic landscape and provides the opportunity to 

use such co-factors as potential targets to reverse the 

aging epigenome including those in stem cells, to 

preserve their function and to prevent their 

senescence. It is also becoming increasingly clear 

that health-span and life-span and maintenance of 

stem cell populations are subject to modulation by 

regulators of nutrient sensing and cellular 

metabolism such as mTOR and insulin-FOXO 

pathways as well as by regulation of enzymes such 

as sirtuins, that utilize metabolites such as NAD+, 

which is known to be capable in changing the global 
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levels of histone acetylation (302-304). For example, 

NAD+ has been shown to be involved in the activation 

of murine MuSC by switching, from fatty acid 

oxidation in quiescent cells, to glycolysis via an 

increase in the overall acetylation levels of H4K16 

(305). Knockdown of phosphoserine 

aminotransferase 1 (Psat1) affects ESC 

differentiation by changing the levels of the 

metabolite, α-ketoglutarate (306). Besides NAD+ and 

α-ketoglutarate, another metabolite involved in 

murine threonine metabolism, S-adenosyl 

methionine (SAM), induces age-related alterations of 

H3K4 methylation by acting as a co-factor for histone 

methyltransferases (307-308).  

The epigenetic fate of MuSCs appears to 

be under the regulation of Sirt1 that senses the 

cellular energetic state via NAD+ (266). Moreover, 

in-activation of Sirt1 leads to the abnormal 

expression of genes involved in amino acid 

metabolism, and a coordinate abnormal expansion 

of oligodendrocyte progenitors in mouse NSCs 

(309). On the other hand, Sirt6 deficiency, has 

been shown to impair the transcription of target 

genes of the anti-oxidant Nrf2 pathway, which is 

vital to the metabolic systems for modulating redox 

homeostasis. These transcriptions can be halted 

by the H3K56 acetylation, which in turn, appears 

to be sufficient to derail the normal redox 

homeostasis, leading to the senescence of human 

MSCs (310). Among the sirtuin members, Sirt7 is 

downregulated with age. This sirtuin, which 

modulates UPRmt in response to the mitochondrial 

stresses, has been shown to be required for the 

maintenance of homeostasis of HSCs, partially by 

acting as a repressor of genomic targets of Nrf1 

(311).  

Age related pathologies such as 

Parkinson's disease (PD) lead to the exhaustion of 

NSCs, defects in neuronal differentiation and DNA 

repair (312 ). The induction of stem cell rejuvenation 

in vivo in age associated phenotypes has lent support 

for the concept that stem cell exhaustion is one of the 

hallmarks of aging (313-315). Thus, understanding 

the mechanisms that drive stem cell aging and 

decline in their ability to regenerate tissues is of great 

significance to remedy the age related pathologies 

and tissue atrophy which is one of the cardinal 

features of aged tissues. In vivo stem cell 

rejuvenation, has been offered as a significant recipe 

and as one of the anti-aging intervention at least for 

the reversal of some of the aging phenotypes (313). 

Stem cell exhaustion is also frequently 

observed in genetic diseases that shorten life-span 

and increase the mortality in individuals with 

Hutchinson-Gilford progeria syndrome (HGPS), 

Werner syndrome (WS), and Fanconi anemia (FA) 

(316-319). Premature aging in WRN has been 

attributed to the exhaustion of MSCs as a result of 

genome instability due to the deficiency of the DNA 

helicase and WRN protein (315, 320-321). 

3.13. NutrimiRAging 

The nutrient sensing, which is regulated 

by multiple pathways including insulin/IGF-1 (IIS), 

PI3K, AKT, mTOR, AMPK, Sirtuin and PGC1α, 

appears to be deregulated in aging, providing a 

strong link between diet and aging. The fact that 

life can be extended by alterations of the diet and 

that calorie, diet and protein restrictions can 

extend the life-span, in diverse organisms, have 

strengthened the notion that aging results from 

insults mediated by the total calorie intake and the 

composition of the diet. The idea, that the 

metabolic rate and aging are intimately 

intertwined, emerged from observations, that 

reducing the metabolism by lowering the ambient 

temperature in worms and flies or reducing 

nutrients by limiting glucose in the culture media of 

yeasts, leads to life-extension (322). These and 

other similar observations placed mitochondria as 

well as nutrition at the forefront of forces that drive 

aging.  

Glucose, amino acids and fatty acids are 

the main fuel sources that drive energy production by 

conversion of ADP to ATP and for fulfilling the cellular 

need for NAD+. Each of the fuels require specific 

enzymatic and metabolic pathways and drive specific 

expression and utilization of surface receptors and 

nuclear transcription of members of the metabolic 

machinery. Cells have developed a complex array of 

signaling systems that respond to the fuel needs and 

sense the requirement of cells for gene expression, 

protein synthesis, growth, repairs and other 
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functions. The nutritional sensing pathways that 

respond to dietary nutrients, degrade with age and 

lose their effectiveness, hence, leading to the idea 

that de-regulated nutritional sensing leads to loss of 

healthy aging and age related pathologies. The 

dietary restriction of nutrients, has been shown to 

extend life-span in C. elegans to Drosophila and 

mammals, leaving no doubt that life-span can be 

modified by reducing the total calorie intake and by 

restricting food and proteins particularly, sulfur 

containing amino acids. It is by now considered that 

the trans-sulfuration pathways including hydorgen 

sulfide (H2S) tie the nutrition and nutrient-sensitive 

signaling to a healthy life-span (323-325). 

3.14. miRagings 

miRagings are the RNA sequences that 

impact aging through nutrient sensing pathways, as 

well as those that their expression changes with diet 

and aging. Also included are those that inhibit target 

genes linked to cell proliferation, apoptosis or 

metabolism, or play a role in the epigenetic regulation 

of gene expression or biological processes that are 

linked to aging (326-329). These RNAs include 

microRNAs (miRNA) and non-coding RNAs of about 

22 nucleotides that reside within intra- or inter-

regions of protein coding genes. Some of these 

RNAs are released into plasma and body fluids such 

as urine and cerebrospinal fluid, that due to the 

necessity of being protected from RNAses and 

degradation, are usually associated with lipoproteins 

or protein complexes or are present within exosomes 

(330).  

Circulating miRNAs are potential 

biomarkers of health and might be useful to 

discriminate healthy from abnormal aging. The 

circulating levels of these group of miRNAs also 

changes with nutritional status and by age, 

potentially, by upregulation of p53 which can 

impact the Drosha complex and miRNA maturation 

(331-332). Expression profile of microRNAs in 

centenarians were more similar to those of young 

adults than those of octogenarians (80-89 years of 

age) suggesting that their expression level might 

be useful in predicting longevity (332). Expression 

of miRNAs namely, let-7 family, miR-33, miR-103, 

miR-107 and miR-29 which modulate insulin 

signaling pathway also changes by age related 

pathologies including type 2 diabetes (331-338). 

There are a class of miRNAs that are regulated by 

the pathways that are known to be involved in 

aging. Among these, miR-124a, which is involved 

in glucose-induced insulin secretion, is under the 

direct modulation of AKT3 and FOXA2 and, 

potentially, SIRT1. The IGF1/PI3K/AKT/MTOR 

pathway is regulated by let-7 expression, a 

microRNA that targets multiple components of the 

IGF1 pathway and mTOR (339). Other miRNAs 

such as miR-208a and miR-133a are 

overexpressed after an acute myocardial 

infarction, and circulating miR-423-5p is 

upregulated in heart failure (340-342). The 

expression of miR-146, miR-155 and miR-21 is 

changed by inflammation, a typical feature of aging 

and miR-155 and miR- are upregulated in B-cells 

of elderly (343-344). Despite the wealth of 

knowledge that aging changes the expression of 

many of known miRNAs, their direct impact and 

relevance in aging and age related disorders is still 

poorly understood (267). 

3.15. Other theories of aging 

There are a large number of theories that 

have attempted to explain aging. However, many 

theories have failed to adequately address all 

aspects of aging. This includes programmed theory, 

that argues that aging follows a pre-determined 

timetable, and others that posit that aging is due to a 

life-time accumulation of environmentally induced 

damage (345). The programmed theories are sub-

divided into programmed longevity due to alteration 

of gene expression and senescence, endocrine or 

reproductive-cell cycle theories that maintain that 

aging is hormonally regulated, and immunological 

theory that describes aging to be attributable to 

immunological decline. The damage theory is sub-

divided into wear and tear theory, rate of living theory, 

cross linking theory, and free radical theory (9, 346-

349). Dis-engagement and activity theories indicate 

that aging might be impacted by social engagement 

and physical activity.  In contra-distinction, according 

to the quasi-programmed theory, aging is not 

programmed, but rather is a consequence of genetic 

programs that determine, developmental growth, 

early in life (350-352).  
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There are two highly repetitive regions in 

the genome, namely the telomeres and rRNA 

genes (rDNA). The finding that stability within 

rDNA regulates life-span led to the rDNA theory of 

aging. Recent studies have confirmed that the 

rDNA copy andthe  stability of the repeats play a 

critical role in the control of aging and cellular 

senescence (353). Recently, it was shown that 

tissue-specific methylation of rDNA promoter 

strongly correlates with a lower expression of 

rRNA (354). We showed that replicative 

senescence leads to reduced levels of 18S, 5.8S 

and 28S rRNA, in replicative senescence and that 

promoter region of rRNA is hypermethylated, 

features that do not exist in DNA damage  induced 

senescence (355).  

Moreover, Cairns proposed the so-called 

“immortal DNA strand hypothesis” that hypothesizes 

that there are mechanisms that maintain the genome 

stability in stem cells that undergo rapid cell divisions 

to maintain tissue homeostasis (356). The stem cells 

divide asymmetrically giving rise to a new daughter 

cell that harbors the old organelles and mis-folded 

proteins and a younger self-renewed stem cell that 

retains the healthy parts of the original cell. However, 

the asymmetric segregation of DNA remained 

controversial and some suggested that random 

segregation occur in stem cells. However, there are 

some evidence that lend support for this theory in 

tissues such as fly male germline cells and in 

mouse hematopoietic system, mammary tissue, 

intestinal epithelium, skeletal muscle, and hair 

follicle (357-363). 

4. CONCLUSIONS 

Aging occurs in a progressive and 

sustained manner in all humans. Aging leads to a 

significant morbidity and mortality towards the end of 

life and exerts a significant burden to the society and 

to the world’s economy. Therefore, prevention or 

reversal of aging, is of paramount importance to all 

humans and eradication of aging, would undoubtedly 

lead to more prosperous societies across the globe. 

Throughout the past few decades, numerous 

hypotheses have been offered that all show that 

aging is associated with gradual and progressive 

decline in cell functions that arise as a result of 

damage to cellular compartments, organelles and 

bio-informational molecules. However, these cell-

centric hypotheses fail to account for all the hallmarks 

of aging and currently, the most proximal cause of the 

cellular damage have remained elusive (1, 185, 236, 

267, 277, 315, 321). 
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