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1. ABSTRACT 

Aging results from aberrations in signaling 

mechanisms and decline in biologic activities and 

cellular functions. Anti-aging strategies include a 

number of dietary, genetic, and pharmacological 

interventions that converge on a core network of 

nutrient sensors including AMP-activated protein 

kinase (AMPK), mammalian target of rapamycin 

(mTOR), the insulin/insulin-like IIGF) growth factor 

signaling pathway (IIS), sirtuins, NFκB, and FOXO. 

Aging can be delayed and life-span and health-span 

can be extended by calorie and dietary restrictions, 

administration of NAM, NMN, NR, NAD+, and by 

antioxidants including hydrogen sulfide. Additional 

measures for the age related decline in tissue 

homeostasis include senotherapeutics, senolytics, 

senomorphics, anti-inflammaging strategies, 

reactivation of telomerase and prevention of stem cell 

exhaustion. There is also a possibility to erase the 

signs of aging and even to reverse aging by 

epigenetic reprogramming and other emerging 

measures. 

2. GENOPTORECTION STRATEGIES 

Chronological aging is caused by 

aberrations of diverse transcriptional programs and 

cell signaling pathways which alter the tissue and 

organ functions during aging. It has been shown that 

a number of environmental and nutritional changes 

including dietary, calorie, and protein restriction can 

delay the inevitable consequences of aging and that 

life might be extended in experimental animals 

including Drosophila melanogaster, Caenorhabditis 

elegans (C. elegans), to mice and even in humans 

(1-4). Moreover, alterations of signaling pathways 

that deteriorate by aging have been shown to be 
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restored by introduction of genetic changes in yeast, 

flies and worms (5-6). 

2.1. Calorie and dietary restriction and 

interventions 

Some of the effects of calorie restriction 

(CR), AMPK and calcineurin appear to be due to the 

blocking of CRTC–CREB pathway (7). A complete 

removal of food has been shown to extend life-span 

in C. elegans  (8-9). The beneficial impact of dietary 

restriction (DR) can be achieved by reducing 

nutrients, or by reducing total protein or the essential 

amino acids (EAA), or merely by reducing the sulfur 

amino acids (SAA) in the diet. It is thought that the 

amino acid sensors, GCN2 and mTOR, are involved 

in the beneficial effects of restriction of protein or 

selective amino acids in life extension (10). The 

effects of CR on longevity also seems to be 

attributable to the restriction of proteins or specific 

amino acids (11). For example, the restriction of the 

amino acids serine, threonine and valine, in yeast 

promotes stress resistance and longevity (12). As 

compared with glucose restriction, withdrawal of 

protein from the diet had a much greater effect on life-

span in Drosophila melanoganster  (13). Restricting 

tryptophan also appears to increase longevity in rats 

(14-15).  Five fold reduction of L-methionine in the 

diet was associated with lower levels of IGF-1, insulin 

and glucose and a higher resistance to liver injury, 

and an increase in the life-span by 30% in male rats 

(16-17). 

The extremely high life expectancy in 

centenarians in Okinawa, Japan may well be due to 

17% lower average daily food intake of a diet, that is 

low in proteins and rich in vegetables, fruits and fish 

as well as consumption of foods which are rich in 

monounsaturated and polyunsaturated fatty acids 

(18-19). Mediterranean diet, which is rich in 

monounsaturated and polyunsaturated fatty acids, 

and is considered to promote longer telomeres, and 

healthy aging, reduces mortality from 

cerebrovascular accident (CVD) (11, 20-23). 

Consistent with these findings, higher intake of n-3 

polyunsaturated fatty acids supports lower cognitive 

decline and a better cognitive performance in 

individuals who are on Okinawan or Mediterranean 

diets (24-25). CR has been shown to lower core body 

temperature, to reduce total and visceral fat, to 

improve the glucose tolerance, insulin action, 

adipokine, adiponectin, leptin, inflammation and 

interleukins, to decrease energy expenditure and 

loss of muscle mass and strength and to extend life-

span in different model organisms (26-30). Classic 

CR regimens in rodents involves restriction of total 

food intake by 20–60%, by reducing the overall 

calorie intake (calorie restriction), or by intermittent or 

every-other-day fasting. CR attenuated the age-

related increase in oxidative stress and decline in 

autophagy in rat skeletal muscle and induced a lower 

decline in insulin sensitivity in the rat liver (31-32). 

Intermittent fasting also improved regulation of 

glucose homeostasis and led to a 40% reduction in 

the IGF-1 levels (33-35). At least 60% of the CR 

group animals had less age related damage and lived 

longer than those that were fed ad libitum (36). Such 

diets offer overlapping functional benefits on stress 

resistance, metabolic fitness and life-span (37-39). 

There is substantial evidence that metabolism and 

aging are linked and that adoption of less active 

metabolism can prolong life for an extended period of 

time. One idea that arose over 70 years ago by 

McCay in studying rats subjected to CR, is that the 

decline in the supply of the food, evokes stress-

resistance programs, and delays or suspends 

reproduction until such time that the environmental 

factors change and food supply is restored. These 

results have been repeatedly confirmed (40-44). 

Studies in model organisms including C. elegans, 

mice and non-human primates have repeatedly 

shown that CR is a promising tool in fight against 

aging and age related pathologies (45). In non-

human primates, 30% CR led to lower incidence of 

age-related diseases, less loss of grey matter and 

improved survival, yet, these findings are at odds with 

a study carried out at the National Institute of Aging 

(NIA) study on rhesus monkeys (46-47).  

CR and DR, reproducibly extend the 

maximum life-span in mammals, likely, by activating 

a biological defense response that helps organisms 

to survive in case of environmental adversity (48). For 

example, yeasts can live longer in mildly stressful 

conditions such as low nutrients, osmotic stress, high 

temperature and high salt (49-51). Together, the 

engagement of such defense systems have shown to 

extend the life-span of yeast, flies, nematodes, and 
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rodents (2, 52-57). In primates including humans, CR 

has been associated with a significant improvement 

in physiological functions including fasting insulin 

level and 24-hour energy expenditure (53,58-62). 

Experiments in short lived organisms such as 

nematodes and flies have revealed that the calorie 

restriction works by modifying the insulin signaling, 

nutrient sensing and chromosome remodeling and 

engages the systems that are directed at damage 

response pathways (5). Oxidative stress leads to a 

significant age dependent increase in 8-oxo-2-

deoxyguanosine (oxo8dG) levels in nuclear DNA 

(nDNA) in all tissues and increase oxo8dG in 

mitochondrial DNA (mtDNA) in liver of rats and mice. 

DR is likely to decrease ROS production and has 

been shown to reduce the rate of DNA damage as 

evidenced by accumulation of oxo8dG in various 

tissues (63-64). The efficacy of CR, particularly 

interventional clinical trials and the mode of such 

treatments for increasing health-span and life 

expectancy in humans, are still required before such 

strategies can be successfully implemented in 

humans. 

2.2. NAM, NMN, NR, NAD+ and metformin 

The flow of carbon and energy occurs 

through glycolysis and mitochondrial oxidative 

phosphorylation (OXPHOS). These reactions require 

a tightly controlled balance between the synthesis 

and degradation of nicotinamide adenine 

dinucleotide (NAD) or NAD+ in cells. NAD+ is an 

important co-factor in all living cells and is essential 

to life in biological processes as diverse as 

production of ATP via anaerobic glycolysis, 

tricarboxylic acid cycle metabolism (Krebs 

cycle), OXPHOS, fatty acid β-oxidation, cell 

signaling,  gene expression, and DNA damage repair 

by NAD+-dependent sirtuins (65-71). In mammals, 

NAD+ is synthesized from one or more of its major 

precursors including tryptophan (Trp), nicotinic acid 

(NA), nicotinamide (NAM), nicotinamide 

mononucleotide (NMN), and nicotinamide riboside 

(NR). In mammals, NMN is a natural compound and 

an efficient NAD+ precursor and is synthesized from 

nicotinamide, by the rate-limiting enzyme, 

nicotinamide phosphoribosyl transferase (Nampt) 

from nicotinamide, and 5′-phosphoribosyl-1-

pyrophosphate (PRPP), or from NR by NR kinases 

(NRKs) by phosphorylation reaction and then it is 

converted to NAD+ by NMN adenylyl transferases 

(NMNATs ) (68). 

The deacetylase activity of the sirtuin 

proteins and metabolic homeostasis is dependent on 

NAD+ (72-76). NAD+ is  also required for metabolism 

and the actions of poly(ADP-ribose) polymerase 

proteins (PARPs), namely PARP1 and PARP2 in 

mammals,  and acts as a DNA damage sensor for 

these polymerases, in the processes of protein 

deacetylation and poly-ADP-ribosylation (PARyla-

tion) (77-80). PARP-1 is a NAD+-dependent ADP-

ribosyltransferase, that oscillates daily by feeding. It 

has been shown that PARP-1 inhibition increases 

mitochondrial metabolism through SIRT1 activation 

whereas PARP2 regulates SIRT1 expression and 

whole-body energy expenditure (81-82). Consistent 

with NAD+ being required for PARP action, 

inactivation of PARP1 increases tissue NAD+ levels 

and activates mitochondrial metabolism (81). 

Interestingly, there is some evidence that links the 

PARPs to increase in life-span (83-84). 

It has been shown that the level of NAD+ 

drops with age in C. elegans and aged mice and such 

a decrease reduces longevity in C and conversely 

genetic or restoration of NAD+ levels prevents 

metabolic changes associated with aging and leads  

to increased life-span in C. elegans (85-86). In this 

nematode, increase in levels of NAD+ by PARP 

inhibitors leads to the improvement of mitochondrial 

homeostasis through the activation of the sirtuin 

homolog, sir-2.1 and leads to the activation of the 

mitochondrial unfolded protein response (UPRmt), 

which is a mitochondrial proteostasis pathway, 

known to promote longevity (87-89). This increase 

also leads to the activation of the FOXO transcription 

factor, daf-16, triggering an antioxidant protection 

program (85, 90). 

In mammalian cells, the principal substrate 

for the synthesis of NAD+ is the nicotinamide (NAM) 

salvage pathway which requires sequential actions of 

nicotinamide phosphoribosyltransferase also known 

as pre-B-cell colony-enhancing factor 1 or visfatin 

(Nampt) and NMN adenylyltransferases (NMNAT1-3) 

leading to the production of NAD+ from NMN and ATP 

(91). Thus, NAM is a requisite precursor for the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/biological-phenomena-and-functions-concerning-the-entire-organism
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https://www.sciencedirect.com/topics/medicine-and-dentistry/nicotinamide
https://www.sciencedirect.com/topics/medicine-and-dentistry/phosphoribosyltransferase
https://www.sciencedirect.com/topics/medicine-and-dentistry/nicotinamide
https://www.sciencedirect.com/topics/medicine-and-dentistry/phosphotransferase
https://www.sciencedirect.com/topics/medicine-and-dentistry/phosphorylation
https://www.sciencedirect.com/topics/medicine-and-dentistry/deacetylation
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synthesis of NAD+, a key molecule that maintains 

SIRT1 activity, energy metabolism, and metabolic 

homeostasis (68-69, 92-95). Aging and age-related 

diseases, including metabolic disorders, cancer and 

neurodegenerative diseases all result in reduced 

intracellular NAD+ levels due to reduced synthesis 

and increased in its consumption. It has been shown 

that administration of NMN to rodents enhances the 

biosynthesis of NAD+ in many tissues.  Also, the 

administration of NAD+ precursors, such as NAM, or 

nicotinamide riboside (NR) is an efficient way to 

substitute the lowered levels of NAD+ that occur with 

age. In a mouse model of obesity, NAM has been 

shown, when added to a standard diet, to 

restore glucagon storage and to ameliorate diet-

induced hepatosteatosis, oxidative stress and 

inflammation that is seen in age-matched mice (96). 

NAM improves mitochondrial function, prevents age 

and high fat diet induced DNA damage and inhibits 

formation of glucoma (96-97). Loss of NAD+ can also 

be effectively remedied by long-term oral 

administration of NMN (up to 300 mg/kg) that has 

been shown to increase NAD+ in various peripheral 

tissues in mice without causing toxicity, an strategy 

that offers protection against age induced functional 

decline as evidenced by erasing age-related changes 

in gene expression and adipose tissue inflammation 

and for replenishing energy stores, re-establishing 

insulin sensitivity, restoring mitochondrial oxidative 

and lipid metabolism, and in maintaining the eye and 

immune functions and bone density (68, 93, 98-108).  

Overexpression of the 

mitochondrial Nmnat3 in mice, which is required for 

NAD+ biosynthesis, improves age induced glucose 

tolerance and high-fat induced obesity (109).  NMN 

has been shown to prevent age related metabolic 

dysfunction, to increase insulin secretion and 

sensitivity and to normalize glucose tolerance in a 

host of conditions. NAD+ dependent improvements in 

health-span has been shown in normal aging mice,  

Nampt+/− mice, β cell-specific Sirt1-overexpressing 

(BESTO) mice, age or diet-induced diabetes, and 

hypomorphic BubR1 (a mitotic check-point kinase) 

mice (68, 93-98, 108). In the C. elegans model 

of xeroderma pigmentosum group A, ataxia 

telangiectasia, that is caused by mutation in ATM, a 

master regulator of DNA damage response and 

which leads to severe neurodegeneration, NMN, 

affords protection against premature aging and 

extends life-span and health-span (85, 104, 109-

117).  

Treatment of mice with NMN (up to 300 

mg/kg) has revealed no toxicity and NMN has been 

shown to readily pass the blood brain barrier 

increasing the NAD+ levels in the brain tissues (118-

120). In animal models of aging, long-term 

administration of NMN maintains lipid and energy 

metabolism,  increases insulin sensitivity, protects 

the eye and immune functions, bone density and 

affords protection in the animals against age-

associated functional decline (108). Administration of 

NMN reduces inflammation, improves mitochondrial 

function in arterial and skeletal muscles, maintains 

neural stems and progenitor cell population, prevents 

synaptic loss and protects aged mice against 

neuronal cell death,  pathological damage by 

Alzheimer’s disease associated β-amyloid (Aβ), 

cognitive function, and neurodegeneration (121-126). 

NMN protects the heart and brain against  ischemia-

induced damage (127-128). 

In the salvage pathway, NR, a natural 

precursor of NAD+, is converted into NMN by NRKs. 

NR protects against aging and age-related diseases, 

decreases weight gain and obesity, and improves 

glucose tolerance. In models of diabetes and high-fat 

diet,  NR improves metabolic function and 

reduces fat deposition and increases life-span and 

health-span in many model systems  (85, 129-137). 

Replenishing NAD+ stores, by administration of 400 

mg per kg NR, improved muscle function and 

reduced heart damage in mdx and mdx/Utr−/− mice 

and reversed pathology in C. elegans models of 

Duchenne Muscular Dystrophy (DMD) (138).  Nampt 

skeletal muscle knockout mice  show 85% decline in 

intramuscular NAD content, muscle fiber 

degeneration and progressive loss of muscle 

strength and exhibit a reduced treadmill endurance. 

In this model, the supplementation of NR, despite 

having a modest effect on the intramuscular NAD 

levels, reversed these functional deficits and restored 

muscle mass (139).  NR has been shown to improve 

the mitochondrial proteostasis and functions and to 

maintain motor functions. NR also delayed the 

decline in cognitive function, improved learning and 

memory, and reduced the neuronal cell death in 

https://www.sciencedirect.com/topics/medicine-and-dentistry/glucagon
https://www.sciencedirect.com/topics/medicine-and-dentistry/fatty-liver
https://www.sciencedirect.com/topics/medicine-and-dentistry/oxidative-stress
https://www.sciencedirect.com/science/article/pii/S2468501118300063#bib59
https://www.sciencedirect.com/topics/medicine-and-dentistry/glucose-tolerance
https://www.sciencedirect.com/topics/medicine-and-dentistry/xeroderma-pigmentosum
https://www.sciencedirect.com/topics/medicine-and-dentistry/amyloid-beta
https://www.sciencedirect.com/topics/medicine-and-dentistry/lipid-storage
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animal models of AD and Parkinson's disease (PD).  

In C. elegans and AD mice, NR prevented the 

development and progression of Aβ pathology (140-

143).  In triple transgenic model of AD that causes 

DNA repair deficiency, NR prevented neuronal 

damage by phosphorylated tau,  neuroinflammation,  

synaptic dysfunction and cognitive decline (142). NR 

has been shown to prevent mitochondrial defects, 

age-related dopaminergic neuronal loss and motor 

decline in fly models of Parkinson’s disease, 

providing an avenue for neuroprotection in PD and 

other neurodegenerative diseases (140). As 

compared to nicotinic acid and nicotinamide, oral 

administration of NR elevated mouse hepatic NAD+ 

with superior pharmacokinetics and in a 52 year old 

man, a single oral dose of 1000 mg NR increased, by 

45.5 fold, the blood levels of nicotinic acid adenine 

dinucleotide (NAAD) which acts as a NAD+ 

biosynthesis intermediate and increased NAD+ by 

2.7-fold (144). Treatment of these cells with NR, 

induced the mitochondrial unfolded protein response 

and synthesis of prohibitin proteins, and this 

rejuvenated these cells in aged mice. NR also 

improved mitochondrial function and prevented 

MuSC senescence in the mdx (C57BL/10ScSn-

Dmdmdx/J) mouse model of muscular dystrophy and 

prevented the senescence of neural and melanocyte 

stem cells and increased the life-span in mice (132). 

Reductions in NAD+ in natural aging, which results 

from mitochondrial dysfunction, has been shown to 

impair muscle fiber integrity whereas 

supplementation of the NR has been shown to 

reverse the progressive muscle dysfunction in mice 

(145). 

In a first clinical trial of pharmacokinetics of 

NR in humans, single doses of 100, 300 and 1,000 

mg of NR, in 12 healthy subjects (ages 30–55 years 

old) produced dose-dependent increases in the blood 

NAD+ metabolome, NAD+ and NAAD levels, without  

inducing any adverse effects (145). In a double-blind 

and placebo-controlled study in 120 healthy adults 

(60–80 years old), NR (250 mg and 500 mg), did not 

evoke any toxicity and induced dose-dependent 

increase of blood NAD+ levels after 4-weeks and 

these levels were sustained for the entire eight week 

duration of the study (146). In a similar double-blind, 

placebo-controlled study in 55–79 year old healthy 

subjects, NR  administered orally at 500 mg, twice a 

day was well tolerated and effectively elevated 

NAD+ levels, and reduce systolic blood 

pressure and aortic stiffness (147). These data, 

therefore, show that age related decline of NAD+ and 

the associated age related pathologies can 

effectively be reversed by the substitution of NAD+ by 

administration of NAM, NMN or NR. 

AMPK is activated by nutritional restriction 

and CR as well as by metformin that has long has 

been used for the treatment of prediabetes and type 

2 diabetes,  and is currently being considered for the 

treatment of obesity,  for its cancer effects, as an 

approach for prevention of cognitive impairment, 

dementia, and Alzheimer’s disease as well as an anti-

aging medicine (148-153).  The adult dose of 

metformin for the treatment of diabetes is 2 grams (12 

mmol) per day from which 6 mmol is excreted daily 

by the kidneys and the other half is lost in feces (154). 

Metformin is the most potent member of biguanides 

and is more effective than buformin and phenformin 

that appear to act through the mitochondrial complex 

I (155). Proteomic analysis has revealed that 

metformin upregulates degradation of branched-

chain amino acids, the citrate cycle, glycolysis, and 

pyruvate metabolism (156). The mode of action of 

metformin has provided conflicting interpretations. 

Originally, meformin was suggested to be a “caloric 

restriction mimetic”, acting similar to DR through the 

AMPK and LKB1, a view that is no longer considered 

viable (157). Metformin is thought to act similar to a 

mild uncoupler for ETC, blocking retrograde electron 

transport and peroxide production. In isolated 

mitochondria, 25 mM metformin completely inhibited 

complex I-driven O2 flux and led to an increased ROS 

production. Metformin apparently binds to a putative 

specific carrier in the inner mitochondrial membrane 

that allows its enrichment from micromolar levels in 

the cytosol to millimolar levels in the mitochondrial 

matrix leading to an increase in ADP to ATP 

ratio  (158-159). The phase III multi-site TAME 

(Targeting Aging with Metformin) trial has proposed 

metformin as an antiaging drug in model organisms 

(160-161). In C. elegans, fed with live E. coli 

subjected to 25 or 50 mM metformin life-span was 

increased by 13 to 36% (85). The authors concluded 

that, the effects of metformin was indirect, due to 

inhibition of the folate metabolism in the bacteria 

leading to nutrient deficiency resulting in decreased 

https://www.sciencedirect.com/topics/medicine-and-dentistry/systolic-blood-pressure
https://www.sciencedirect.com/topics/medicine-and-dentistry/systolic-blood-pressure
https://www.sciencedirect.com/topics/medicine-and-dentistry/arterial-stiffness
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availability of methionine and suppressed levels of S-

adenosyl methionine (SAM) and decreased SAM/S-

adenosyl-L-homocysteine (162-163).  

Deletion of prdx-2 gene, that belongs to a 

family of peroxidases, the so-called peroxiredoxins 

(EC1.11.1.15) abolished the effect of metformin on 

life-extension, and resulted in the death of the treated 

worms (164). According to others, metformin acts 

through “lysosomal” pathway and LKB1-AMPK and 

mTORC1 metabolic signaling networks. Metformin 

extended health-span as evident by reduced 

pigmentation and prevented age-related decline in 

fitness (locomotion body bends) and promoted life 

extension by activation of the orthologue of AMPK 

(AAK-2) in C. elegans. It is proposed that, metformin 

actions are directed at lysosomes, since metformin 

failed to increase life-span in lysosomal mutants 

(156). It has been suggested that the life-span 

extension in C. elegans by metformin involves AAK-

2-dependent translocation of SKN-1 into the nuclei 

and increased activity of AAK-2 which requires 

presence of an intact AAK-2/AMPKα subunit and the 

SKN-1 transcription factor (157).  However, meformin 

failed to extend life-span in the mutants that lacked 

the orthologues of LKB1 (par-4) or axin (axl-1) (165). 

Despite the fact that metformin increased activation 

of AMPK at 10 mM in the tissues of D. melanogaster, 

it did not extend their life-span (166-167). Also, the 

life extension by use of 0.1% metformin in male 

C57BL76 mice has not been reproduced  (168-169). 

However, there are other data that support the notion 

that metformin extends life in C. elegans, Drosophila, 

rodents and humans, and it can prevent the 

development of cancer and cardiovascular diseases 

(149-150, 153, 170-171). Some of the effects of 

metformin could be mediated through inhibition 

of mTOR complex-1 function in an AMPK-

independent manner via RagGTPase (172).  

2.3. Inhibition of mTOR 

Rapamycin (Everolimus or Rapamune) is a 

compound with antifungal, immunosuppressive, and 

antitumor properties (172-175). Rapamycin acts, in 

part, by forming a gain of function complex with the 

peptidyl-prolyl-isomerase, FKBP12, and inhibits 

signal transduction pathways which are required for 

cell growth and proliferation (176).  However, in 1994, 

it was realized that the rapamycin-FKBP12 complex 

directly targets the mTOR (177-179). 

Pharmacological inhibition of mTOR by rapamycin 

has confirmed that the role of mTOR is evolutionarily 

conserved and it acts as a strong regulator of 

longevity in species as diverse as S. cerevisiae, C. 

elegans, D. melanogaster, to Mus musculus (181-

182, 185-294). Administration of rapamycin, starting 

at 270 days of age, extended the life-span in normal 

mice by retarding aging, postponing death from 

cancer, or both and in short-lived mutant strains of 

mice, rapamycin extended their maximum life-span, 

nearly, by three-fold (194). The activity of mTOR was 

increased in hematopoietic stem cells (HSC) in old 

mice. This included increased in the abundance of 

the mRNA encoding the CDK inhibitors, p16 (Ink4a), 

p19 (Arf), and p21(Cip1) as well as a relative 

decrease in lymphopoiesis; and impaired capacity to 

reconstitute the hematopoietic system. In old mice, 

rapamycin increased life-span, restored the self-

renewal and hematopoiesis of HSCs, and allowed for 

an effective vaccination against a lethal challenge 

with influenza virus. When mTOR was activated in 

the HSCs in young mice, the phenotypes of HSCs in 

old mice could be replicated (195). Sesamin, a 

polyphenolic compound in sesame seeds, has 

recently been reported to extend the life-span in C. 

elegans (196). Since the effects of seasmin on 

longevity was abolished by daf-15, which encodes 

the target of rapamycin (TOR)-binding partner, 

Raptor,  it seems that it does  not act through sir-2.1 

or AMPK, rather, it signals through the unfolded 

protein response and mTOR. 

2.4. Antioxidants 

The free radical theory of aging attributes 

aging to the oxidative damage, therefore, it follows 

that the relief from oxidative damage by anti-oxidants 

should extend life-span (197). There is ample 

evidence that oxidative damages endured by 

macromolecules are reversible and such reversal 

prolongs the life-span. For example, overexpression 

of the antioxidant enzyme, catalase, significantly 

increased the life-span of the transgenic mice (198). 

There is a large number of anti-oxidants such as 

vitamin C and E, lipoic acid, coenzyme Q, melatonin, 

resveratrol, curcumin, polyphenols, and synthetic 

antioxidants including antioxidant nanoparticles. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mammalian-target-of-rapamycin
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Among these, vitamin C (ascorbic acid) is a powerful 

hydrophilic inhibitor of lipid peroxidation and inhibits 

propagation of free radicals (197). Vitamin E is a 

hydrophobic anti-oxidant that resides in cell 

membranes and is present in circulating lipoproteins. 

Indolepropionamide, is endogenous antioxidant, 

which reduces ROS, by binding to the rate-limiting 

component of oxidative phosphorylation in complex I 

of the respiratory chain (199). The geroprotector, 

Epitalon a synthetic tetrapeptide (Ala-Glu-Asp-Gly) 

that is known to have antioxidant activity, showed to 

increase life-span by 11-16% in Drosophila 

melanogaster (200-203).  

The di-peptide, carnosine (beta-alanyl-L-

histidine) which is found, by and large, in muscle and 

brain has a large number of pro-longevity effects 

(204). Carnosine acts as anti-oxidant and radical 

scavenger, as a neuroprotector against free radicals, 

has lipid-peroxidase and anti-inflammatory effects, 

quenches reactive carbonyl species, inhibits 

glycation of low-density lipoproteins that promote 

foam cell formation, has membrane stabilizing action, 

protects against ischemic damage, prevents 

telomeric damage and attrition, and has been shown 

to prevent age related decline in mitochondrial 

functions, and senescence of fibroblasts (205-216). 

Carnosine also increased cellular longevity and 

Hayflick limit and showed rejuvenating effect in 

human fibroblasts and increased the life-span by 

20% in male and not female Drosophila 

melanogaster (216-218). The Trolox- (water-soluble 

analog of α-tocopherol) acylated derivatives (S,S)-6-

hydroxy-2,5,7,8-tetramethylchroman-2-carbonyl-β-

alanyl-L-histidine (S,S-Trolox-carnosine, STC), 

increased the life-span by 16% in males and 36% in 

female fruit flies (219). Carnosine suppressed the 

adverse effects of age-related disorders that show 

protein glycoxidation such as Alzheimer’s disease 

and type-2 diabetes (220-225). 

The stilbenoid polyphenol, resveratrol 

(3,5,4′-trihydroxy-trans-stilbene,), was originally 

isolated from the roots of white hellebore (Veratrum 

grandiflorum, O. Loes) and of Polygonum 

cuspidatum. Resveratrol is present in peanuts, 

blueberries, pine-nuts, and skin and seeds of red 

grapes, (or Fallopia japonica) (226-228). Resveratrol 

has been shown to have free radical scavenging and 

anti-oxidant, anti-inflammatory, anti-microbial, anti-

carcinogenic, cardioprotective, neuroprotective, 

vasorelaxant, and phytoestrogenic effects (228). 

Resveratrol appears to promote vascular health in 

aging, yet, when was provided with a high protein diet 

to old mice, it increased the risk for cardiovascular 

system (229). Resveratrol has shown neuro-

protective effects including decreased cholinergic 

neurotransmission and by preventing neuronal 

apoptosis. Resveratrol increased the expression of 

brain-derived neurotrophic factor, clearance of β-

amyloid peptides and led to anti-amyloidogenic 

cleavage of APP in Alzheimer’s disease (230).  

There are bioactive compounds that are 

found in a diverse array of foods including olive oil, 

fish oil, vegetables, beans, nuts, and fruits. The 

bioactive polyphenol, curcumin (1,7-bis (4-hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione) 

(diferuloylmethane, CUR), is the main component of 

the yellow extract from the plant Curcuma 

longa (turmeric), a popular Indian spice (231-232). 

Curcumin is metabolized into its active metabolite, 

tetrahydrocurcumin (THC), by a reductase found in 

the intestinal epithelium that, as compared to other 

curcuminoids, has a strong antioxidant activity (233). 

Curcumin has anti-inflammatory properties by virtue 

of inhibiting activation of the inflammation factor, 

NFκB, and of the IκB kinase complex 

(IKK)(234). Curcumin also delays aging by inhibiting 

mTOR kinase (235-236). Curcumin might also retard 

aging by its actions on AMPK/UCP2 pathway 

(237). Curcumin, modulated the expression of age-

associated genes, improved health span, and 

extended life-span in Drosophila Melanogaster (238).  

Tyrosol which is a main phenol present in 

extra virgin olive oil has been shown to increase 

stress resistance and significant extension of life-

span in C. elegans, possibly by its action on heat 

shock response (HSF-1) and the insulin pathway 

(DAF-2 and DAF-16) (239). Fisetin is a caloric 

restriction mimetic that has been shown to protect rat 

brain against aging induced oxidative stress, 

senescence, apoptosis and neurodegeneration (240-

243).  

Quercetin, present in red kidney beans, 

caper, radish and onion leads to an increase in 



Extention of health-span and life-span and reversal of aging 

104 © 1996-2021 
 

nuclear Nrf2 translocation and reduces Nrf2 

ubiquitination (244). Quercetin has been shown to 

have anti-aging effects, to enhance spatial 

learning and memory,  to protect against cognitive 

dysfunction, and diabetes (245-248).  Epicatechin, 

is a natural flavonol that exerts its neuroprotective 

effects via activation of Nrf2/ARE and decreases 

traumatic brain injury and neuronal degeneration 

in mice (249). A large array of natural 

phytochemicals, that are present in fruits and 

vegetables, have shown promising Nrf2-ARE 

activating effect. This includes sulforaphane, 

curcumin, epigallocatechin gallate, allyl sulfides 

which are organosulfur compounds including 

diallyl sulfide (DAS), diallyl disulfide (DADS), and 

diallyl trisulfide (DATS) present in garlic, 

resveratrol, lycopene, capsaicin, 3H-1,2-dithiole-3-

thione (d3t), 3-O-caffeoyl-1-methylquinic acid, 

brazilin, cafestol, carnosol, chaocone, and 

chlorophyllin (250). Omega-3 fatty acids, which are 

present in fish oil and flaxseed, also increase the 

nuclear translocation of Nrf2 (251).  

There are data that show the damaged 

molecules might respond to the anti-oxidant 

treatment. For example, short term administration 

of N-tert-butyl-α-phenylnitrone (PBN) to aged 

gerbils reduced the protein carbonyls in brain, 

augmented the activity of glutamine synthetase, 

and normalized, the number of errors in radial arm 

maze patrolling behavior, to the values that were 

observed in young animals. However, these 

changes did not persist when the treatment was 

stopped (252). Similarly, treatment of old mice 

(17.5 months) with high-CoQ diet (2.81 mg/g) for 

15 weeks led to reduced oxidative damage in 

proteins and concomitantly improved special 

performance in Morris water maze test (253). 

In Hutchinson-Gilford progeria syndrome 

(HGPS), Mesenchymal Stem Cells (MSCs) fail to 

respond or survive the oxidative stress as a result of 

being able to mount an appropriate NRF2 response 

(254-259). NRF2-activating compounds such as 

oltipraz, have been shown to rescue the accelerated 

attrition of iPSC-derived MSCs in this type of 

progeria, showing that anti-oxidants are among the 

arsenals that can effectively be used to defend 

against oxidative damage in aging (260). 

2.5. Hydrogen sulfide 

In flies, the longevity benefits of DR can 

be erased, by adding back the EAA to food (53). 

Other DR regimens that restrict specific nutrients, 

including protein or EAAs, without periods of food 

restriction, also extend life-span and health-span 

in Drosophila to mice (261-263). One of the best 

examples of such a diet is methionine restriction 

that shows that this approach can also extend life-

span effectively in yeast, worms, flies, rodents, and 

human cells in culture (163, 264-270). Restriction 

of cysteine also results in stress resistance, 

metabolic fitness and it causes 42% increase in 

mean and 44% increase in maximum life-span 

(271-275). Thus, restricting diet in sulfur amino 

acids (SAA) are equally effective in rendering the 

same impact as DR on longevity and such a diet is 

easier to be implemented by humans. The 

beneficial effects of SAA deprivation can be 

provided by an increase in the supply of the 

gasotransmitter, H2S, to the body by consumption 

of garlic (37). DAS, DADS, and DATS in garlic, 

effectively release hydrogen sulfide (H2S) after 

consumption (276). The allyl iso-thiocyanate, 

derived from Wasabi, mustard, Arugla and 

horseradish, which are known to exert many health 

benefits, are also effective means for increasing 

the level of H2S in the body (277). Members of the 

Brassicaceae or Cruciferae, which are better 

known as the mustards, the crucifers, or the 

cabbage family, including arugula (Eruca sativa 

Mill), produce the iso-thiocyanate, sulforaphane, 

which has been shown to increase the release of 

H2S in vitro (278). The sulfide in these cultivars, 

which is released by cooking, ranges from 0.02 to 

0.39 ppm (278-280).  

The clear image as how dietary restriction 

(DR) without malnutrition improves the life-span has 

emerged recently, and some of the molecular 

mechanisms that underlie such life extension have 

come to focus in the past few years (281). There are 

several lines of evidence that the transsulfuration 

pathway (TSP) is evolutionary conserved and that 

the H2S improves glucose tolerance, increases 

stress resistance, is cytoprotective and has life 

extension properties. Hine et al, reported in 2015 that 

in a mouse model of DR-mediated stress resistance, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930795/#B53
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the restriction of SAA, cysteine and methionine, 

increased expression of the enzyme cystathionine γ-

lyase (CGL, CTH or CSE) of the transsulfuration 

pathway (TSP), which increased H2S production and 

protection from hepatic ischemia reperfusion injury 

(282-284). The positive impact of DR on stress 

resistance and on H2S production was shown to be 

extinguished by SAA supplementation, mTORC1 

activation, and  chemical or genetic CGL inhibition. It 

has been shown that the TSP-dependent H2S 

production is conserved in yeast, worm, fruit fly, and 

rodent models of DR-mediated longevity. Together, 

such findings have shown that H2S production is 

essential to the positive effects of dietary restriction 

and that the impact of such a diet, at least in part, is 

due to the restriction of consumption of cysteine and 

methionine which, in turn, increases the production of 

H2S.  

The production of H2S diminishes with age 

and thus, the protective effect of this gas gradually 

declines as the organism grows older. For example, 

it has been shown that there is an age-related decline 

in CGL and CBS expression and H2S production in 

various tissues in rats. It has been shown that such a 

reduction can be prevented, by a long-term 10–40% 

CR, when instituted from 8 to 38 months of age (285). 

Short-term SAA restriction even for 1 week, has 

shown to increase hepatic CGL expression while a 5 

week restriction of SAA has resulted in the elevated 

expression of hepatic CGL and CBS (286). 20–40% 

CR has led to a dose-dependent increase in hepatic 

H2S production in mice and such an increase has 

been associated with an improved health, yet, not 

always it has led to an extended longevity (287-288). 

The reversal of age related decline in CGL and CBS 

expression and H2S production in kidney has been 

shown in rats to be achievable by 30% CR (289). 

There is also a strong evidence that H2S is involved 

in aging and its normal function is necessary for 

inhibiting free-radical reactions, activation of SIRT1, 

and probably by interacting with the age-related gene 

Klotho (290). H2S has been shown to maintain the 

Klotho expression following acute kidney injury. The 

actions of H2S are similar to, Klotho, which induces 

expression of manganese superoxide dismutase 

(SOD) and resistance to oxidative stress, by 

activating the forkhead transcription factors (FOXO) 

(291-292). 

2.6. Senotherapeutics, senolytics, 

senomorphics and anti-inflammaging 

strategies 

One of the prominent hallmarks of aging 

is the development of cellular senescence which 

occurs in aging tissues and contributes to the 

tissue or organismal aging, and to the diverse Age-

Related Diseases (ARDs). Genetic ablation of 

senescent cells increases health-span and 

reduces the risk of age-related pathologies in 

mice. Thus, senotherapeutics is a new strategy for 

the removal of these cells as a fight against aging. 

Senotherapeutics include senolytics which 

selectively kill senescent cells and senomorphics 

which delay the progression of young cells to 

senescent cells in tissues, restore the functions of 

these cells to the levels found in young cells, or 

clear the senescent cells from tissues by immune-

system mediators. Among these, rapamycin, which 

acts as an mTOR inhibitor, increased the median 

and maximal life-span of both male and female 

mice when was administered beginning at 600 

days of age (293). Administration of rapamycin to 

mice, beginning at 270 days of age, also increased 

survival in both males and females. The pattern of 

the development of the disease, however, did not 

differ in rapamycin-treated mice as compared to 

those of control mice. There is further evidence 

that rapamycin, along with increasing the life-span, 

also increases the function of various stem cells 

(294-298). Aging is associated with an increase in 

mTOR activation in stem cells and progenitors of 

the hematopoietic system (296). Administration of 

rapamycin to old mice protected against the age-

dependent decrease in the function and of 

increase of biomarkers of aging in hematopoietic 

stem cells. The life extension property of 

rapamycin could be attributed to the postponement 

of death from cancer, by slowing aging, or both. 

The effect of the rapamycin also appears to involve 

epigenetic reprogramming by prevention of loss of 

several histone marks that decrease with age 

namely, H3R2me2, H3K27me3, H3K79me3, and 

H4K20me2 (299). These data show a distinct role 

for mTOR signaling in the regulation of mammalian 

life-span, and that pharmacological extension of 

life-span in both sexes is possible by targeting the 

mTOR pathway. 
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The senescent cells cause a host of age 

related complications, namely production of ROS, 

inducing by-stander senescence in other cells, 

causing senescence-associated mitochondrial 

dysfunction (SAMD), release of inflammatory 

cytokines, the so-called Senescence-Associated 

Secretory Phenotype (SASP), and impairing immune 

surveillance (303). Consistent with the by-stander 

effect, transplanting a relatively small number of 

senescent cells into young mice, led to the spread of 

cellular senescence in host tissues and persistent 

physical dysfunction (304). Transplantation of even 

fewer senescent cells to old mice shortened health-

span and life-span and reduced their survival (304). 

Although, normally, the senescent cells are removed 

from tissues, aging leads to impaired clearance of 

these cells and their progressive accumulation in 

aged tissues, in different species including rodents, 

primates  and humans (305-309). Consistent with 

adverse effects of such cells in tissues, the inducible 

clearance of p16INK4a-positive senescent cells has 

been shown to delay natural and premature aging in 

mice (310-315). Thus, a new therapeutic regimen 

for aging is to effectively remove senescent cells 

from tissues or to reduce the impact of their SASP 

(316-319).  

The first intervention involving use of 

senolytics used dasatinib, a protein tyrosine kinase 

inhibitor, and the plant flavonoid, quercetin (320). The 

activity of these two drugs was different. Dasatinib 

removed senescent human preadipocytes whereas 

quercetin was more effective against senescent 

human endothelial cells and mouse bone marrow-

derived mesenchymal stem cells (BM-MSCs). The 

combination of both drugs, reduced the senescent 

cells and age related pathologies and increased 

health-span in chronologically aged mice, in mice 

that were exposed to radiation, as well as Ercc1−/Δ-

progeroid mice. The combined administration of 

dasatinib and quercetin reduced age related 

pathologies including Alzheimer’s disease, 

atherosclerosis, hepatic steatosis, osteoporosis, 

pulmonary fibrosis and cardiac aging (321-324). 

Other classes of senolytics include inhibitors of 

kinase pathways such as P13L/AKT (Fisetin), those 

that bind p53, impact several pathways 

(Piperlongumine, Quercetin-3-D-galactos), inhibit 

Bcl-2 (ABT-263, ABT-737, A1331852, A1155463), 

heat shock protein 90 (17-AAG Geldanamycin), or 

histone deacetylase (HDAC) (Panobinostat) and 

UBX0101 which acts as histone deacetylase (HDAC) 

inhibitor and targets MDM2/p53 and a modified 

FOXO4-DRI interfering peptide that targets p53/p21 

and serpine (316, 325-326). Senolytics have shown 

a great promise in restoring lost functions in aging 

tissues. Acute or intermittent treatment of old and 

progeroid mice with the senolytic agent, fisetin, also 

has reduced senescence markers in multiple tissues, 

reduced age-related pathologies, and extended 

median and maximum life-span (325). The use of 

dasatinib plus quercetin as a senolytic cocktail, has 

led to the increase and selective clearance of 

senescent cells, and reduced secretion of 

proinflammatory cytokines in explants of human 

adipose tissue (304). Moreover, intermittent oral 

administration of senolytics to naturally aged mice 

and young mice that received senescent cells 

prevented loss of physical functions and increased 

survival by 36% and reduced their mortality hazard 

by 65% (304). Removal of senescent cells has also 

been shown to reduce age-associated phenotypes 

and to rejuvenate HSCs (310-314).  

Given that senescent cells participate in 

normal physiology such as wound healing, 

placental function and embryo development, these 

cells are normally cleared from tissues by the 

immune cells. However, immunoscenecence 

reduces the efficiency of the immune mediated 

clearance by NK cells, CD4+ T cells and 

macrophages that identify the senescent cells by 

different targets that appear on the cell surface of 

these cells. This includes MICA, and ULBP2 

expressed by replicatively, oncogene and DNA 

damaged induced senescent fibroblasts, dipeptidyl 

peptidase 4 (DPP4), NKG2D ligands and CD9 that 

is expressed in replicatively and doxorubricin 

induced human umbilical cord endothelial cells 

(HUVEC) and human dermal fibroblasts (327-

331). The DPP4, which appears on the cell 

membrane of senescent fibroblasts, is considered 

to be targetable by the antibody-mediated NK cell-

mediated cytotoxicity (332). Another approach is 

the administration of T cells that, by the expression 

of the NKG2D chimeric antigen receptor (CAR), 

can recognize NKG2D ligands on the surface of 

senescent cells (327). 
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Senomorphics do not lead to the apoptosis 

of senescent cells, rather, they reverse the senescent 

phenotype and oppose the senoinflammation and 

inflammaging.  This includes a wide range of 

approaches and drugs that include CR, CR mimetics 

(CRM), antioxidants, anti-inflammatory agents, as 

well as activators of telomerase, sirtuin, autophagy 

and proteasome (328-337). The target for the 

therapeutics varies and include IKK/NFκB pathway 

(NBD peptide), JAK (Janus kinase) pathway 

(ruxolitinib), PDGF/FGF pathway (ESC-CM), 

TGFBR2/p21 pathway (Mmu-miR-291a-3p), ATM 

kinase (KU-60019), Progerin/lamin A/C (JH4) as well 

as a number of other drugs with unknown targets 

(Juglanin, Quercetin-3-O-β-D-glucuronide, (−)-

Loliolide, Quercetagetin 3,4′-dimethyl ether) (316). 

The best approach to the suppression of age related 

inflammation is to adopt preventive measures which 

include those that retard the aging process namely, 

CR, DR, restraining the consumption of protein, and 

sulfur containing amino acids, metformin, resveratrol, 

NAD+, NMN, NR, epimedium total flavonoids, and 

icariin. It is recommended that the diet be 

supplemented with zinc (Zn) which often times is low 

in the elderly. Zn is thought to modulate the immune-

inflammatory response and to interact with 

inflammatory cytokines including interluekin (IL)-6, 

tumor necrsis factor (TNF)-  as well as heat shock 

protein 70 (HSP70)(338-340). It has been shown that 

individuals that are over 60, if treated with TNF 

antibody, are less prone to infections (341). 

The anti-inflammaging response that the 

aging organism mounts to counter the inflammaging 

leads to an increase in the circulating level of cortisol 

with un-avaoidable consequences including 

gluconeogenesis, global immunosuppression, frailty 

induced by catabolic effects, muscle protein 

catabolism and wasting and bone resorption and 

osteoporosis (342). Dehydroepiandrosterone 

(DHEA) and its sulphated precursor, DHEA sulphate 

(DHEAS), which are secreted by ACTH driven 

production from adrenal glands and to less extent by 

the ovary and testis, oppose the negative effect of 

cortisol induced by the anti-inflammaging response. 

These hormones antagonize the effect of cortisol at 

the glucocorticoid receptor level, directly by 

suppressing their production or by virtue of 

downstream metabolites and by opposing the cortisol 

induced immunosuppression (343-344). The ovarian 

and testicular DHEA are converted to the estrogen 

and testosterone and, for this reason, can not 

contribute significantly to this response (345). 

Unfortunately, the levels of these beneficial 

hormones reach a peak in early adulthood and then 

decline sharply with age so that by age 70 they reach 

to 10-20% of their values in youthful individuals (346). 

Whereas, high cortisol levels are associated with 

increased death in patients who suffer stroke, heart 

failure, sepsis, and sarcopenia, the low 

concentrations of DHEAS are associated with 

diverse age related pathologies including 

cardiovascular disease, sarcopenia, osteoporosis 

and mortality (347-353).  

2.7. Reactivation of telomerase 

There are findings that show that 

shortening of the telomeres has a significant adverse 

impact on the life-span of replicatively active cells and 

that reversal of telomere shortening can extend the 

life-span. Age dependent loss of the telomere 

function, leads to p53 activation resulting in loss of 

tissue stem cell and progenitor functions, apoptosis, 

impaired proliferation and senescence, marked 

tissue atrophy and physiological impairment in many 

organ systems (354). The production of transiently or 

reversibly immortalized engineered cells with active 

telomerase that do not harbor oncogenic mutations 

appears to be safe and offers the possibility of 

treating a variety of chronic diseases and age related 

pathologies that emerge from telomere based 

replicative senescence. The expression of the 

catalytic subunit of human telomerase (hTERT), 

which restores telomerase activity has been shown 

to reduce senescence and to extend the life-span of 

many human cell types (355-361). The hTERT 

immortalized cells have a normal karyotype  and 

normal functions such as normal cell cycle controls 

and functional p53, p21Cip1, and p16Ink4a/pRB 

checkpoints, and like normal cells are contact 

inhibited, and require growth factors for proliferation 

(362).  

Telomerase deficient mice have been used 

to show the relationship of the decline of telomeres, 

mitochondria and stem cells during aging (363). Loss 

of telomeres and their un-capping leads to impaired 
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responses to tissue injury, progressive tissue 

atrophy, stem cell depletion, and ultimately to multi-

system organ failure (363). A knock-in allele that 

encodes a 4-hydroxytamoxifen (4-OHT)-inducible 

telomerase reverse transcriptase-Estrogen Receptor 

(TERT-ER) under transcriptional control of the 

endogenous TERT promoter was used to examine 

the effect of reactivation of telomerase activity on 

halting or reversing the impacts of deficiency in 

telomerase activity. Reactivation of telomerase, 

extended telomeres, reduced DNA damage 

signaling, led to the proliferation of quiescent cells, 

and erased degenerative phenotypes in testes, 

spleens and intestines (364). The reactivation of 

telomerase in adult tissue stem cells that suffered 

from shortened telomeres reversed degenerative 

pathologies that were reminiscent of age related 

pathologies in multiple organs (364). This 

rejuvenating intervention does not appear to be 

associated with the loss of differentiated phenotypes. 

By overexpressing HRP-1, a telomere-

binding protein, the telomeric length was extended in C. 

elegans and these animals were shown to live longer. 

Moreover, the extension of life-span in these animals 

was due to the increased telomere length, and not due 

to the overexpression of HRP-1 (365).  Inhibition of 

proliferation in the virus-transformed human fibroblasts, 

could be overcome by the ectopic expression of the 

wild-type reverse transcriptase protein (hTERT) of 

human telomerase (366). It was shown that the activity 

of reverse transcriptase of telomerase synergized with 

calorie restriction and extended health-span and life-

span in mice (367). Telomerase was also shown to 

prevent the accelerated cell aging that occurs in 

fibroblasts of patients with Werner syndrome  (368). 

Ideally, stem cells can be transiently forced to express 

hTERT until such time that the telomeres are sufficiently 

elongated, and, then, the rejuvenated cells can be 

returned to the aged individual to restore functions that 

are lost due to aging in stem cells. Clearly, before such 

a practice can enter the clinical arena, the efficacy, long 

term safety and the assessment of its oncogenic 

potential are required (369). 

2.8. Prevention of stem cell exhaustion 

A predominant feature of aging is a 

progressive decline in stem cell function that results 

from cumulative epigenetic alterations that ultimately 

halt tissue repair (370).  Like other cells, human adult 

stem cells, are subject to telomere shortening, and 

the diverse epigenetic modifications that are involved 

in aging including global loss of H3K9me3, and 

changes in the nucleolus organizer region related to 

ribosomal DNA (NOR-rDNA) (371-378). The multi-

potent progenitor cells from adipose tissue show age-

dependent loss of self-renewal capacity and exhibit 

an increased tendency to undergo adipogenesis 

(379). Bone-marrow-derived mesenchymal stem 

cells (MSCs) of patients with Hutchinson–Gilford 

progeria syndrome, are defective in their ability to 

differentiate (380).  Similarly, the MSCs show loss of 

proliferation and differentiation potential, increase in 

senescence and loss of capacity to differentiated in 

aged animals (381-383).  In many model organisms, 

the senescence and exhaustion of stem cells have 

been shown to be due to dysregulation of metabolic 

and nutrient-sensing pathways. Among these, 

decreased serum levels of insulin growth factor 

(IGF)-1 appears to promote stem cell quiescence, 

whereas, maintenance of these systems promotes 

proliferation of adult stem cells.. For example, 

repletion of NAD+ in stem cells, improved 

mitochondrial and stem cell functions and enhanced 

life-span in mice (384). Moreover, introducing germ-

line stem cells to C. elegans extended their life-span 

and implantation of neural stem cells extended life-

span in Niemann-Pick C1 mice (385-386). Thus, it is 

clear that approaches that are designed to prevent 

age related decline in aging, such as prevention of 

exhaustion of stem cell pool, are one of the ways to 

extend human life-span. 

Notably, overexpression of the enzymatic 

subunit of telomerase, TERT, in mice, on a cancer-

resistant background or late in life, increased median 

life-span, suggesting that the length of telomeres and 

life-span are intimately linked (387-388). The self-

renewal, and regenerative potential of HSCs are 

maintained by fasting and CR through modulation of 

the signaling through IGF1-PKA, mTORC1 and 

SIRT1 pathways and DR has been used to effectively 

rejuvenate the activity of muscle and intestinal stem 

cells (389-390). It has been shown that the life can 

be extended in progeroid mice and degenerative 

phenotypes can be prevented by the transfer of 

muscle-derived stem cells (MuSC) from young mice 
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(391). In a mouse model of progeria, muscle-derived 

stem/progenitor cells (MDSPCs) were defective in 

proliferation and multi-lineage differentiation. The 

intraperitoneal administration of MDSPCs from 

young wild-type mice, to progeroid mice restored 

proliferation and differentiation defects of aged 

MDSPCs and led to a significant rescue from 

degenerative changes and vascularization defects in 

tissues and increased in health-span and life-span. 

The rejuvenating effect of the stem cells from healthy 

young animals appears to be due to secretion of 

soluble factors. For example, systemic factors from 

young mice have been  used to rescue the 

dysfunction of neural and muscle stem cells in old 

mice (392-393). 

Three chemicals which are all known 

activators of the nuclear factor erythroid 2-related 

factor (NRF2) pathway, metformin, resveratrol and 

Oltipraz, stimulated the proliferation of pre-

senescent hMSCs in the WS that induces progeria 

(394). By increasing the interaction between 

SIRT1 and Lamin A, resveratrol has shown 

promising effects by opposing the decline in the 

adult stems and to increase life-span in mice with 

premature aging (395). To create stem cells with 

better quality, a single-nucleotide variation 

(A245G) was introduced in the NRF2 locus. This 

change improved NRF2 stabilization and 

transcriptional activation of its target genes, 

conferred resistance to neoplastic transformation, 

delayed cellular senescence, and led to the self-

renewal activity, and a better regenerative ability 

of stem cells in vivo (396). By induced expression 

of NRF2 target genes, the FDA approved, oltipraz, 

has shown to reduce the accelerated exhaustion of 

iPSC-derived MSCs in HGPS (260). Similarly, by 

activating sirtuins, the NR which was shown to 

delay the induction of senescence in MuSCs and 

aging in adult stem cells, also has shown to extend 

life-span in mice (132). The beneficial effects of 

metformin on aging, by activating AMPK which has 

been shown in worms and mice, is currently being 

carried out in humans (7, 157, 377, 397). Vitamin 

C, which acts both as a redox regulator and an 

epigenetic modulator, and reduces ROS levels and 

loss of function, has been shown to increase 

proliferation of MSCs in a stem cell model of 

Werner syndrome (398-400). 

3. REJUVENATION STRATEGIES 

There are several approaches that can 

restore lost functions in aged cells and lead to the 

rejuvenation of tissues without the need to repress 

differentiation and generation of a pluripotent state. 

Moreover, there are now new evidence that the aging 

clock can be reset to an earlier time point by several 

strategies such a partial reprogramming, or by use of 

a drug cocktail comprised of metformin, GH and 

DHEA. We will examine the available models that 

supports the notion that aging reversal is feasible. 

3.1. Resetting of the aging clock and 

reversal of aging 

Gene expression, which is requisite to life 

and all facets of cellular functions, is controlled by the 

structure of chromatin and by the state of the 

epigenome (401-402). The epigenetic landscape and 

retention of older “immortal” strands and segregation 

of the new strands to the daughter cells, is known to 

be important to the cell fate, and differentiation 

decisions of stem cells (403). This raises the 

possibility that the state of chromatin and epigenome 

might also underlie, some if not all, aspects of aging. 

One of the best characterized epigenetic means for 

regulation of gene expression occurs by the 

methylation of the DNA that remains stable or even 

can be passed on to the next generation until such 

time, that based on the cellular needs, this state is 

modified by the demethylation processes. Based on 

analysis of 8,000 samples from 82 Illumina DNA 

methylation array datasets, that included 51 healthy 

tissues and cell types, Horvath et al showed that the 

DNA methylation status of 353  genes can predictably 

and accurately estimate the age of any tissue within 

a narrow 2 year margin (404-406). The possibility 

that, these methylation sites are not merely markers 

of aging but also cause aging, is a possibility that has 

not yet been ruled out.  This DNA methylation age or 

Horvath or epigenetic clock has some inherent 

properties including being zero in embryonic and 

induced pluripotent cells (iPs). The epigenetic clock 

shows sequential changes with the passage number 

of in vitro cultured cells. Interestingly,  the clock was 

a great predictor of heritable acceleration of age and 

could even be applied to the determination of the 

biologic age of tissues from chimpanzees.  
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Thus, it follows that measures that can 

reset the aging or epigenetic clock and even to set it 

to zero now can be reliably tested. Among such 

measures, nature itself has provided us with many 

clues and circumstances that suggest that the aging 

clock can be reset to an earlier time-point. However, 

opportunities that reset the aging clock to zero must 

be approached with a great caution since they may 

unleash the possibility that pre-existing DNA 

mutations may lead to carcinogenesis. Among such 

conditions are parabiosis, genetic reprogramming, 

forced induction of near stemness by periodic 

introduction of pluripotency genes, fertilization, 

somatic cell nuclear transfer (SCNT), young 

extracellular matrix, and blood factors such as growth 

and differentiation factor (GDF))11.    

Since aging results in progressive increase 

in the cortisol/DHEAS ratio, one approach is to 

provide DHEA or DHEAS as a supplement, and 

conclusive trial data that such an approach is 

beneficial is just emerging (343, 408-410). Recently, 

a trial was carried out and the participants, initially, 

received for a week, recombinant growth hormone 

(hGH alone) (0.015 mg/kg/day) and then 50 mg/day 

DHEA in the second week and finally, these were 

administered with 500 mg/day metformin in the third 

week. At the fourth week, all doses were 

individualized based on particular response of each 

participant (411). This treatment led to the improved 

immunological response and risk indices and 

reversed the aging clock. The rate of reversal of the 

epigenetic aging relative to the actual chronological 

age accelerated from −1.6 year/year from 0–9 

months to −6.5 year/year from 9–12 months. The 

GrimAge predictor of human morbidity and mortality 

persisted six months after the treatment was 

discontinued. This is the first report that the 

epigenetic age estimator of life-span can be reversed 

by an anti-aging strategy. 

This study clearly points to the fact that 

aging is not fixed and similar to differentiation can be 

reset and that strategies that successfully rewind the 

clock likely resume normal function of organs, tissues 

and cells, and bear the potential to allow the stem 

cells to regain their regenerative potential with the 

hope to reverse age related organ and tissue 

declines and pathologies. There are natural 

circumstances such as fertilization that are consistent 

with the idea that nature has found ways to reset the 

aging clock to zero or preferably just to an earlier 

time-point consistent with the youthful state of 

embryos to young adults. Moreover, the rejuvenation 

can be achieved by epigenetic reprogramming that 

involves somatic cell nuclear transfer (SCNT) or 

generation of induced pluripotent cells (iPs). Other 

approaches include partial or episodic 

reprogramming, heterochronic parabiosis, or 

exposure of aged cells to a youthfull extracellular 

matrix. The only caveat is that aging is associated 

with the accumulation of mutations in nDNA and 

mDNA that are not be remedied by rejuvenation 

strategies, requiring development of personalized 

medicine by sequential and partial rejuvenation of 

tissues in a step-wise fashion or by removing the 

unwanted mutations by clustered regularly 

interspaced short palindromic repeats (CRISPR). 

Also, we, so far, lack knowledge on sustainability and 

endurance of the available strategies, requiring the 

understanding that how often such rejuvenating 

regimens must be re-introduced.  

3.2. Fertilization and somatic cell nuclear 

transfer (SCNT) 

Epigenetic changes are indispensable to 

life and represent reversible processes by which 

response to environmental and developmental cues 

are received, leading to alterations of the DNA and 

histones by a host of enzymes such as 

methyltransferases, demethylases, acetyltrans-

ferases, and deacetylases (412-414). Many 

enzymes, that modify chromatin, lack intrinsic DNA 

binding specificity and require special docking sites 

on chromatin, or are actively recruited by long and 

short noncoding RNAs or sequence-specific 

transcription factors (415-418). The so-called “cis-

epigenetics” lead to transcription of genes that 

determine the cell fate and lock cells in a 

differentiated state (416). The gene expression is 

controlled by the extent of cytosine methylation of the 

regulatory regions of the genes, with heavy 

methylation, oftentimes, leading to repression of 

gene expression. These changes also include the 

modifications in chromatin state induced by 

methylation or acetylation of histones that can turn on 

(histone acetylation or histone 3 trimethylated at 
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lysine 4; H3K4me3) or turn off (histone 3 

trimethylated at lysine 27;H3K27me3) the 

transcriptional activity of genes on demand (412, 

419). The regulation of gene expression may also be 

achieved by a host of RNAs and proteins such as 

transcription factors, the so-called “trans-epigenetics” 

(416, 420). The epigenetic changes are normally 

stable and not prone to change by environmental 

cues, a process referred to as “canalization” (421). 

Despite being stable, the epigenetic modifications 

are not hard-wired and can be passively modified, for 

example, by sequential cell divisions that can be 

reinforced by specific enzymes that endow cells with 

a new epigenetic state (412, 422). DNA methylation 

changes occur and correlate well with the age of 

tissues. In fact, the DNA methylation status of some 

loci in any tissue including blood has been found to 

be sufficient to accurately assess the biologic age of 

the tissue and serve as a better predictor of the 

mortality than any other risk factor (404, 423-424). 

The available data suggest that epigenetic 

changes that drive the aging processes can reliably 

be reset via extensive epigenetic remodeling that 

starts at fertilization and continues during germline 

specification and early development. Early 

development is associated with two major waves of 

epigenetic reprogramming, one that occurs at 

fertilization and, the other, later during germ cell 

development and imprinting (425). Fertilization acts 

as s potent mechanism for resetting of the aging 

clock by “reprogramming,” of the zygotic nucleus by 

the factors that reside within the egg cytoplasm. In 

humans, this process is initiated immediately after 

fertilization and at the moment that the sperm head 

enters the ooplasm. After fertilization, the genome 

undergoes epigenetic reprogramming that entails 

genome wide modifications of 5-methylcytosine and 

DNA repair (425-426). The resetting of all age related 

changes in ovum is required to allow for resetting of 

the epigenetic landscape that gives rise to another 

organism with a normal life-span. The zygotic 

genomic reprogramming is unique since it entails the 

formation of so-called bivalent domains that include 

both H3K4me3 (active) and  H3K27me3 (repressive) 

marks that remain on standby until activated (427). 

Chromatin marks are not spared from changes that 

typically occur in the enhancer elements marked by 

histone H3 monomethylated on lysine 4 (H3K4me1). 

This state correlates well with increased levels of 

chromatin interactions, whereas loss of this histone 

modification, leads to reduced levels of chromatin 

interactions (428). These enhancers get activated 

during differentiation of embryonic stem cells by 

virtue of modification of histone H3 lysine 27 from 

trimethylation (H3K27me3) state to an acetylated 

(H3K27ac) format (429-430). Although the rate of 

aging in germ cells and their biologic age might differ 

from the changes that occur in somatic cells, germ 

cells are not immune from cellular and molecular 

assaults of aging (431-432). Early during the 

development, with the notable exception of imprinted 

loci, primordial germ cells also reset the methylation 

marks of their genome, reaching a state of global 

hypomethylation that is stably retained. Methylation 

levels reach to their lowest levels in the developing 

embryo before gastrulation (433).  

The notion that egg cytoplasm has 

rejuvenating effect, was a prelude to the concept to 

achieve cloning by somatic cell nuclear transfer 

(SCNT). This process involves removal of the 

nucleus of a differentiated somatic cell and its 

transfer to the cytoplasm of an enucleated oocyte 

(434-435). The first successful attempt was carried 

out by the introduction of nuclei from cells of blastula 

to the enucleated cells of a frog. The rationale for this 

choice was that it was known that all the nuclei of the 

blastula were equivalent. These early experiments 

clearly showed that nuclear transplants into eggs can 

give rise to normal embryos. Later, it was shown that 

egg transplantation of nuclei of endoderm cells of 

Xenopus laevis could give rise to swimming tadpoles 

that appeared to be entirely normal and at least 30% 

of nuclei of the blastula and at least 4% of gut-cell 

nuclei from hatched tadpoles contained all the 

required genetic information for the formation and 

functioning of a normal adult organisms (436-438). 

However, frogs which were derived from the nuclei of 

differentiating cells, exhibited more abnormality than 

those which were derived from embryonic cells. For 

example, 7 out of 27 frogs that were derived by the 

transfer of the nuclei of the gut cells of the hatched 

tadpoles were sterile. Although, initially, the 

offsprings were derived from SNCT of nuclei of early 

embryos, or embryo-derived cells during primary 

culture, ultimately, SCNT was successfully carried 

out by transplanting the nuclei from the mammary 
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glands of a sheep to an enucleated egg. These early 

attempts, ultimately, gave rise in 1996, to the birth of 

the first mammalian cloned animal, the Dolly (439). 

Dolly was fertile and gave rise to triplets, Lucy, Darcy 

and Cotton in the year 2000. At the age of 4, Dolly 

developed arthritis and was euthanized due to the 

development of disabling arthritis and lung 

carcinoma.  However, this landmark achievement led 

to an entire field of cloning and provided the proof of 

hypothesis that the state of the DNA or epigenome of 

an adult cell is not a barrier to the generation of a 

normal adult and that nuclei of differentiated somatic 

cells can successfully revert to a totipotent state. 

Given that most cloned animals die, it is clear that the 

resetting of the aging clock and epigenetic 

reprogramming do not fully replicate the 

reprogramming that occurs in fertilized eggs (440). 

These early studies clearly showed that the 

nuclei of aged differentiated cells can successfully 

give rise to embryos that become fertile adults and 

that the aging within such nuclei is not a hindrance to 

the reprogramming and resetting of the DNA, to a 

more youthful state, once placed within the 

rejuvenating environment of the ooplasm. Despite 

the fact that the age related changes and pathologies 

accumulate through a life-time, they are not passed 

to new generations. Each life begins with both the 

chronological and biological age being re-wound and 

set to zero and, moreover, there is evidence that 

longevity can be inherited and even be imprinted 

(441). Thus, reversal, or “resetting to zero,” of the 

aging clock appears to be deeply embedded in the 

nature of life. 

3.3. iPSC and epigenetic reprogramming 

As stated, the epigenetic marks, for 

example, the DNA methylations, are often very stable 

and not subject to change and reprogramming (442-

443). Yet, the cell fate has been shown to be 

reversible through trans-differentiation or by SCNT. 

The epigenetic changes were also achieved, merely 

after 2 days, by the conversion of lymphocytes to 

muscle fibers by formation of heterokaryons of B 

lymphocytes and C2C12 myotubes (444-445). This 

conversion required the extinction of the lineage-

specific lymphocyte associated gene repertoire by 

histone deacetylase (HDAC) activity and 

establishment of expression of muscle specific 

genes. Interestingly, the fusion of fibroblasts with 

human embryonic stem cells (hES) created tetraploid 

cells that exhibited the morphology, growth pattern 

and molecular signature of hES cells. Moreover, in 

ES cell hybrids, differentiation was extinguishedm, 

and, stemness rewired the cell fate, towards the stem 

cell programs and pluripotency (446-447). One 

possible explanation for this overriding effect of the 

somatic cell differentiation programs, lies in the trans-

epigenetic enforcement that establishes a strong 

foothold on the maintenance of the ESC state by 

virtue of the fact that, the transcription factors that 

convey stemness, co-occupy not only their own 

enhancer elements but also the enhancers of other 

members. These pluripotency factors also bind and 

activate and suppress set of genes which are 

essential to the pluripotent state. For example, recent 

evidence has coupled the expression of Xist and the 

in-activation of X-chromosome to the expression of 

pluripotency. To achieve gene dosage parity 

between the sexes, the long non-coding expression 

of Xist mRNA is required for transcriptional silencing 

of one of the two X chromosomes in female cells. 

Oct4 (Pou5f1), Nanog and Sox2 are shown to lie at 

the top of the XCI hierarchy, and to regulate XCI by 

triggering X-chromosome pairing and counting. Thus, 

it becomes evident that that, genetic factors that 

underlie pluripotency, jointly repress Xist and couple 

X inactivation reprogramming to the control of 

pluripotency during embryogenesis (448-449). 

The early work by forming heterokaryons, 

led to the landmark work of Shinya Yamanaka who 

demonstrated that differentiation is not fixed and can 

be reversed by generation of cells that are pluripotent 

(iPS) by introduction of merely four transcription 

factors, Oct4, Sox2, Klf4, and cMyc (OSKM), that 

reset the differentiation programs (450). Such 

dramatic reversal suggests that developmentally 

established epigenetic marks as well as epigenetic 

landscape of aging cells can all be erased and 

reversed. This is evident by rejuvenation of chromatin 

state of cyclin-dependent kinase inhibitor, p16 

(CDKN2A) locus, which is progressively expressed 

with age, and causes the cell cycle arrest and 

senescence (426, 451). The idea that the aging clock 

is reset to zero in iPs cells became evident when it 

was shown that these cells can give rise to germline 
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cells as well as embryos (453). These studies 

showed that the global gene expression as well as 

chromatin states of iPs cells are remarkably similar to 

those in embryonic stem cells (ESC) and that indeed 

the resetting of the aging clock is feasible merely by 

introduction of Oct4, Sox2, cMyc and Klf4 

transcription factors in the terminally differentiated 

cells (454). Many of these epigenetic changes that 

occur during the formation of iPs cells are remarkably 

similar to those which occur in the early zygote (455). 

Thus, it follows that transit of somatic cells to 

pluripotency, not only extinguishes the differentiated 

state and render these cells pluripotent, it allows 

these cells to be differentiated to other cells such as 

hematopoietic stem cells (HSCs) or neural stem cells 

(NSCs) that are rejuvenated (456). In 

contradistinction, direct conversion of fibroblasts to 

NSCs failed to reverse aging in the modified cells 

(457).  

The un-winding of the aging clock, has 

provided the unique opportunity to consider that, by 

introduction of iPs, produced from any aging 

individual to the same person, tissues can be 

generated that are more youthful, and provide the 

unique opportunity to potentially extend their lives. 

However, such an initial enthusiasm was tempered 

by the fact that the iPs cells lead to the formation of 

teratomas, a side-effect that appears to be due to the 

tumorigenic effect of cMyc (458). This led to the 

consideration to eliminate cMyc from the 

reprogramming cocktail and to induce 

reprogramming with merely three transcription 

factors Oct4, Sox2, and Klf4 (459). Senescent cells 

from centenarians or cells derived from patients with 

HGPS have successfully been reprogrammed and 

the reprogramming has led to an increase in 

telomeric length, and a more youthful gene 

expression profile, and reduced oxidative stress 

(257, 259-260). Restoration of fibroblasts of patients 

with HGPS also lends further support that, 

reprogramming, dramatically improves cellular 

functions (261-265). However, there are 

considerations that appear to be obstacles to the 

clinical usefulness of this approach. This includes 

heterogeneity and in-efficiency  (<1–2%) of this 

process, likely due to the potency of p16 and p53 that 

act as barriers to the formation of iPs. Moreover, the 

time consuming aspect of generation of iPs is a 

hindrance for introducing the idea as a clinical 

treatment for the reversal of aging (445, 452, 466). 

Moreover, the iPs generation may not restore the 

length of the telomeres nor full telomerase activity 

(467-468). Thus, before such technologies become 

therapeutically feasible, there is a need to fully 

understand how to improve the process, so that the 

reprogrammed cells become more equivalent to 

youthful cells and to insure that such cells are not the 

harbinger of tumorigenicity. The rejuvenation through 

iPs, perhaps can be substituted by other means that 

do not require the differentiated cells to fully 

relinquish their fate by forcing a mere partial or 

episodic reprogramming or through inhibition of the 

main culprits of aging programs such as by inhibiting 

the NFκB or mTOR, by inducing conditions similar to 

heterochronic parabiosis or by virtue of endowing 

youth through signaling from young extracellular 

matrices. 

3.4. Partial reprogramming 

To avoid the undesirable effects of full 

reprogramming, and more importantly, to avoid its 

tumorigenic potential, and yet to realize its beneficial 

impacts, an alternative approach for reversing age 

related pathologies has emerged. Given that reversal 

of age-associated cellular phenotypes has already 

been achieved in vitro by cellular reprogramming, 

some have resorted to the partial programming using 

the Yamanaka (OSKM) factors (460, 464-472).  

Ocampo et al, showed the effectiveness of partial 

reprogramming using a mouse model of premature 

aging (473-475). The premature aging (progeria), in 

this model, is due to a G609G mutation in the Lmna 

(LAKI) gene that leads to the accumulation of a faulty 

truncated form of lamin A (progerin) that disturbs the 

architecture of nuclear envelope and is also the 

cause of the human HGPS (476-477). These, so-

called LAKI mice, show progeria along with weight 

loss and age associated damages in many organs. 

The partial reprogramming was achieved by the 

cyclic doxycycline responsive in vivo induction of 

OSKM factors and such induction led to the reversal 

of the aged cell phenotypes and alleviated pancreatic 

and muscle damages. The partial reprogramming 

failed to induce the pluripotency marker, Nanog, even 

after 12 days, suggesting that the reprogramming 

was not complete. Despite this, there was 
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remarkable reversal of age related damage including 

reduction of p53 binding protein 1 (53BP1), which 

participates in the DNA damage response as well as 

downregulation of the expression of p53 mediated 

age-related stress response genes, namely, 

p16INK4a, p21CIP1, Atf3, and Gadd45B, as well as 

the senescence-associated metalloprotease, 

MMP13 and interleukin-6. The partial reprogramming 

successfully restored the levels of H3K9me3 and 

H4K20me3 which drop with aging and significantly 

improved the architecture of nuclear envelope. 

Besides such changes at cellular and molecular 

levels, there were improvements in external 

appearance of these mice such as reduced spine 

curvature (kyphosis), and restoration of histologic 

appearance of tissues of major organs, thickening of 

skin, reduced involution of the white pulp within 

spleen and lymphoid tissues, decrease in tubular 

atrophy within kidneys and a significant increase in 

the median or maximal life-span. More importantly, 

these reversal of aging phenotypes were not 

associated with tumor formation nor were permanent, 

and, within 4-8 days, they were reversible as 

evidenced by the return of the H3K9me3 

modification, and recurrence of nuclear envelope 

abnormalities. Together, such changes provided the 

proof of the hypothesis that short term induction of 

the reprogramming is sufficiently robust to reverse 

the age related damages that are evident at the 

tissue, cellular and molecular levels.  

One drawback of this initial study was that 

premature aging model does not faithfully replicate 

natural aging. For this reason, a non-integrative 

reprogramming protocol was carried out on tissues 

from aged mice as well as aged human cells (478). 

The cocktail was comprised of mRNAs expressed 

from OCT4, SOX2, KLF4, c-MYC, LIN28, and 

NANOG (OSKMLN). Reprogramming factors were 

only transiently applied and then stopped (before the 

so-called Point of No Return, or PNR). 

Transcriptomic profiles, indeed, verified that the cell 

identities were retained after treatment. The 

epigenetic repressive mark H3K9me3, the 

heterochromatin-associated protein, HP1γ, and the 

nuclear lamina support protein, LAP2α, showed a 

decrease in the nuclei of aged fibroblasts and 

endothelial cells. The formation of autophagosomes, 

and chymotrypsin-like proteasomal activity, 

telomere’s length, mitochondrial membrane potential 

and SIRT1 protein levels were increased while the 

ROS production, the senescence associated beta 

galactosidase and SASP phenotypes were 

decreased.  Most notably, transient expression of 

OSKMLN led to the reversal of the epigenetic clock 

of human somatic cells, including endothelial cells 

and fibroblasts indicating that methylation age was 

reversed, respectively, by 1.62 years and 1.07 years. 

Chondrocytes derived from cartilage of six, 60–70-

year-old patients, who suffered advanced stage of 

osteoarthritis as well as chondrocytes from young 

individuals were treated with the OSKMLN cocktail. 

This, treatment did not change the cellular identity of 

these cells as evidenced by expression level of 

SOX9, a transcription factor that defines the 

chondrocytic identity and function and significantly 

increased the expression of cartilage specific, 

COL2A1. Whereas, the RNA levels of antioxidant, 

SOD2, and ATP levels increased, this treatment led 

to a significant reduction of intracellular mRNA levels 

of RANKL and iNOS2, as well as in the levels of 

inflammatory factors secreted by these cells. 

Transient reprogramming of mouse-derived skeletal 

muscle stem cells (MuSCs), reduced the time of first 

division that became similar to the time required for 

the activation of quiescent young MuSCs and 

increased the ability of single MuSCs to form colonies 

and to differentiate into myotubes including their 

resumed regeneration potential in vivo. This 

treatment also led to the restoration of forced 

production by muscles that were transplanted with 

untreated aged MuSC. Similar results were obtained 

by using transplanted, transiently reprogrammed, 

aged human MuSCs that resulted in increased 

longitudinal bioluminescence imaging signals 

compared with untreated MuSCs from the same 

individual, and comparable with those observed 

using young MuSCs. There were not any evidence of 

neoplastic lesions or teratomas during the necropsy 

of the animals (478). These studies successfully 

showed that age related pathologies are reversible 

by partial reprogramming and that such a strategy 

leads to the reversal of aging clock. Given that the 

identities of the treated cells did not change with 

such treatments, it is evident that reprogramming 

can be distinctly uncoupled from the de-

differentiation events and emergence of stem cell 

traits which have, thus far, been a major hurdle for 



Extention of health-span and life-span and reversal of aging 

115 © 1996-2021 
 

the use of reprogramming of cells and tissues in 

aging organisms.  

4. CONCLUSIONS 

Within the last two centuries, we have 

witnessed a great deal of progress in understanding 

the cell-centric causes of aging. Based on these 

diverse theories of aging, just in the past few 

decades, many therapeutic options have emerged 

that all have contributed to extend the health-span 

and life-span of model organisms to human beings.  

We have been able in regulating the aging process 

by manipulating the telomeres, and the signaling 

pathways, and have developed technologies to 

remove or restore the senescent cells within aging 

tissues. We have been able to force the differentiated 

cells to gain pluripotency and have used partial 

reprogramming  in restoring the epigenome, to an 

earlier, more youthful state. Metformin and NAD+ are 

at the forefront of aging therapeutics and the idea that 

a mixture of DHEA, GH and metformin can reset the 

aging clock, has opened new possibilities to even 

reverse the aging processes. We are certain that the 

trajectory of our understanding of aging will 

significantly increase in the next decade and new 

modes of treatment for aging, undoubtedly, will be 

unveiled.   
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