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1. Abstract

Background: The wide application of gene se-
quencing has accumulated numerous amino acid substi-
tutions (AAS) with unknown significance, posing sig-
nificant challenges to predicting and understanding their
pathogenicity. While various prediction methods have
been proposed, most are sequence-based and lack insights
for molecular mechanisms from the perspective of pro-
tein structures. Moreover, prediction performance must
be improved. Methods: Herein, we trained a random
forest (RF) prediction model, namely AAS3D-RF, under-
scoring sequence and three-dimensional (3D) structure-
based features to explore the relationship between dis-

eases and AASs. Results: AAS3D-RF was trained on
more than 14,000 AASs with 21 selected features, and
obtained accuracy (ACC) between 0.811 and 0.839 and
Matthews correlation coefficient (MCC) between 0.591
and 0.684 on two independent testing datasets, superior to
seven existing tools. In addition, AAS3D-RF possesses
unique structure-based features, context-dependent substi-
tution score (CDSS) and environment-dependent residue
contact energy (ERCE), which could be applied to interpret
whether pathogenic AASs would introduce incompatibili-
ties to the protein structural microenvironments. Conclu-
sion: AAS3D-RF serves as a valuable tool for both pre-
dicting and understanding pathogenic AASs.
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2. Introduction

The development of high-throughput sequenc-
ing technologies continuously accelerates human genome
re-sequencing and the identification of variants [1]; a
vast quantity of single-nucleotide variants (SNV) have
been registered in the dbSNP database to date [2].
Among them, non-synonymous single-nucleotide variants
(nsSNV), which lead to amino acid substitutions (AAS)
in their protein products, account for more than half of
disease-associated genetic lesions [3, 4], and are thus of
great interest. While only a small part of nsSNVs has been
confirmed to be related to disease or not, the vast major-
ity remain with uncertain significance (variants of uncer-
tain significance, or VUS). In detail, the dbSNP contains
about 8 million nsSNVs or AASs currently, but only about
0.1 million (~1.25%) have explicit associations with clini-
cal phenotypic effects according to annotations in ClinVar
[5], UniProt [6], and HGMD [7]. As it is impractical to
characterize each VUS through experimental approaches,
in silico prediction of their disease-association and under-
standing of the molecular basis of their pathogenicity have
become in high demand.

The past decades have witnessed the develop-
ment of various computational predictors aimed at screen-
ing disease-associated AASs (daAASs) from neutral ones
(nAASs) [8–15]. Many of them adopted machine learn-
ing strategies to train predictors based on various features,
especially sequence conservation-related features [10–12,
14]. However, the performance of available predictors still
leaves room for improvement, and these predictors often
fail to provide insights into the molecular basis of daAASs.
To advance in these aspects, it will be promising to explore
more informative and interpretable features.

Sequence conservation-related features have been
demonstrated as a group of powerful features, but they can-
not provide in-depth mechanistic hints since the conserva-
tion actually serves as a result (but not cause) of natural
selection for structural and functional importance. It is the
folded three-dimensional (3D) structure that directly fulfills
the function. Hence, it is hoped that exploring structural
features can provide more interpretable insights to under-
stand the underlying mechanisms of the pathogenicity of
daAASs. With a large collection of protein 3D structures
that has accumulated in recent years [16], it has proven to
be promising to further explore features based on them, and
to develop predictors by combining both sequence and the
mined structural features. However, it is challenging to put
this idea into practice as the complexity of protein structure
data makes their high-throughput processing much more
difficult than sequence data.

Several recent studies have put massive effort in
this direction. PhyreRisk can map AASs to experimental
or homology-modeled structures, and the associated Mis-
sense3D tool can then list their potential structural impacts

according to a set of knowledge-based rules, such as break-
ing the disulfide bond, burying the hydrogen bond, intro-
ducing clash, altering secondary structures, etc. [17, 18].
VarSite, a protein-centered, experimental structure-focused
resource, has integrated various features, including tissue-
specific expression, disease type, conservation, protein do-
main, secondary structure, and interaction site [19]. Users
can inspect AASs in the contexts of these features to un-
derstand their structural basis [19]. The mutfunc tool pro-
vides pre-calculated properties associated with datasets cu-
rated from ExAC [20] and ClinVar [5], including stabil-
ity, interaction, post-translational modification, linear mo-
tif, and transcription factor binding site [21]. Moreover,
it has covered non-coding variants and extended from hu-
man to yeast and E. coli [21]. MISCAST has analyzed 40
properties associated with the AAS position for all protein
classes jointly and for each of 24 protein functional classes
separately, and have identified many properties that are sig-
nificantly associated with pathogenic or neutral AASs, in-
cluding protein-protein interactions, residue exposure lev-
els, secondary structures, etc. [22]. Further, MISCAST
defined the P3DFi scores for each AAS position on the
basis of the analyses of these properties, and the trained
machine-learning model has shown that the P3DFi scores
can offer orthogonal information to improve the prediction
of pathogenic AAS compared with the combination of SIFT
[8], PolyPhen-2 [11], and CADD [23]. These studies have
largely enhanced the interpretation of AASs from the per-
spective of structures and functions.

Herein, we explored a more comprehensive set
of structural and sequence features, selected an optimal
feature subset using an automatic pipeline, and trained a
machine-learning model for predicting the pathogenicity of
AASs. First, we curated a high-quality collection of exper-
imental structures and homology structure models for 5278
and 3682 human proteins, respectively. Second, one train-
ing and two testing datasets were constructed with 14,117,
5485, and 5249 AASs that can be mapped to structures, re-
spectively. Third, a total of 212 candidate features for each
AAS were extracted based on sequence or structure, and
21 of them were selected by automatic feature selection to
train a random forest predictor [24], namely, AAS3D-RF.
Fourth, the evaluations demonstrated that AAS3D-RF out-
performed seven other popular tools. The structural fea-
tures selected in this work improve the prediction perfor-
mance to different degrees in different scenarios, and the
nature of their interpretability also provides more under-
standing of the molecular basis of the daAASs.

3. Materials and methods

3.1 Curation of AAS datasets

For all human proteins in the Swiss-Prot database
(UniProtKB/Swiss-Prot, Release 2018, 04) [6], we down-
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loaded and curated their available experimental structures
from Protein Data Bank (PDB) [16]. For those proteins
without available experimental structures, their homology
models from ModBase [25] were adopted. The processing
details are described in Supplementary Fig. 1 and Sup-
plementary Methods.

The humsavar.txt (2018, 04 of 25 Apr 2018) file
provided by the UniProt FTP server contained manually an-
notated AAS, and is the main source for preparing the AAS
datasets [6]. According to its documentation, AASs labeled
with “Disease” serve as positive samples (i.e., daAAS),
while those labeled with “Polymorphism” (similar to “neu-
tral” or “benign”) are negative samples (i.e., nAAS). An-
other two data sources of AASs are the 1000 Genomes
Project (1000G, Release 2May 2013) [26] and the VariSNP
(Release 16 Feb 2017) [27]. After removing those whose
mutant allele frequency is less than 1%, the remaining
AASs from 1000G and VariSNP were regarded as nAASs.
After mapping to experimental structures and keeping only
one instance for duplicates, the AASs from these three
sources constituted the TotalDataset.

The TotalDataset was then split into TrainDataset
and TestDataset 1 according to the following procedure:
After an all-to-all BLASTP (E-value≤0.01) run among the
protein sequences in TotalDataset [28], the proteins with
sequence identity to any other one of less than 30% were
selected, and their AASs were regarded as the TestDataset
1. The AASs in the remaining proteins served as the Train-
Dataset. On the other hand, the AASs in humsavar.txt lo-
cated at homology structure models constituted the Test-
Dataset 2. The detailed AAS mapping process is also il-
lustrated in Supplementary Fig. 2.

A series of subsets were further prepared from
these three datasets. In detail, the subsets were orga-
nized according to the proportion of daAASs on each pro-
tein: For proteins containing only daAASs or nAASs,
their AASs constitute the “Pure” subsets; other subsets,
namely, “Mixed” subsets at different mixing levels, were
constructed by selecting proteins within specific ranges of
daAASs proportion, including open interval between 0.0
and 1.0 (denoted as ]0.0, 1.0[) and close intervals of [0.1,
0.9], [0.2, 0.8], [0.3, 0.7], and [0.4, 0.6].

3.2 Feature calculation

Based on protein structures, sequences, and se-
quence alignments, a total of 212 candidate features were
calculated to characterize each AAS from various perspec-
tives (gene/protein, AAS site, substitution itself, etc.). The
full list of features is described in Supplementary Meth-
ods.

Each dataset was organized as a feature matrix
with each row representing an AAS and each column cor-
responding to a feature. The missing data were filled with
the mean values derived from the TrainDataset. Further-
more, each feature column was transformed into Z-score,

i.e., all values in the same feature column were standard-
ized with the mean and standard deviation derived from the
TrainDataset.
3.3 Feature selection and predictor training

Random forest (RF) is a machine learning frame-
work consisting of an ensemble of decision trees, and has
been widely applied in classification problems [24]. In the
training stage, each tree is trained with only a part of the
training samples to decrease over-fitting. In the stage of
prediction, the consensus output from the majority of the
trees was taken as the final result. Considering its suc-
cessful application in many bioinformatics studies [29], we
chose the RF technique in this work for automatic feature
selection and model training.

We adopted a wrapper strategy in the feature se-
lection procedure. That is, we iteratively generated fea-
ture subsets, and evaluated them by using the 10-fold cross-
validation performance of RF classifiers trained on them ac-
cordingly. The brief logic was that we added two features
with the most contribution and removed one feature with
the least feature importance in each iteration, and this oper-
ation would be terminated to deduce the feature redundancy
if the adding of new features would not improve the perfor-
mance of the classifier any more. This procedure has been
demonstrated effective in one previous study [30]. No-
tably, we conducted the cross-validation at the protein level,
where AASs from the same protein were required to reside
in the same fold. That is, AASs were grouped at the protein
level, namely, Group10Fold cross-validation (G10F-CV).
The purpose of this operation was to reduce the level of type
2 circularity, which has been discussed in-depth previously
[31]: If protein/gene-level features were used, there would
exist over-fitting in predicting the disease-association of
those AASs whose proteins contain AASs used in the train-
ing procedure.

After obtaining the final feature subset, we deter-
mined the optimal RF hyper-parameters by finding themax-
imum area under the ROC curve (AUC) of G10F-CV in
a random search of 1000 trials (Supplementary Table 1).
Then, by specifying the hyper-parameters with the optimal
values, the final classifier was re-trained on the entire Train-
Dataset. All these processes were conducted by using the
Scikit-learn toolkit v0.19.0 [32].
3.4 Performance evaluation and comparison with other
methods

The two independent testing datasets, i.e., Test-
Dataset 1 and TestDataset 2, were utilized to evaluate per-
formance and to compare with other predictors by adopt-
ing standard performance measures, including accuracy
(ACC), AUC, Matthews correlation coefficient (MCC),
sensitivity (Sen), specificity (Spe), positive predictive value
(PPV), and negative predictive value (NPV) (definitions in
Supplementary Methods).



1425

In addition to the evaluations on the full datasets of
TestDataset 1 and TestDataset 2, more in-depth evaluations
were performed on the ‘Pure’ and ‘Mixed’ testing subsets,
which are designed to provide an examination of the extent
of type 2 circularity [31].

Our predictor was compared with seven popular
tools, including SIFT (version 5.2.2) [8], HumDiv-
trained PolyPhen-2 (PPH2_HD) (version 2.2.2r405c)
and HumVar-trained PolyPhen-2 (PPH2_HV) (ver-
sion 2.2.2r405c) [11], PROVEAN (version 1.1.5) [13],
FATHMM’s weighted method (FATHMM-W) and un-
weighted method (FATHMM-U) (version 2.3) [14], and
PANTHER-PSEP (version 1.01) [15]. The settings of these
tools are described in detail in Supplementary Methods.

4. Results

4.1 Overview of the datasets

In summary, 6430 experimental structures of 5278
proteins and 4238 homology models of 3682 proteins were
obtained for preparing the AAS datasets (Supplementary
Fig. 1).

After initial data cleaning, the humsavar dataset
retained 29,328 daAASs and 39,679 nAASs. Among them,
11,157 daAASs and 7072 nAASs were mapped to exper-
imental structures, and 2471 daAASs and 2778 nAASs
were mapped to ModBase [25] homology models. Over-
all, the mapped percentages were 46.5% and 24.8% for
daAASs and nAASs, respectively. For the VariSNP dataset,
the initial cleaning, keeping those with MAF at no less
than 1%, and mapping to UniProt canonical sequences, re-
sulted in 18,233 nAASs. Among them, 1281 (7.0%) were
mapped to experimental structures. For the 1000G dataset,
3296 of 34,791 (9.5%) nAASs were mapped to experimen-
tal structures. After integration and proper data partition
described in section 3.1, these mapped AASs were sepa-
rated into TrainDataset, TestDataset 1, and TestDataset 2
(Supplementary Fig. 2).

The TrainDataset consists of 14,117 AASs
mapped on the experimental structures of 1979 proteins,
with 7385 daAASs on 611 proteins and 6732 nAASs on
1750 proteins (Table 1). The ratio of daAAS to nAAS is
highly balanced (7385:6732), which will ensure that the
trained classifier would not suffer from data bias [33, 34].

The TestDataset 1 contains 5485AASsmapped on
the experimental structures from 834 proteins, with 3772
daAASs on 321 proteins and 1713 nAASs on 733 proteins
(Table 1). The TestDataset 2 contains 5249 AASs mapped
on homology models of 1418 proteins, with 2471 daAASs
on 383 proteins and 2778 nAASs on 1208 proteins (Ta-
ble 1). The TestDataset 1 and TestDataset 2were utilized to
evaluate the performance of the trained predictor on AASs
with features extracted from experimental structures and re-
liable homology models, respectively. Notably, both the

Table 1. Overview of the AAS datasets.
Dataset Class # of AAS # of Proteins1 # of Structures1

TrainDataset Disease 7385 611 708
Neutral 6732 1750 1938
Total 14,117 1979 2239

TestDataset 1 Disease 3772 321 338
Neutral 1713 733 757
Total 5485 834 873

TestDataset 2 Disease 2471 383 394
Neutral 2778 1208 1265
Total 5249 1418 1482

1The number of “Total” is less than the sum of “Disease” and “Neu-
tral” since one protein or structuremay contain daAASs and nAASs
at the same time.

TestDataset 1 and TestDataset 2 have no overlapwith Train-
Dataset at either the substitution level or the protein level,
which would presumably avoid the two types of circular-
ity that may cause overly optimistic estimation of perfor-
mance [31]. Moreover, the sequence identity of any pair-
wise comparison between TestDataset 1 and TrainDataset
is less than 30%, but 947 of 1418 proteins in TestDataset
2 have high scoring pairs with sequence identity ≥30%
with those in TrainDataset, indicating that TestDataset 1
is more rigorous than TestDataset 2. The details of Train-
Dataset, TestDataset 1, and TestDataset 2 are provided at
http://www.wdspdb.com/AAS3D-RF/.

We inspected the datasets by examining the “Pure”
and “Mixed” subsets (Fig. 1A,B). A substantial portion of
AASs came from the “Pure” subsets (32.6% in TestDataset
1 and 65.1% in TestDataset 2), i.e., many proteins con-
tributed only daAASs or only nAASs. These “Pure” or
“Mixed” testing subsets can provide more detailed com-
parisons of the predictors’ performance, as some predic-
tors confounded by type 2 circularity could not be evaluated
properly on the entire testing dataset [31].

A similar pattern can be found in the TrainDataset,
where a large part of AASs (44.3%) are from the “Pure”
subset (Supplementary Fig. 3). In addition, consider-
ing that some features adopted in the classifier describe the
whole gene or protein but not the AAS itself, the trained
classifier may be skewed to classify protein but not the AAS
(type 2 circularity). As we had adopted protein level cross-
validation (G10F-CV in this work) in the training procedure
[31], this skewness could presumably be removed.

4.2 The predictor and its performance on the testing
datasets

A total of 21 features (Supplementary Table 2)
were finally selected after the iterative feature selection pro-
cedure. After randomly searching 1000 hyper-parameter
combinations of RF, we obtained the optimal one (n es-
timators: 338, max depth: 10, max features: 0.5233959)
corresponding to the highest AUC (0.873) in the G10F-
CV. By specifying the optimal hyper-parameter combina-

http://www.wdspdb.com/AAS3D-RF/
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Fig. 1. The composition of different AAS subsets and the performance of eight predictors on them. Each subset was prepared by incorporating the
AASs whose proteins harbor a specific range of daAASs proportion (interval labels under the X axis) for TestDataset 1 (A) and TestDataset 2 (B). Among
them, “All” represents the whole testing dataset, while “Pure” contains the AASs whose proteins harbor either daAASs or nAASs only. The numbers of
daAASs and nAASs of each subset are given on top of each bar. The percentage of the AAS number in each subset is also indicated. The AUC scores on
different AAS subsets are plotted for TestDataset 1 (C) and TestDataset 2 (D).

tion, we re-trained the final RF classifier, namely AAS3D-
RF, on TrainDataset. We also implemented an automatic
pipeline that can calculate the required features for a given
AAS, and can then load AAS3D-RF to make predictions.
The codes were implemented in Python 2.7 and are avail-
able at http://www.wdspdb.com/AAS3D-RF/ and https://gi
thub.com/PKU-XiongYao/AAS3D-RF.

The measures of the performance on TestDataset 1
and TestDataset 2 are listed in Table 2 and Supplementary
Table 3. The ACC and MCC values are 0.811 and 0.591
for TestDataset 1, and 0.839 and 0.684 for TestDataset 2,
demonstrating its superior overall performance. The better
performance on TestDataset 2 may partially stem from the
similar proteins between TestDataset 2 and TrainDataset,
since we did not require that the proteins having HSP with
sequence identity ≥30% be excluded from TestDataset 2.
When removing this part of data from TestDataset 2, we can
observe that the MCC drops from 0.684 to 0.627, support-
ing our speculation very well (Supplementary Table 3).
In the real-world application, one may often need to predict
the disease-association of an AAS whose protein is similar
to some protein in the training set, so the expected perfor-
mance would presumably be better than reported here.

Table 2. Performance of AAS3D-RF and the
structure-removed predictor on the two independent testing

datasets.
Predictor Dataset ACC MCC

AAS3D-RF TestDataset 1 0.811 0.591
TestDataset 2 0.839 0.684

structure-removed TestDataset 1 0.783 0.542
TestDataset 2 0.835 0.676

4.3 Comparison with other prediction methods

We compared the performance of AAS3D-RF
with seven other popular tools. Except FATHMM-W (dis-
cussed below), AAS3D-RF outperforms all the other pre-
dictors on TestDataset 1 and TestDataset 2 in terms of ACC,
AUC, MCC, and PPV (Fig. 2A,B, Supplementary Table
4). In particular, the MCC values are 8.7 and 11.3 per-
centage points higher than the second-best predictors (ex-
cept FATHMM-W) on TestDataset 1 and TestDataset 2, re-
spectively (Supplementary Table 4). Notably, many other
tools, including SIFT, PPH2_HD, PPH2_HV, PROVEAN,
and PANTHER_PSEP, have achieved much higher Sen
scores, but their Spe scores are very low, indicating that
they are biased to positive predictions and prone to higher
false positive rates (1-Spe). As MCC is a performance met-

http://www.wdspdb.com/AAS3D-RF/
https://github.com/PKU-XiongYao/AAS3D-RF
https://github.com/PKU-XiongYao/AAS3D-RF
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Fig. 2. Comprehensive performance comparison of eight predictors on the two independent testing datasets. (A) and (B) show the performance
in terms of seven metrics for TestDataset 1 and TestDataset 2, respectively. (C) and (D) display the ROC curves for TestDataset 1 and TestDataset 2,
respectively.

ric considering both positive and negative predictions in
balance, we can conclude that AAS3D-RF achieved supe-
rior balanced performance without bias to a specific class.
The detailed ROC curves demonstrate a similar conclusion:
The curve of AAS3D-RF covers the largest area under the
curve except FATHMM-W (Fig. 2C,D).

Several previous studies have reported that the
prediction performance of FATHMM-W was significantly
confounded by type 2 circularity, i.e., it intended to predict
all the variants from the same protein as pathogenic or neu-
tral as a whole [31, 35, 36]. In other words, FATHMM-W
would perform worse on a dataset with proteins contain-
ing a nearly equal number of daAASs and nAASs on each
of them (e.g., the subsets with daAAS proportion in the
range of [0.4, 0.6]) than on a dataset with proteins contain-
ing only daAASs or nAASs (e.g., the “Pure” subsets). Pre-
diction methods sensitive to type 2 circularity would per-

form poorly in discriminating daAASs from nAASs within
a given protein. In our work, the evaluations on “Pure”
and different levels of “Mixed” subsets have demonstrated
this: FATHMM-W performs the worst on the subsets with
daAAS proportion in [0.4, 0.6], but obtains an impressively
high AUC on the “Pure” subsets (Fig. 1C,D). As shown,
AAS3D-RF consistently ranks at the top tier of all methods
among “Mixed” subsets, indicating that the type 2 circular-
ity in AAS3D-RF has been removed at the highest level.
As their values are in fact the same for all variants from the
same protein, the gene/protein-level features should be the
source of type 2 circularity. In our cross-validation and in-
dependent testing, the variants from the same protein were
either all in the training set or all in the testing sets, hence
this grouped cross-validation at the protein level here may
have served as an effective strategy to decrease type 2 cir-
cularity.



1428

Fig. 3. Z-score distributions of a part of selected features for the daAASs (red) and nAASs (blue) in TrainDataset. The p-values of two-tailed
Mann-Whitney test for each feature comparison are shown.

As published tools were trained on different
datasets, it is often difficult to obtain a proper and fair test-
ing dataset that contains enough data and has no overlap
with any of their training datasets. Here, TestDataset 1
and TestDataset 2 are sufficiently rigorous to our predic-
tor, since there are no overlapped AASs or proteins between
them and TrainDataset. However, this scenario does not
apply to other tools. Hence, the performance comparisons
based on TestDataset 1 and TestDataset 2 will presumably
provide a realistic performance estimate for AAS3D-RF but
may supply overly optimistic estimates for other tools. In a
truly fair comparison, the improvement of AAS3D-RF over
other tools would presumably be larger.

4.4 Structural features improve the interpretability of
the pathogenicity of AAS

To interrogate the interpretability of features,
which may offer clues for understanding the molec-
ular basis of the daAASs, we plotted the distribu-
tions of some features in daAAS and nAAS separately
(Fig. 3). As shown, these features can be grouped
within four categories: physicochemical properties of
residues, conservation-related properties, gene/protein-
level features, and structure-based features. While many
of them have been analyzed in previous studies, we here
mainly focus on several structure-based features.

Five features in the conservation-related group
show the most evident contrast between daAASs and

nAASs (Fig. 3). Conservation often indicates structural sta-
bility or functional importance. As a comprehensive result
of many underlying mechanisms, the conservation-related
features have superior ability in separating daAASs from
nAASs. Many previous studies have also repeatedly re-
vealed the power of this type of features [34, 37–43]. How-
ever, these features cannot offer further molecular mecha-
nistic clues of the disease-associated AASs, as mentioned
in the Introduction.

Relative solvent accessibility (RSA) and folding
free energy change (∆∆G) are two widely used features
derived from 3D structures in discriminating daAASs from
nAASs [11, 41, 44–48]. Fig. 3 shows that daAASs are more
likely to be located at buried sites (small RSA values). The
AASs occurring in buried sites may destabilize the pro-
tein by distorting the hydrophobic core, thus resulting in
pathogenic effects [49, 50]. More directly than RSA,∆∆G
measures the stability change caused by the substitution it-
self. In our dataset, the ∆∆G values of daAASs are much
larger than those of nAASs (Fig. 3), directly demonstrating
that daAASs are more prone to large depletion of stabil-
ity. This also suggests that stability loss resulting fromAAS
serves as a major mechanism of their disease-association.

The context-dependent substitution score (CDSS)
is a substitution score between different amino acids un-
der specific structural environments or contexts. Three
features, including Miyata, Abs_dF1, and Abs_dpI, de-
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scribe general physicochemical differences independent of
residues’ structural environments. In contrast, CDSS pro-
vides a more specific residue substitution score in given
RSA levels and secondary structure states [51]. In Fig. 3,
the CDSS values of daAASs are smaller than those of
nAASs, indicating that unfavorable substitutions with re-
spect to CDSS tend to be associated with diseases.

Environment-dependent residue contact energy
(ERCE) is another selected structural environment-related
feature, accounting for both the secondary structure and
residue contacts in the 3D structure [52]. The selected
ERCE feature for an AAS describes the summation of con-
tacting energy values between the wild-type residue and
all its neighboring residues within a distance of 6.5 Å.
The lower the contact energy, the more stability it con-
tributes. In Fig. 3, the ERCE values of daAASs are smaller
than those of nAASs, suggesting that the residues with
higher stability contribution, if substituted, tend to become
pathogenic.

To our knowledge, it is the first time that CDSS
and ERCE have been utilized in developing methods for
predicting the disease-association of AAS. The effective-
ness of CDSS and ERCE indicates an understanding that
substitutions introducing incompatible residues into a spe-
cific structural context will tend to be deleterious to the pro-
tein and thus be pathogenic.

4.5 Structural features contribute to the improved
prediction performance

In addition to better interpretability of the struc-
tural features, to what extent they contribute to the pre-
diction performance is another aspect that must be interro-
gated. Toward this end, we re-trained an additional pre-
dictor with all seven structural features removed accord-
ing to the same procedure adopted in training AAS3D-RF,
namely, the structure-removed predictor. Then, we com-
pared its performance with AAS3D-RF on TestDataset 1
and TestDataset 2 (Table 2 and Supplementary Table 3).

First, the ACC and MCC of structure-removed
predictor were 2.8 and 4.9 percentage points less than the
AAS3D-RF on the TestDataset 1, respectively (Table 2 and
Supplementary Table 3), demonstrating that the structure
features evidently contributed to the performance.

Second, when evaluated on TestDataset 2, the
observed improvement of ACC and MCC after adding
structure-related features was not as large as that observed
on TestDataset 1 (∆ACC = 0.004 from 0.835 to 0.839,
∆MCC = 0.008 from 0.676 to 0.684) (Table 2 and Sup-
plementary Table 3).

What factors have affected the extent of perfor-
mance improvement of structural features? As several pre-
vious studies have proposed that the contribution of struc-
tural features is more evident when reliable conservation-
related features are unavailable [53, 54], we checked
whether this applies in our case. On TestDataset 2, by using

the number of aligned sequences (the feature of nal_1e-45)
as a proxy of reliability of conservation-related features, we
observed that the improvement of MCC was indeed more
evident in AAS data with nal_1e-45<200 than those≥200
(∆MCC = 0.147 from 0.645 to 0.792 vs. ∆MCC = 0.007
from 0.676 to 0.683) (Supplementary Table 5). Similar
results were obtained on TestDataset 1 (0.244 vs. 0.041)
(Supplementary Table 5). The importance of structural
features in predicting pathogenic AASs was also frequently
emphasized in previous studies, since they can improve the
prediction of nAASs in conserved/constrained regions and
daAASs in regions with loose constraints, in addition to of-
fering hints of pathogenic mechanisms [55–57].

In summary, incorporation of structural features
further improves prediction performance, especially in sce-
narios wherein conservation-related features are of low re-
liability.

5. Discussion

Developing tools for predicting daAASs has been
a challenge for over a decade. Although a plethora of
studies have devoted significant effort and achieved much
progress in this field, their performance requires further im-
provement [37, 58]. As more and more AASs with pheno-
typic effects are determined, available methods can be re-
evaluated and previous machine learning-based tools could
be upgraded with new data. With other related data accu-
mulated, such as homologous sequences and structures in
public databases, novel predictors could be developed with
more accurate feature descriptors, more complete feature
space, or brand-new features. Given this background, our
work has been carried out to explore new structural fea-
tures and to combine them with sequence features aiming
at improving the prediction and understanding of disease-
associated AASs.

Many studies have adopted sequence features and
the predicted structural features based on sequence, but
only a few directly extract features from protein 3D struc-
tures, whether experimental structures or homology models
[45, 57, 59, 60]. According to the paradigm of sequence-
structure-function, protein structures are more directly re-
lated to function than sequence, so the 3D structures should
be able to provide greater understanding of pathogenic
AASs. However, the structure feature extraction proce-
dure is much more complicated, and only a small part of
AASs are covered by structures, which may have restricted
the extensive exploration of structural features. Several
recent studies have integrated or explored AASs in the
structural contexts with much larger datasets. By adopt-
ing both experimental and homology-modeled structures,
PhyreRisk and Missense3D have increased the number of
AASs that can be mapped to 3D structures and can calcu-
late the potential structural impacts based on knowledge-
based rules [17, 18]. Similarly, the mutfunc tool has
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also incorporated homology-modeled structures, and has
provided pre-calculated properties of stability, interaction,
post-translational modification, linear motif, and transcrip-
tion factor binding site [21] for datasets curated from ExAC
[20] and ClinVar [5]. By focusing only on experimental
structures, VarSite has offered a graphical platform to in-
spect AASs in the contexts of conservation levels, protein
domains, secondary structures, and interaction sites [19].
Through analyzing 40 properties associated with the variant
position, MISCAST has identified properties significantly
associated with daAASs or nAASs [22]. More specifically,
it has also identified significant properties within each of
the 24 protein functional groups separately. Accordingly,
MISCAST has defined P3DFi scores for each residue posi-
tion based on either the joint analyses of all protein classes
or the separate analyses of each functional class, and these
scores can improve the prediction of pathogenic AASs.
These studies have largely advanced the interpretation of
AASs in the contexts of 3D structures. In this work, we
have constructed a more comprehensive set of 212 candi-
date features, and have adopted an automatic feature selec-
tion pipeline considering the redundancy between features
[30]. Unlike previous studies that have chosen interpretable
features based on knowledge or statistical analyses, our fea-
ture selection is more intended to maximize prediction per-
formance and to ignore redundant features.

The main new structural features in this work in-
clude ERCE and CDSS. ERCE relies on the secondary
structure and structural interacting residues, while CDSS
is dependent on the secondary structure and RSA (Fig. 3).
The analysis of ERCE and CDSS herein hints that AASs
incorporating residues incompatible to its structural en-
vironment may be potential reasons for certain daAASs.
Another two selected structure features, RSA and ∆∆G,
are related to stability and are widely recognized in pre-
vious studies [11, 41, 44–48]. Our work has also shown
that they are highly beneficial according to the p-values
(Fig. 3). The recent work of MISCAST has highlighted
the significance of RSA in its feature group of residue ex-
posure levels as well [22]. The other three selected struc-
tural features, dF1_Mean_Mutant, dVol_Mean_Mutant,
and varHP_Wild_NB, reflect the physicochemical proper-
ties of AAS residues and its structural neighboring residues,
and have not previously been explored for predicting
pathogenic AASs (Supplementary Table 2). Although
they are often largely masked by conservation-related
features, the performance improvements from structure-
related features are evident when reliable conservation-
related features are unavailable (Supplementary Tables
3,5).

As for physicochemical properties irrelevant to
structures, MISCAST has emphasized the properties of
the wild-type residues, while AAS3D-RF has mainly fo-
cused on the difference between wild-type and mutant
residues (Fig. 3). Disulfide bond-related features have

also been highlighted in both MISCAST and AAS3D-RF
but are slightly different: The former represents the struc-
tural neighboring disulfide bonds, while the latter repre-
sents the sequence neighboring ones. The post-translational
features have been absent in our work, but most of them
have been demonstrated as significant in the work of MIS-
CAST. Hence, they should be considered and utilized in
future studies of developing predictors. Notably, we have
extracted many more features as the candidates (212 in to-
tal), including functional regions (calcium binding, DNA-
binding, nucleotide phosphate, membrane-spanning, and
zinc finger regions), sequence and structural neighboring
functional sites (active pocket, chemical group binding,
metal ion binding, and disulfide bonded cysteine sites), hy-
drogen bonds, and the 8-state secondary structures. How-
ever, our automatic feature selection pipeline has not in-
corporated most of them into the final feature subset, pos-
sibly because they could not contribute further to maxi-
mize the prediction performance. Nevertheless, many of
these dropped features are informative in providing clues
to understand the molecular basis of pathogenic AASs, as
demonstrated in the work of MISCAST, VarSite, mutfunc,
PhyreRisk and Missense3D [17–19, 21, 22]. Hence, one
may consider strategies to combine manual retaining of cer-
tain biologicallymeaningful features with automatic feature
selection together aiming at providing better interpretability
in the future.

When developing machine learning-based tools
for predicting daAASs, type 2 circularity is an important
issue that is worth noting. In our work, Residual Varia-
tion Intolerance Score (RVIS), a gene-level metric measur-
ing the relative ability of a human gene tolerating common
functional genetic variation in healthy individuals [61], has
been chosen during the feature selection. The RVIS scores
of AASs from the same gene/protein are identical. In the
cross-validation, if AASs from the same gene/protein are
separated into the training and the validation data, their
identical gene/protein-level feature value will lead to over-
fitting. To avoid this, we conducted cross-validation at the
protein-level, i.e., AASs were first grouped according to
their source proteins, and then the training and validation
data separation was carried out without splitting any group.
The performance evaluation on the ‘Mixed’ datasets has
demonstrated that this strategy is effective. In the future,
if training data accumulate sufficiently, one can train better
predictors based on only ‘Mixed’ datasets with a balanced
number of daAASs and nAASs in each protein.

Currently, most predictors and AAS annotators,
including AAS3D-RF, are developed for human proteins,
and only few can be applied to other organisms. The under-
lying reasons may be the lack of training/testing samples or
proper features suitable for non-human species. For those
that can be applied to other organisms, they mainly adopted
universal features that are not restricted within specific or-
ganisms, such as conservation scores and structural stabil-
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ity scores. Such examples include mutfunc [21], Fido-SNP
[62], and Envision [63]. As for AAS3D-RF, though it can-
not be applied to other organisms due to the human-specific
RVIS feature currently, its CDSS and ERCE features will
be promising when extrapolating to other organisms.

For this study, we exclusively adopted homology
models from ModBase and AASs from humsavar, 1000G,
and VariSNP datasets. With the unprecedented progress in
protein structure prediction such as the recent AlphaFold,
58% of human proteome residues now have been confi-
dently mapped with 3D conformations [64]. Moreover,
ClinVar contains more annotated variants than humsavar
and is growing rapidly as well. A study showed that only
8% of ClinVar daAASs and 32% of humsavar daAASs
overlap [65]. In addition to public data, the commercial
HGMD database holds even more variants with disease an-
notations [7]. Integrating these larger datasets will be ben-
eficial for improving AAS3D-RF and other related predic-
tors in the future.

6. Conclusions

In this work, we curated a training dataset contain-
ing about 15 thousand AASs with known phenotypic ef-
fects and mappable to reliable 3D structures. Based on 21
automatically selected sequence and structural features, the
RF-based machine-learning model AAS3D-RF was trained
using G10F-CV. Evaluation on several independent test-
ing datasets showed that AAS3D-RF achieved ACC of
0.811∼0.839 and MCC of 0.591∼0.684, outperforming
seven other tools. Moreover, its unique structure-based
features including CDSS and ERCE can offer mechanistic
clues for the predicted daAASs. In summary, AAS3D-RF
serves as a valuable tool for both predicting and understand-
ing pathogenic AASs.
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Appendix
During the peer-review of this manuscript, the

reviewers suggested further evaluation of AAS3D-RF on
new AASs and on previously unmapped AASs that can be
mapped now due to the increased coverage of 3D struc-
tures since April, 2018. We undertook several steps to
fulfil this. First, we compared the human protein en-
tries’ annotations in UniProtKB/Swiss-Prot (2021, 03) and
UniProtKB/Swiss-Prot (2018, 04), and obtained 943 new
experimental structures of 907 proteins. The quality-check

and the removal of those that are overlapped with the Mod-
Base structures mentioned in section 3.1 resulted in 631
new structures of 606 proteins. Second, we mapped the
humsavar (2021, 03) AASs to all the structures including
these newly curated 631 structures, previously curated ex-
perimental structures, and previously curated homology-
modelled structures (Supplementary Fig. 1), and then
removed those that have occurred in TrainDataset, Test-
Dataset 1, or TestDataset 2, obtaining a new testing dataset,
namely TestDataset 3, which contains 2,614 new AASs
(1,675 daASs and 939 nAASs). The AASs in TestDataset 3
stem from 616 structures of 582 proteins (Supplementary
Table 6).

Third, we ran AAS3D-RF and the other seven
tools against TestDataset 3. The settings for running
these seven tools were the same as those used on Test-
Dataset 1 and TestDataset 2, and are described in Sup-
plementary Methods. Lastly, we evaluated the perfor-
mance of AAS3D-RF on TestDataset 3. The ACC and
MCC are respectively 0.821 and 0.619 similar to those
based on TestDataset 1 and TestDataset 2 (Supplementary
Tables 4,7). In addition, AAS3D-RF has also evidently
outperformed other tools with respect to ACC and MCC
(Supplementary Fig. 4A). The ROC plot shows that
AAS3D-RF covers a much larger area (0.888) than others
as well (Supplementary Fig. 4B). Details of TestDataset 3
are also provided at http://www.wdspdb.com/AAS3D-RF/.
In summary, AAS3D-RF has stably superior performance
to many other tools by combining new interpretable struc-
tural features and sequence features.

Abbreviations: AAS, Amino acid substitution; SNV,
Single-nucleotide variant; VUS, Variants of uncertain sig-
nificance; RF, Random forest; G10F-CV, Group10Fold
cross-validation; AUC, Area under the ROC curve;
ACC, Accuracy; MCC, Matthews correlation coefficient;
PPV, Positive predictive value; NPV, Negative predic-
tive value; CDSS, Context-dependent substitution score;
ERCE, Environment-dependent residue contact energy;
RVIS, Residual variation intolerance score.

Keywords: Amino acid substitution; Single-nucleotide
variant; Pathogenic; Protein structure; Machine learning
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