
Supplementary Methods 

1. 3D Structure acquiring and data cleaning 

The overall pipeline is shown in Fig. S1. In detail, we retrieved all human canonical 
protein sequences and their annotations from uniprot_sprot.fasta and uniprot_sprot.dat 
downloaded from the UniProt FTP server (Release 2018_04). Among the 20,340 
protein entries (TITIN (Q8WZ42) was excluded because it is too long to extract 
related features in a reasonable time limit), 6,328 have at least one PDB item found in 
the “DR” fields according to their UniProt annotations. Since one protein may have 
several overlapping PDB structures, we aimed at selecting the non-overlapping PDB 
structures with the largest sequence coverage and best resolution. We first parsed out 
all the PDB items with X-ray crystallography diffraction, NMR and EM methods 
according to the annotations in the “DR” fields. For each protein, we split these PDB 
items into two lists based on whether the experimental resolution is given. For the list 
with resolution information available, we only retained the PDB items with (1) 
resolution equal to or less than 3.0 Å, (2) length longer than 50 or spanning over 50% 
of the full length to ensure high quality and sufficient size. After sorting it by structure 
length and resolution, we obtained a list, which was used to select the 
non-overlapping PDB items (LIST1) with higher priority for longer structure length 
and better resolution. Considering that certain structures, e.g., NMR structures, are not 
accompanied by resolution information but also very informative, a part of them were 
selected to supplement LIST1 according to this procedure: Specifically, we retained 
the PDB items with length longer than 50 or spanning more than 50% of the 
full-length sequence, and then selected a list of non-overlapping PDB items with 
higher priority for longer structure length, namely LIST2. For each item in LIST2, if 
it had no overlap with any item in LIST1, we added it to LIST1. These steps led to the 
final LIST1 with 6,529 PDB items for 5,371 proteins. The information used above for 
data filtering such as structure determination method, resolution, protein region that a 
PDB item covers was obtained from the “DR” fields in uniprot_sprot.dat. 

It is worth noting that these PDB entries may be protein complexes, or may 
contain expression tags, cloning artifacts or insertion codes in PDB chains, which 
would thus hinder the subsequent batch mining of the structural features. To smooth 
the process of structural analyses, we technically adopted a self-modeling strategy 
to obtain the coordinates only for protein regions that the PDB items cover. In detail, 
from the full-length UniProt reference sequences, we first obtained the sequence 
fragments that matched with those PDB items in LIST1, and then we modelled the 
structures of these sequence fragments using Modeller v9.19 by specifying the 
corresponding chosen PDB items as templates (1). In the process of running 
Modeller, the sequence fragment and chosen PDB template were aligned using local 
alignment and id.sim.mat similarity scoring matrix. Once the alignment was 
constructed, we generated the model using Modeller’s automodel class and refined 



the model using the predefined function refine.very_slow in order to get an energy 
optimized conformation.  

Eighty-eight out of 6,529 chosen PDB items do not have models because of 
missing templates in PDB format (n = 82) and residue type “U” in the target that 
Modeller could not handle (n = 6). For the remaining 6,441 structures, we removed 
one containing non-standard residue “ASX” and ten whose sequence identities 
between the aligned target and template are below 50%, which might be due to 
some annotation errors in the UniProtKB/Swiss-Prot “DR” fields. Finally, there are 
6,430 experimental structures for 5,278 proteins. 

As for the 14,012 proteins without PDB items found in the “DR” fields, we 
obtained their comparative structure models in xml format from ModBase (2). 
Except that 485 protein entries’ xml files lack model information, 342,868 models 
of 13,527 proteins were downloaded on September 8, 2018. According to its 
documentation, a model is considered reliable and has an acceptable fold 
assignment if its model score is equal to or greater than 0.7 and the E-value is equal 
to or below 0.0001. The models were filtered based on the following six criteria: (i) 
model score ≥ 0.7; (ii) E-value ≤ 0.0001; (iii) sequence identity ≥ 50%; (iv) 
model length > 50 or model spans > 50% of the protein sequence; (v) containing 
only standard residue types; (vi) the sequence parsed from the model’s ATOM 
section exactly matches the corresponding UniProt sequence region. This filtering 
resulted in a list of 26,111 structure model candidates. For each protein that has 
structure models in the candidate list, we sorted the models by model length and 
sequence identity, and then selected the non-overlapped structure models with 
higher priority for longer model length and larger sequence identity. As a result, a 
total of 4,238 comparative homology models covering 3,682 proteins were 
obtained. 

To resolve the residue numbering inconsistencies between the UniProt 
sequences and ModBase structure models, we aligned the sequences parsed out 
from the ATOM sections in structure files with the corresponding UniProt 
sequences using Biopython’s pairwise2 module (3). According to the alignments, 
we acquired the corresponding residue position shifts and reassigned the residue 
numbers for all chosen ModBase structure models.  

These curated experimental and modelled structure files in PDB format and 
their information are available at http://www.wdspdb.com/AAS3D-RF/ . 

 

2. Candidate feature calculation 

All of the candidate feature descriptions are available at 
http://www.wdspdb.com/AAS3D-RF/ . 

2.1 PSI-BLAST-based sequence features 

We ran PSI-BLAST (4) locally against UniRef90 database (Release 2018_06) using 
ncbi-blast-2.2.29+ with three iterations and an E-value of 0.0001 (5) to find 

http://www.wdspdb.com/AAS3D-RF/
http://www.wdspdb.com/AAS3D-RF/


homologous sequences. And then according to PyMut (6), the alignment was filtered 
in four different ways to generate different final alignments: (i) taking all the 
sequences, (ii) retaining only the human sequences, (iii) excluding all the human 
sequences, and (iv) taking matches under a stricter E-value threshold of 10-45. Next, 
for each of the four alignments above, features were computed, including: (i) number 
of sequences in the alignment, (ii) number of amino acids in the aligned position, (iii) 
total and relative number of aligned wild-type amino acids, (iv) total and relative 
number of aligned mutant amino acids, (v) position weight matrix score, both in a 
weighted (using the BLAST bit-score) and unweighted fashion, resulting in a total of 
56 features. 

Shannon’s entropy measures the randomness of residues at a specific column in 
a multiple sequence alignment, reflecting the conservation level of the site. The 
entropy was calculated as a feature using in-house scripts based on the alignment of 
all the PSI-BLAST hit sequences described above:  

Shannon′s entropy = −∑ 𝑝𝑝𝑖𝑖20
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙20𝑝𝑝𝑖𝑖 , 

where pi represents the frequency of amino acid i at the AAS position in the 
alignment. Another entropy feature was directly derived from the results of RING 
(version 2.0) (7, 8) after running PSI-BLAST (4) for each protein sequence segment 
parsed from the 3D structure. The same parameter settings as above were adopted 
to get PSI-BLAST alignments in RING. 

We also extracted six features directly from the PSSM (Position-Specific 
Scoring Matrix) profiles (9), generated in the PSI-BLAST runs. These included the 
PSSM scores of wild-type and mutant amino acids along with their difference, the 
weighted percentages of wild-type and mutant amino acids, and also the position’s 
information content. 

2.2 Gene-level features 

These features originally aim to prioritize genes that are plausible candidates for 
inherited diseases, and will thus provide information for further prioritizing disease 
variants. Here, we integrated Gene Damage Index (GDI) (10) and Residual Variation 
Intolerance Score (RVIS) (11). 

GDI is a genome-wide, population-based metric to describe the cumulative 
mutational damage for each human protein-coding gene. A gene with a low GDI is 
less damaged and tends to be under stronger purifying selection. Therefore, variants 
in those genes are more likely to be associated with diseases (10). RVIS ranks 
human genes according to their ability to tolerate common functional genetic 
variation in healthy individuals. Genes with significantly less common functional 
variations than expected tend to have higher constraint and lower RVIS. That is, the 
lower the RVIS, the more likely the gene causes certain kinds of disease (11). Here, 
we used the RVIS gene score downloaded from http://genic-intolerance.org, which 
is based on ExAC v2 (release 2.0). 



2.3 Substitution matrix scores 

For each AAS, the scores in BLOSUM62 (12), Grantham (13), and Miyata (14) 
matrices were used as features. BLOUSM62 describes the substitution bias from 
evolutionary perspective, and is widely used as default in many alignment algorithms. 
Grantham and Miyata matrices are used to describe physicochemical dissimilarities 
between amino acid, with Grantham’s distance based on polarity, molecular volume, 
and composition, and Miyata’s distance based only on polarity and molecular volume. 

2.4 Differences of physicochemical properties 

Several pieces of work have proposed that AASs with relatively small 
physicochemical changes occur more frequently than those with large changes (13, 
15-17). Disease-associated AASs typically have more drastic changes than neutral 
AASs. Here, we considered three biologically meaningful properties: (i) Grantham 
molecular volume (13), (ii) Kyte-Doolittle hydropathy index (18), and (iii) isoelectric 
point (19). Another five highly interpretable numerical factors were considered, which 
reflect polarity, secondary structure, molecular size and volume, amino acid 
composition and codon usage, and electrostatic charge, derived from factor analysis 
of 494 amino acid attributes (20). We calculated the difference and absolute difference 
between the mutant and wild-type amino acid for each of these eight properties. 

2.5 The composition of nearby sequence 

We used a vector with 20 components to encode the composition of 20 residue types 
for a sequence window of 19, which is centered at the AAS position and spans nine 
residues either to the N-terminus or to the C-terminus (21).  

2.6 Functional regions of interest 

We checked whether the AAS is located in the functional region described in the “FT” 
fields of uniprot_sprot.dat. We considered CA_BIND (calcium binding region), 
DNA_BIND (DNA-binding domain), NP_BIND (nucleotide phosphate binding 
region), TRANSMEM (membrane-spanning region) and ZN_FING (zinc fingers 
within the protein), and used five feature columns to denote them. When an AAS falls 
into a region above, the corresponding column was set to “1” and the others were set 
to “0”. Another additional column was used to indicate whether an AAS falls into any 
of the regions above. 

 

2.7 Sequence distance of nearby functional sites 

An AAS is presumably more likely to be disease-associated when it is close to a 



functional site. We considered the functional sites including ACT_SITE (enzyme’s 
active sites), BINDING (binding sites for any chemical group), DISULFID (cysteine 
residues participating in disulfide bonds), and METAL (binding sites for a metal ion), 
which are annotated in the “FT” fields of UniProtKB/Swiss-Prot database. For each 
type of functional sites, we adopted the sequence distance between an AAS position 
and its closest functional site (22). Another column was used to represent the closest 
sequence distance between the AAS site and all four kinds of functional sites. 

2.8 Structural distance of nearby functional sites 

Similar to sequence distance, for each type of functional site (ACT_SITE, BINDING, 
DISULFID, METAL), we calculated the structural distance between an AAS position 
and its closest functional site. The spatial distance between two residues’ Cβ atoms 
(for glycine, Cα was used) was regarded as the structural distance (22). Another value 
was used to represent the closest structural distance between the AAS position and all 
four kinds of functional sites. 

2.9 The composition of neighbor residues 

Similar to the composition of nearby sequence, a vector of 20 components was used 
to encode the composition of 20 residue types for the structural contacting neighbors 
(or partners) whose Cα atoms are within a distance of 6.5 Å to the Cα atom of the 
wild-type amino acid of the AAS (23, 24). 

2.10 Secondary structure states 

The secondary structural information for each structure was derived from DSSP 
(version 2.2.1) (25, 26). Eight states (H, I, G, S, T, B, C, E) were denoted by eight 
feature columns. For a specified site, we assigned “1” to the column corresponding to 
the secondary structural state of this site, and “0” was assigned to all other columns. 

2.11 Residue interaction network topological measures 

The 3D structure of a protein can be coarsely represented as a residue-residue 
interaction network (or residue contact network), where vertices represent residues 
and edges represent contacts between residues (27). In such a network, four network 
topological features were calculated for each AAS by using the Python module 
NetworkX (28), including two measures of local interaction (degree and clustering 
coefficient) and two measures of global interaction (closeness and betweenness). We 
utilized the RING software (version 2.0) (7, 8) to construct the residue-residue 
interaction network, and the interaction cutoff of two Cα atoms was set to 6.5 Å. 
Another two features were derived to describe the topological importance of the 
contacting partners for an AAS position. One is NB_Max_Degree, which represents 
the maximum degree of the contacting partners, and the other is NB_Mean_Degree, 



which represents the mean degree of all the contacting partners. 

2.12 Physicochemical properties of the structural contacting neighbors 

As mentioned in section 2.4, for each of the 20 amino acids, there are three 
biologically meaningful properties and five highly interpretable numerical factors (13, 
18-20). Based on them, we designed five types of features to describe the 
physicochemical properties of the structural contacting neighbors of an AAS. 
NB_MeanX (X denotes one of the eight physicochemical properties or factors) is the 
average of the property X of all the contacting neighbors of an AAS, 
dX_Mean_Mutant is the difference between the NB_MeanX and the mutant amino 
acid, varX_Wild_NB is the variance of property X for the wild-type amino acid and 
its contacting neighbors, varX_Mutant_NB is the variance value of the property X for 
the mutant amino acid and its contacting neighbors, and dVarX is the difference 
between the varX_Mutant_NB and varX_Wild_NB. These calculations resulted in 40 
features in total. 

2.13 Contact energy 

The contact energy can reflect the tendency that two residues contact with each other. 
For wild-type residue at the substitution position, the structural contacting neighbors 
were defined as described in section 2.9. Then we summed the contact energy 
between the wild-type residue and all its contacting neighbors, and the absolute value 
of this sum was also used as a feature. The contact energy between two residue types 
was retrieved from the matrices of MIYS990106 (hereinafter referred to as MJ1) and 
MIYS990107 (hereinafter referred to as MJ2) from the AAindex database (29, 30), 
respectively, resulting in four features. We further obtained the contact energy 
between the mutant residue and all the contacting neighbors of the wild-type residue, 
by simply querying each score between the mutant residue type and all the contacting 
neighbors from the matrices without structure model building of the mutant. Then the 
difference and absolute difference between mutant and wild-type amino acid were 
calculated as well, resulting in four additional features. 

The contact energy can also be defined by using the Environment-dependent 
Residue Contact Energy (ERCE) matrices, which provide six matrices according to 
different secondary structure states of the two contacting residues, including 
Helix_Helix, Helix_Strand, Helix_Coil, Strand_Strand, Strand_Coil, and Coil_Coil 
(31). Eight secondary structural states, including H, I, G, S, T, B, C, and E, derived 
from DSSP software (version 2.2.1) (25, 26) were reduced to three states: only H 
was mapped to helix, E was mapped to strand, and all others were mapped to coil 
(31). For example, if a residue A in helix contacts with a residue B in strand, with a 
residue C in coil, and with a residue D in helix, the ERCE score for residue A is the 
sum of AB in Helix_Strand matrix, AC in Helix_Coil matrix, and AD in 
Helix_Helix matrix. For the mutant amino acid, the contacting neighbors and 
secondary structural states remained the same as for the wild-type residue. By using 



ERCE, we obtained another four features. 

2.14 Context-Dependent Substitution Score (CDSS) 

Here, “context” means the solvent accessibility level and the secondary structure state 
of an AAS position. Eight substitution matrices, covering the contexts of Buried_Beta, 
Buried_Coil, Buried_Helix, Buried_Turn, Exposed_Beta, Exposed_Coil, 
Exposed_Helix, and Exposed_Turn, provide the structural and functional constraints 
in evolution within each specific context (32). According to their definition, residues 
with relative solvent accessibility (RSA) larger than 18% were considered exposed, 
and otherwise buried. Eight secondary structural states, namely H, I, G, S, T, B, C, 
and E, derived from DSSP software (version 2.2.1) (25, 26) were reduced to four 
states: H and I to helix, B and C to coil, E to beta, and all others to turn. Based on its 
“context”, the CDSS of an AAS can be retrieved from the eight matrices accordingly. 
For example, when an AAS occurs at a position with less than 18% RSA and 
secondary structural state H, the CDSS for this AAS is obtained from the 
Buried_Helix matrix. 

2.15 MIcomulative 

The reduction in uncertainty about one site due to another site can be measured by the 
mutual information (MI) of these two sites in a multiple sequence alignment. The sum 
of corrected MI values for a residue with all its structural contacting neighbors is 
defined as MIcomulative (33), which was directly calculated by using RING (version 
2.0) (7, 8) after running PSI-BLAST (4) locally against UniRef90 database (Release 
2018_06) (ncbi-blast-2.2.29+, three iterations, E-value 0.0001) (5) for each sequence 
segment parsed from the 3D structure. Intuitively, MIcomulative reflects the 
importance of a residue to its neighboring residues. 

2.16 Relative solvent accessibility, Hydrogen bond, and ∆∆G 

Solvent accessibility is a measure of residue exposure and has shown to be relevant to 
identifying disease-associated AAS (34, 35). Here, we calculated the relative solvent 
accessibility of the wild-type residue of the AAS in the 3D structure by using 
NACCESS (version 2.1.1) (36).  

HBPLUS (version 3.15) was used to calculate the number of hydrogen bonds 
that the wild-type residue at the AAS site might form (37). 

Decreased protein stability is a major molecular consequence of 
disease-associated AAS, so protein stability change will be a useful feature for the 
prediction of disease-associated AAS (38, 39). Free energy change (∆∆G), a 
measure of protein stability change, was calculated by using FoldX (v.3) (40, 41). 
∆∆G values were obtained by using the “BuildModel” command based on the 
optimized structures obtained from the “RepairPDB” command. 

 



 

3. Performance evaluation and comparison with other tools 

Six recommended performance metrics are defined as follows by regarding daAASs 
as positive samples and nAASs as negative samples (42): 

accuracy (ACC) =
TP + TN

TP + FP + TN + FN
 

 

sensitivity (Sen) = recall =
TP

TP + FN
 

 

specificity (Spe) =
TN

TN + FP
 

 

PPV = precision =
TP

TP + FP
 

 

NPV =
TN

TN + FN
 

 

MCC =
TP × TN − FP × FN

�(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

The receiver operating characteristic (ROC) curves for each testing dataset 
were generated by plotting sensitivity against 1-specificity (False Positive Rate, or 
FPR) at each cutoff for classifying the AAS into two categories. The area under 
ROC curve (AUC) was calculated to provide a cutoff-independent measure of the 
prediction performance as recommended (42, 43). 

The prediction results on the testing datasets of other predictors were obtained 
according to the settings described below. SIFT (version 5.2.2) (44), 
HumDiv-trained PolyPhen-2 (PPH2_HD) and HumVar-trained PolyPhen-2 
(PPH2_HV) (version 2.2.2r405c) (45), PROVEAN (version 1.1.5) (46), 
FATHMM’s weighted method (FATHMM-W) and FATHMM’s unweighted method 
(FATHMM-U) (version 2.3) (47), and PANTHER-PSEP (version 1.01) (48) were 
run locally with default settings for their parameters. Moreover, for those predictors 
relying on a locally installed BLAST+ package as the backend engine, including 
SIFT, PolyPhen-2, PROVEAN, and PANTHER-PSEP, ncbi-blast-2.2.29+ was 
adopted (5). For PROVEAN, which relies on CD-HIT, the cd-hit-v4.5.7-2011-12-16 
(49, 50) was utilized as backend engine. In addition to these required packages, 



several predictors also need to configure one or more specific databases accordingly. 
SIFT was run based on UniRef90 (Release 2018_06). PolyPhen-2 was run based on 
UniRef100 (Release 2018_06), and the required structural databases (PDB and 
DSSP) were downloaded on August 15, 2018. For PROVEAN, the NCBI nr 
database downloaded on May 12, 2017 was used. 

For comparison, the prediction results of other predictors should also be 
converted to binary classification if its raw output is not. An AAS assigned by 
PANTHER-PSEP as “probably damaging” or “possibly damaging” was classified as 
“disease”, and “probably benign” as “neutral”. The binary classification of 
PolyPhen-2 was directly used. For PROVEAN, the author-recommended thresholds 
were adopted to output the binary classification. In detail, an AAS with a 
PROVEAN score ≤  -2.5 or > -2.5 was assigned “disease” or “neutral”, 
respectively. 
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Fig. S1. Pipeline of structure acquiring and data cleaning. Model coverage or structure coverage are defined by the model length or structure length divided 

by the UniProt sequence length, respectively. 
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Fig. S2. Overall pipeline of AAS datasets preparation. The counts of AASs at each step are given in red (daAAS) and green (nAAS) numbers. 
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Fig. S3. The composition of different AAS subsets of TrainDataset defined by the 

proportion range of daAAS in each protein. 

The ‘All’ denotes the whole TrainDataset, while ‘Pure’ contains only the AASs whose 
proteins carry only daAAS (proportion: 100%) or nAAS (proportion: 0%). Other 
labels of the X axis represent the intervals of the proportion of daAAS within its 
protein when constructing these subsets. The numbers of daAASs and nAASs of each 
subset are given on top of each bar. The percentage of AASs in each subset is also 
indicated.  
 



 
 

 

Fig. S4. Performance comparison of AAS3D-RF with seven other predictors on TestDataset3.  (A) The performance in terms of seven metrics. (B) The 

ROC curves. 



Table S1. The pre-specified ranges of hyperparameters for random search 

Hyperparameter Range 
n_estimators [50, 500] 
max_depth [3, 10] 

max_features [0.5, 1.0] 
 
 



Table S2. The selected 21 features1 

# Feature Name Description Filter Weighted 

1 nwt Number of wild-type amino acids in the aligned position All No 

2 nal_no_human Number of sequences in the alignment No Human No 

3 nal_1e-45 Number of sequences in the alignment E-value < 10-45 No 

4 naa_w Number of amino acids in the aligned position All BLAST score 

5 pwm_w Position Weight Matrix score All BLAST score 

6 naa_human_w Number of amino acids in the aligned position Human BLAST score 

7 nwt_1e-45_w Number of wild-type amino acids in the aligned position E-value < 10-45 BLAST score 

8 rmt_1e-45_w Relative number of aligned mutant amino acids E-value < 10-45 BLAST score 

9 Entropy_RING Shannon's entropy of a given AAS position obtained from RING software 

10 RVIS 
Residual Variation Intolerance Score assessing human genes' ability to tolerate common functional 

genetic variation in healthy individuals 

11 Miyata Score of physicochemical dissimilarities between amino acid in Miyata matrix 

12 Abs_dF1 Absolute difference between factor Ⅰ solution score (bipolar) of mutant and wild-type amino acids  

13 Abs_dpI Absolute difference between Isoelectric point of mutant and wild-type amino acids 

14 SeqDis_DISULFID The least sequence distance between the AAS site and disulfide-bonded Cys 

15 dF1_Mean_Mutant Difference between factor Ⅰ solution score of neighbors' mean value and mutant amino acid 

16 dVol_Mean_Mutant Difference between Grantham molecular volume of neighbors' mean value and mutant amino acid 

17 varHP_Wild_NB Variance of Kyte-Doolittle hydropathy index for the wild-type amino acid and its neighbors 

18 ERCE 
The sum of Environment-dependent Residue Contact Energy between the wild-type residue and all 

its contacting neighbors derived from 6 matrices 

19 CDSS Context-Dependent Substitution Score derived from 8 matrices 

20 RSA 3D structure-based residue Relative Solvent Accessibility computed by NACCESS 

21 ΔΔG Mutational free energy change, a measure of protein stability change, calculated by FoldX 
1#1-9 are conservation-related features, #10 is gene-level metric, #11-13 reflect the 
physicochemical dissimilarities, #14 is the sequence distance between the AAS 
position and closest disulfide-bonded Cys, #15-21 are 3D structural features.  
 



Table S3. Performance comparison of AAS3D-RF and structure-removed predictor on the two independent testing datasets 

Predictors Total TP FN TN FP ACC MCC AUC Sen Spe PPV NPV 
TestDataset1             
AAS3D-RF 5485 3068 704 1380 333 0.811 0.591 0.877 0.813 0.806 0.902 0.662 

structure-removed 5485 2926 846 1368 345 0.783  0.542  0.864  0.776  0.799  0.895  0.618  
TestDataset2             
AAS3D-RF 5249 2210 261 2192 586 0.839 0.684 0.913 0.894 0.789 0.790 0.894 

structure-removed 5249 2204 267 2178 600 0.835  0.676  0.911  0.892  0.784  0.786  0.891  
TestDataset2 after removing sequence homologous to TrainDataset with ≥ 30% identity 

AAS3D-RF 2003 1074 141 576 212 0.824 0.627 0.884 0.884 0.731 0.835 0.803 
 
 



Table S4. Performance comparison of AAS3D-RF with seven popular predictors on the two independent testing datasets1 

Predictors Total2 TP FN TN FP ACC MCC AUC Sen Spe PPV NPV 
TestDataset1             

SIFT 5371 3262 451 995 663 0.793 0.499 0.811 0.879 0.600 0.831 0.688 
PPH2_HD 5485 3354 418 978 735 0.790 0.490 0.810 0.889 0.571 0.820 0.701 
PPH2_HV 5485 3158 614 1149 564 0.785 0.504 0.829 0.837 0.671 0.848 0.652 
PROVEAN 5485 3423 349 882 831 0.785 0.469 0.795 0.907 0.515 0.805 0.716 

FATHMM-W 5394 3268 450 1278 398 0.843 0.636 0.902 0.879 0.763 0.891 0.740 
FATHMM-U 5440 2466 1272 1308 394 0.694 0.398 0.774 0.660 0.769 0.862 0.507 

PANTHER-PSEP 4864 3041 352 614 857 0.751 0.361 0.759 0.896 0.417 0.780 0.636 
AAS3D-RF 5485 3068 704 1380 333 0.811 0.591 0.877 0.813 0.806 0.902 0.662 

TestDataset2             
SIFT 4762 2021 154 1495 1092 0.738 0.531 0.834 0.929 0.578 0.649 0.907 

PPH2_HD 5249 2255 216 1697 1081 0.753 0.543 0.837 0.913 0.611 0.676 0.887 
PPH2_HV 5249 2177 294 1898 880 0.776 0.571 0.855 0.881 0.683 0.712 0.866 
PROVEAN 5249 2301 170 1497 1281 0.724 0.504 0.808 0.931 0.539 0.642 0.898 

FATHMM-W 5195 1945 510 2215 525 0.801 0.600 0.889 0.792 0.808 0.787 0.813 
FATHMM-U 5202 1680 782 2185 555 0.743 0.484 0.813 0.682 0.797 0.752 0.736 

PANTHER-PSEP 4232 1856 268 984 1124 0.671 0.373 0.765 0.874 0.467 0.623 0.786 
AAS3D-RF 5249 2210 261 2192 586 0.839 0.684 0.913 0.894 0.789 0.790 0.894 

1The best value of each performance metric is in bold and underlined. 
2The “Total” numbers are different because not all AASs have received prediction result for some predictors. 



Table S5. Performance comparison of AAS3D-RF and structure-removed 
predictor on AAS data with and without reliable conservation features 
 TP TN FP FN MCC ACC 
TestDataset1 with nal_1e-45<200      

AAS3D-RF 75 61 8 35 0.552  0.760  
structure-removed 40 63 6 70 0.308  0.575  

TestDataset1 with nal_1e-45>=200      
AAS3D-RF 2993 1319 325 669 0.592  0.813  

structure-removed 2886 1305 339 776 0.551  0.790  
TestDataset2 with nal_1e-45<200      

AAS3D-RF 7 26 0 3 0.792  0.917  
structure-removed 7 24 2 3 0.645  0.861  

TestDataset2 with nal_1e-45>=200      
AAS3D-RF 2203 2166 586 258 0.683  0.838  

structure-removed 2197 2154 598 264 0.676  0.835  
 
 



Table S6. Overview of TestDataset3 

Class # of AAS # of Proteins1 # of Structures1 
Disease 1,675 339 359 
Neutral 939 334 347 
Total 2,614 582 616 

1The number of “Total” is less than the sum of “Disease” and “Neutral” due to that one protein or structure may contain daAASs and nAASs at the same time. 
 

Table S7. Performance comparison on TestDataset31 

Predictors Total2 TP FN TN FP ACC MCC AUC Sen Spe PPV NPV 

SIFT 2353 1369 137 517 330 0.802 0.557 0.830 0.909 0.610 0.806 0.791 

PPH2_HD 2614 1503 172 551 388 0.786 0.519 0.812 0.897 0.587 0.795 0.762 

PPH2_HV 2614 1432 243 621 318 0.785 0.527 0.826 0.855 0.661 0.818 0.719 

PROVEAN 2614 1561 114 486 453 0.783 0.513 0.796 0.932 0.518 0.775 0.810 

FATHMM-W 2552 1032 597 755 168 0.700 0.435 0.809 0.634 0.818 0.860 0.558 

FATHMM-U 2585 1078 583 715 209 0.694 0.405 0.779 0.649 0.774 0.838 0.551 

PANTHER-PSEP 1979 1106 170 283 420 0.702 0.307 0.747 0.867 0.403 0.725 0.625 

AAS3D-RF 2614 1403 272 743 196 0.821 0.619 0.888 0.838 0.791 0.877 0.732 
1The best value of each performance metric is in bold and underlined. 
2The “Total” numbers are different because not all AASs have received prediction result for some predictors. 
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