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1. Abstract

The molecular profiling of tumors is fundamental
in the management of advanced non-small-cell lung can-
cer (NSCLC). A tissue specimen obtained from biopsy is
needed for diagnosis and mutation analysis. However, this
may not be feasible for some metastatic sites, such as cen-
tral nervous system (CNS) lesions, particularly for repeated
biopsy. Liquid biopsy with plasma is an emerging tool for
molecular testing and could be a surrogate method if tis-
sue cannot be obtained. However, the use of plasma is lim-
ited for the detection of mutations arising from intracranial
lesions. Cerebrospinal fluid (CSF) was recently demon-
strated to be an alternative material for genetic testing in
patients with NSCLC having CNS metastasis. In this re-
view, we discuss recent advancement in the use of CSF as
a medium of liquid biopsy in patients with NSCLC.

2. Introduction

Central nervous system (CNS) metastases are
common in patients with lung cancer and are associated
with significant morbidity and mortality. The incidence

is approximately 25%—30% in patients with non-small-cell
lung cancer (NSCLC), particularly in oncogene-addicted
NSCLC, and >45% of patients undergoing targeted ther-
apy have CNS involvement within 3 years [1, 2]. Previ-
ous studies have revealed that the presence of driver onco-
genes, such as epidermal growth factor receptor (EGFR)
mutation, are risk factors for brain metastasis [3-5]. Fur-
thermore, isolated CNS metastasis progression can occur
due to poor drug penetration into the cerebrospinal fluid
(CSF) [6]. Moreover, CNS metastasis may have an evo-
lutionary pattern that is distinct from that of extracranial
metastasis. Through the whole exome sequencing of paired
primary and metastatic pulmonary adenocarcinoma tumors,
Jiang et al. [7] discovered that brain metastatic tumors had
amore varied mutational landscape than did liver metastatic
lesions in comparison with their primary tumors. Brain
metastasis is likely to have a parallel evolutionary model.
Tumor driver gene—associated signaling pathways are cru-
cial for promoting tumor cell survival, invasion, and colo-
nization in the CNS [8]. These findings elucidate the biol-
ogy of CNS metastasis in lung cancer and may lead to the
development of a novel approach to preventing CNS metas-
tasis.
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Leptomeningeal metastasis (LM) is a late and
lethal complication of various solid tumors, defined as the
seeding of tumor cells into the CSF and leptomeninges [9].
LM incidence in patients with NSCLC is approximately
3%—-5% and reaches up to 9.4% in patients with EGFR mu-
tation [10, 11]. The prognosis of patients with NSCLC
having LM is poor, with a median survival of <1 year de-
spite advances in treatment [12]. LM diagnosis is challeng-
ing and is achieved through clinical evaluation, CSF cyto-
logical examination, and neuroimaging. Although an es-
tablished diagnostic algorithm exists, novel approaches are
needed for improving diagnosis, stratifying risk and moni-
toring treatment in this patient group [13, 14].

Liquid biopsy with plasma is an emerging tool for
molecular testing and could be a surrogate method if tis-
sue cannot be obtained [15]. However, the use of plasma
cell-free DNA may be limited for the detection of muta-
tions arising from intracranial lesions and may have lim-
ited performance in patients with isolated CNS progres-
sion [16, 17]. CSF, by contrast, circulates throughout the
CNS and may provide a window to investigating intracra-
nial lesions. The CNS includes two anatomic compart-
ments, namely the brain parenchyma and leptomeningeal
space. The blood-brain barrier and blood-CSF barrier are
the two barrier systems for each compartment [18]. CSF
enters the parenchyma along paravascular spaces that sur-
round penetrating arteries and the brain interstitial fluid
is cleared along paravenous drainage pathways [19]. Be-
cause these two compartments are not anatomically iso-
lated, CSF-based liquid biopsy of CNS metastatic lesions
could be investigated in clinical practice. Research indi-
cates that CSF harbors clinically relevant genomic alter-
ations in patients with CNS malignancies and could be con-
sidered for liquid biopsies to monitor tumor evolution in the
CNS [20]. Different tumor components in the CSF are sub-
jects to be analyzed, such as circulating tumor cells (CTCs),
cell-free tumor DNA (ctDNA), extracellular vesicles (EVs),
and RNA. In this article, we reviewed relevant English-
language journals articles indexed in PubMed (using the
search terms “CSF”, “CTCs”, “ctDNA”, “RNA”, “EVs”
and “lung cancer”) from January 2000 to August 2021.

3. CSF as a medium of liquid biopsy in lung
cancer
3.1 Circulating tumor cells

The presence of malignant cells in CSF remains
the gold standard for diagnosing LM; however, the sensi-
tivity of a single lumbar puncture is low and repeated sam-
pling is often needed [12, 21]. Some technical issues such
as inadequate CSF volume for the analysis or delayed pro-
cessing may lead to false negative results [22]. Recently,
novel assays have been developed to detect and quantify
CTCs in CSF. CellSearch assay and immunoflow cytology
methods have been the two most common techniques ap-
plied.

The CellSearch platform uses epithelial cell ad-
hesion molecule (EpCAM) antibody—conjugated ferropar-
ticles and an immunomagnetic selection system to capture
tumor cells in CSF. CTCs are defined as epithelial stain-
ing positive cells which lack CD45 expression [18]. Con-
versely, the immunoflow cytometry technique uses fluores-
cently labeled antibodies against membrane-bound proteins
of epithelial tumor cells, such as EpCAM. Subsequently,
CTC enumeration is performed using the fluorescence—
activated cell sorting system. Furthermore, leukocytes and
other hematopoietic cells are labeled to select CTCs [18].
To date, many studies have used these two assays to de-
tect CTCs in the CSF of patients with solid tumors and LM
and have mainly focused on patients with NSCLC (Table 1,
Ref. [23-32]). Overall, sensitivity is significantly higher
with CTCs (75%—100%) than with conventional cytology
(44.4%—-65.3%) [23-31, 33]. Moreover, the CTC percent-
age in CSF is correlated with overall survival [25, 32].
However, the application of these assays in clinical prac-
tices has some limitations. Previous studies have focused
only on patients with LM, and the use of CTCs in pa-
tients with parenchymal-only CNS metastasis remains un-
known. Furthermore, the difference in experimental pro-
cedures and cutoff values between studies entail a need
to conduct large prospective trials for validation. CTCs
may have low EpCAM expression due to the epithelial-to-
mesenchymal transition [34]. This leads to the underesti-
mation of the CTC number, and key subpopulations may
be overlooked.

In addition to the identification and quantitation
of CTCs in CSF, researchers have attempted to analyze the
genetic alteration of CTCs in CSF. Using next-generation
sequencing (NGS), Jiang et al. [28] observed that the ge-
netic profiles of CSF CTCs were highly concordant with
primary tumors (17/19, 89.5%). In addition to other resis-
tant mutations, the EGFR exon 20 p.T790M resistant mu-
tation was identified in 7.1% of patients. Furthermore, van
Bussel et al. [31] exhibited a high EGFR mutation detection
rate (4/5, 80%) in CTCs from CSF of patients with EGFR-
mutant NSCLC patients. Ruan et al. [35] further sequenced
the CSF CTCs from patients with lung adenocarcinoma into
a single cell level and found that metastatic-CTCs were en-
riched for metabolic and cell-adhesion pathways. Further-
more, interpatient and intrapatient heterogenicities were ob-
served. These novel techniques break new ground in the
diagnosis and treatment of LM in patients with NSCLC.

3.2 Cell-free tumor DNA

The constituents of cell-free DNA extracted from
plasma are mostly the germline DNA from white blood
cells, which make ctDNA analysis challenging due to high
background noise. On the other hand, cell-free DNA ex-
tracted from CSF of patients with cancer is thought to be
enriched for ctDNA due to the significantly lower number
of normal cells in CSF compared with that in blood. Using



Table 1. Studies on CTCs in CSF of patients with lung cancer with brain metastasis.

1891

Study Platform for sequencing Condition of patient population Number (Total/L.C) Main finding Molecular application
Subira et al., 2012 [23] Flow cytometry Epithelial-cell solid tumors with suspected LM 78/23 CTC exhibited higher sensitivity compared with NA
immunophenotyping cytology (75.5% vs. 65.3%)

Nayak et al., 2013 [24] CellSearch assay Solid tumors with suspected LM 51/21 CTC showed exhibited sensitivity compared with NA

cytology (100% vs. 66.7%)
Subira et al., 2015 [25] Flow cytometry Epithelial-cell solid tumors with LM 144/35 CTC exhibited higher sensitivity compared with NA

immunophenotyping cytology (79.8% vs. 50%)
The percentage of CSF EpCAM+ cells predicted
overall survival

Tu et al., 2015 [26] CellSearch assay LC with MRI confirmed LM 18/18 CTC exhibited higher sensitivity compared with NA

cytology (77.8% vs. 44.4%)
Milojkovic Kerklaan et al., EpCAM-based flow cytometry  Epithelial-cell solid tumors with clinical suspicion of 29/8 CTC exhibited higher sensitivity compared with NA
2016 [27] LM but a negative or inconclusive MRI cytology (100% vs. 61%)
Lv, et al., 2016 [33] Immunofluorescence in situ LC with LM 16/16 Sensitivity of CTC: 75% NA

hybridization
Jiang et al., 2017 [28] CellSearch assay and LC with suspected LM 21/21 CTC showed exhibited sensitivity compared with Concordant rate with primary
next-generation sequencing cytology (95.2% vs. 57.1%) tumor: 89.5%
1/14 had EGFR p.T790M
mutations
Linetal., 2017 [29] CellSearch assay Epithelial-cell tumors with suspected LM 95/31 Sensitivity of CTC: 93% NA
Cut-off for CTC positivity: 1 CTC/mL
Nevel et al., 2020 [32] CellSearch assay LC with LM 16/16 CTC (>50/mL) predicted overall survival NA
Torre M, et al., 2020 [30] CellSearch assay Solid tumor with suspected LM 20/4 Sensitivity of CTC: 88.9% NA
Cutoff for CTC positivity: 1 CTC/mL
. Sensitivity of CTC: 88.9% L.

Van Bussel, et al. 2020 [31] EpCAM-based flow cytometry NSCLC with suspected LM 81/81 4/5 had EGFR mutation in CTC

Cutoff for CTC positivity: 0.9 CTC/mL

CSF, cerebrospinal fluid LM, leptomeningeal metastasis; LC, lung cancer; EpCAM, epithelial cell adhesion molecule; NA, not available; NSCLC, non-small cell lung cancer; CTC, circulating tumor cell; MRI, magnetic resonance

imaging; EGFR, epidermal growth factor receptor.
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mutation allele-specific amplification, Swinkels et al. [36]
first identified KRAS mutation in CSF of two patients with
NSCLC with LM. Subsequent studies, using either poly-
merase chain reaction (PCR) or NGS, have demonstrated
that CSF ctDNA is a feasible material for mutation detec-
tion, particularly in patients with LM, with a detection rate
as high as 100% [17, 37-50]. Published studies on ctDNA
in CSF of patients with NSCLC with CNS metastasis are
summarized in Table 2 (Ref. [17, 20, 36-53]). Most studies
have focused on patients with EGFR-mutant NSCLC with
LM due to the relatively high number of these patients [10].
Li et al. [39] eported that among patients with EGFR mu-
tant NSCLC patients with LM, the ctDNA of CSF super-
natant had a unique genetic profile and high allele fractions
compared with CSF pellets or plasma. Furthermore, in pa-
tients with brain metastasis, the detection of ctDNA muta-
tion is higher in CSF than in plasma, ranging from 50% to
63% [16, 20, 51]. These results reveal that CSF ctDNA is
a feasible material for mutation testing.

Acquired resistance at disease progression is often
inevitable after the use targeted therapies. Tumor rebiopsy
is required to obtain information regarding histologic or ge-
netic changes. For patients with LM, tissue rebiopsy is not
feasible, and CSF ctDNA could provide useful informa-
tion for subsequent treatment in this scenario. EGFR exon
20 p.T790M mutation, which is the most common resis-
tant mechanism after first- or second- generation EGFR-
tyrosine kinase inhibitor (TKI), has an incidence rate of ap-
proximately 55%—-64% [54, 55]. Despite the difference in
the testing method used, the percentage of EGFR exon 20
p.T790M mutation was relatively low in CSF ctDNA, rang-
ing from 0% to 50% [20, 38—40, 42, 43, 48, 51, 52]. Con-
versely, MET copy number gain was a relatively common
resistance mechanism in this patient group [39, 56]. Zheng
et al. [44] analyzed CSF ctDNA through targeted sequenc-
ing in patients with anaplastic lymphoma kinase (ALK)-
rearranged NSCLC with LM, and ALK fusion was detected
in 83.3% of the patients. ALK-resistant mutation was de-
tected in one patient after resistance to alectinib. In addi-
tion to being capable of detecting a resistant mutation, se-
rial CSF ctDNA analysis has the potential of longitudinally
monitoring tumor burden in patients with LM [39, 44].

Different sequencing platforms may affect the mu-
tation detection rate in patients with lung cancer. Studies
have reported that droplet digital PCR (ddPCR) may have
higher sensitivity in plasma EGFR mutation detection com-
pared with amplification refractory mutation system PCR
assays (ARMS) [57, 58]. However, few studies have di-
rectly compared different platforms for the CSF ctDNA
analysis. Using the primary tumor testing results as ref-
erence, Xu et al. [40] reported that ddPCR and ARMS
had similar sensitivity and specificity when used for CSF
ctDNA analysis. Moreover, targeted sequencing with the
NGS method exhibited a high mutation detection rate in
CSF ctDNA (Table 2). In addition to sensitizing mutation,

NGS can be used to identify the resistance mechanism after
targeted therapy.

The prognostic value of the CSF ctDNA analysis
in patients with NSCLC with CNS metastasis has also been
examined. Li et al. [53] identified five molecular subtypes
by using cluster analysis and found that the cluster contain-
ing high percentages of CDK4, TP53, MET, and CDKN2A
was associated with the worst prognosis. In patient with
EGFR-mutant NSCLC with LM, the mutation type detected
in CSF ctDNA indicated a different response to the third-
generation EGFR-TKI, osimertinib. Patients with EGFR
exon 19 deletion had better intracranial progression-free
survival compared to EGFR exon 21 p.L858R mutation.
Moreover, the prognosis was better in patients harboring
EGFR p.T790M mutation in CSF before osimeritnib use
[50]. Thus, the ctDNA of CSF is a promising material
for LM diagnosis, genomic alteration detection, and the
treatment response supervision. The CSF ctDNA analysis
should be considered a useful tool accompanied by cytolog-
ical examination in patients with CNS metastasis, particu-
larly in oncogene-addicted patients with LM.

3.3 EVs and RNA

Cells may communicate with each other through
EVs, which comprise of proteins, genomic DNA, and var-
ious RNAs. EVs are divided into three groups based on
their size and origin: exosomes, microvesicles, and apop-
totic bodies [59]. Short noncoding RNAs regulate protein
translation by binding to the 3’ untranslated regions of mes-
senger RNAs and are generally called microRNAs (miR-
NAs). In addition to being secreted by the cells in EVs,
miRNAs could be released by necrotic cells as free oligonu-
cleotides [60]. Recent studies have investigated the role of
EVs and circulating miRNAs in CSF, in addition to CTCs
and ctDNA, as a potential biomarker of CNS tumors.

Teplyuk et al. [61] analyzed the miRNAs of CSF
by using quantitative reverse transcription PCR and ob-
served that the levels of miR-10b and miR-21 were signifi-
cantly higher in the CSF of patients with glioblastoma and
metastatic brain tumors compared with those with nonneo-
plastic conditions. Furthermore, they found that the longi-
tudinal miRNA profiles could reflect disease activity. Us-
ing microarray analysis and quantitative real-time PCR, Pan
et al. [62] analyzed CSF miRNAs in patients with lung
adenocarcinoma with LM. Three miRNAs in CSF (miR-
7975, miR7977, and miR7641) were significantly upregu-
lated in patients with LM and the changes in these miRNAs
correlated with disease course. Through function analy-
sis, miR7977 was predicted to be involved in various path-
ways of cancer metastasis. In lung adenocarcinoma cells,
miR7977 was found to be a key regulator of prolifera-
tion, migration, and invasion. However, some concerns re-
garding miRNA use in CSF exist. The major concern is
specificity; differentiating identify the difference between
cancer-derived and inflammation-derived miRINA profiles



Table 2. Studies on ctDNA of CSF in patients with lung cancer with CNS metastasis.

c89T

Study Platform for sequencing Condition of patient Number Pattern of CNS metastasis Mutation detection rate of CSF Resistant mutation
population
Swinkels et al., 2000 [36] Mutation-allele specific NSCLC 2 LM KRAS mutation 100% detected in CSF NA
amplification (PCR) (2/2)
. . 32 BM 63% (20/32) of patients with BM
Pentsova et al., 2016 [20] Targeted sequencing Solid tumors 41, NSCLC:11 ) ) EGFR p.T790M: 50% (2/4) post-TKI
9LM 75% (3/4) of patients with LM
Marchio et al., 2017 [37] Targeted sequencing NSCLC 2 LM KRAS mutations 100% detected in CSF NA
(2/2)
Fan et al., 2018 [38] Targeted sequencing EGFR-mutant NSCLC 11 LM 100% EGFR p.T790M: 0%
Liet al., 2018 [39] Targeted sequencing EGFR-mutant NSCLC 28 LM 100% EGFR p.T790M: 30.4% (7/23)
post-TKI
MET copy number gain:47.8% (11/23)
post-TKI
Xu et al., 2018 [40] Mutation-allele specific NSCLC 49 LM 92.3% (39/42) in patients EGFR mutation =~ EGFR p.T790M: 3.85% (1/26) in
amplification (PCR) post-EGFR-TKI patients
Ge et al., 2019 [41] Targeted sequencing NSCLC 29 LM 66.67% overall NA
Huang et al., 2019 [51] Droplet digital PCR EGFR-mutant NSCLC 35 20 BM 50% (5/10) of patients with BM EGFR p.T790M: 13%
15LM 75% (9/12) of patients with LM
Zheng, et al., 2019 [44] Targeted sequencing ALK mutant NSCLC 30 LM ALK fusions were detected in 83.3% ALK p.G1202R and p.C1156F were
(10/12) of samples found in one post-alectinib sample
Kawahara et al., 2019 Mutation-allele specific LC 26 NA 75% of valid samples had EGFR EGFR p.T790M: 33.3% (4/12) in valid
[52] amplification (PCR) mutations samples
Ying et al., 2019 [42] Targeted sequencing NSCLC 92 LM 81.5% overall, EGFR is the most common EGFR p.T790M: 2.8% (2/72)
gene (58%)
Zhao et al., 2019 [43] Targeted sequencing Malignancy 35, LC:74% LM 100% EGFR p.T790M: 33.3% (2/6)
Ma et al., 2020 [45] Targeted sequencing NSCLC 21 10 BM 95.2% (20/21) overall, 100% with LM NA
11 LM 81.8% (9/11) LM patients had EGFR
mutation
Li, et al., 2020 [53] Targeted sequencing NSCLC 94 24 BM 100% overall, EGFR is the most common NA
gene (84%)
70 LM
Aldea et al., 2020 [17] Targeted sequencing NSCLC 12 1 BM 83% NA
11LM
Moushumi  Suryavanshi droplet digital PCR EGFR-mutant NSCLC 17 LM 94.1% No EGFR p.T790M mutation was

etal., 2020 [47]

found post-TKI




Table 2. Continued.

¥891

Study Platform for sequencing Condition of patient Number Pattern of CNS metastasis Mutation detection rate of CSF Resistant mutation
population
Zhao et al., 2020 [46] Targeted sequencing Solid tumors 58, LC: 42 LM 100% overall, EGFR mutation rate: NA
70.97%
Chiang et al., 2021 [48] Mutation-allele specific EGFR-mutant NSCLC 48 LM 68.8% (33/48), 80.5% in patients with EGFR p.T790M: 14.6%
amplification (PCR) abnormal cytologically finding
. . EGFR p.C797S: 36.3% (4/11)
Choi et al., 2021 [49] Nanowire-based cfDNA assay EGFR-mutant NSCLC 11 LM 72.7% (8/11)
. . MET amplification: 18.2% (2/11)
after third generation TKI
Zheng et al., 2021 [50] Targeted sequencing EGFR-mutant NSCLC 80 LM

cohort 1: pre-osimertinib (45)
cohort 2: post-osimerinib (35)

Cohort 1: 93.3% (42/45)
Cohort 2: 97.1% (34/35)

Cohort 1: 21.4% (9/42)
Cohort 2: 21.7% (5/23) maintained
EGFR p.T790M

NSCLC, non-small cell lung cancer; LM, leptomeningeal metastasis; BM: brain metastasis; TKI, tyrosine kinase inhibitor; cfDNA, cell-free tumor DNA; PCR, polymerase chain reaction; EGFR, epidermal growth factor receptor;

ALK, anaplastic lymphoma kinase.
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Fig. 1. Cerebrospinal fluid as a medium of liquid biopsy in non-small-cell lung cancer. miRNA, microRNA; circRNA, circular RNA; ctDNA,
cell-free tumor DNA; EVs, extracellular vesicles; CTCs, circulating tumor cells.

is difficult. Furthermore, differentiating between miRNAs
types in CSF, such as EV-associated miRNAs or naked
miRNAs, is difficult. Additionally, a universal guideline
is lacking for the processing of CSF samples, miRNA ex-
traction, measurements, and data analysis [63].

Circular RNAs (circRNAs) are a class of noncod-
ing RNAs that comprise a circular loop with miRNA bind-
ing sites and that regulate gene expression by acting as
a miRNA sponge to compete with endogenous miRNAs
[64]. Furthermore, circRNAs are abundant in the brain
[65], and circRNA-miRNA networks that comprise circ-
TTC39C and circ-PCCA have been identified in the CSF of
patients with neurodegenerative diseases [66, 67]. Multiple
circRNAs have been discovered in the blood and tumor tis-
sue of patients with lung cancer [68, 69]. The expression of
CircRNA_102481 in exosomes was related to brain metas-
tasis in patients with NSCLC [70]. Collectively, alterations
in circRNAs can be detected in CSF and are currently be-
ing actively investigated for their potential as biomarkers
for patients with lung cancer with CNS metastasis.

Lee et al. [71] measured nanoparticles in 472 CSF
samples and found that the concentration of CSF nanopar-
ticles significantly increased in patients with LM. The con-
certation changes of nanoparticles were examined in 33 pa-
tients with NSCLC after intrathecal chemotherapy. EVs
was positively correlated with overall survival. The same

group further investigated the subpopulation of small non-
coding RNA from EVs in patients with NSCLC with LM.
The functions of these noncoding RNA, particularly miR-
21, in LM pathogenesis were documented [72]. Further
studies are required to investigate the role of EVs as a novel
pharmacological target for LM.

4. Summary and perspective

The use of CSF as a medium of liquid biopsy in pa-
tients with NSCLC with CNS metastasis is still evolving. In
addition to having better diagnostic sensitivity, CTCs detec-
tion in CSF can provide information regarding tumor bur-
den, particularly in patients with LM. The analysis of CSF
ctDNA could identify driver oncogenes, monitor treatment
response, and track the resistance mechanism [73]. The se-
quencing of RNA or EVs in CSF is new in this field and may
lead to a better understanding of LM pathogenesis (Fig. 1).
No study has compared these platforms with respect to de-
tection rate and clinical usefulness. However, we believe
that each platform could provide complementary informa-
tion. The optimal use of these materials in CSF for diagno-
sis, tumor heterogenicity tracking and treatment guidance
requires prospective studies for validation. It is hoped that
the application of liquid biopsy by using CSF in clinical
practice will improve outcomes in this patient group.
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