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1. Abstract

Introduction: A diabetic protein marker is a type
of protein that is closely related to diabetes. This kind of
protein plays an important role in the prevention and di-
agnosis of diabetes. Therefore, it is necessary to identify
an effective method for predicting diabetic protein markers.
In this study, we propose using ensemble methods to pre-
dict diabetic protein markers. Methodological issues: The
ensemble method consists of two aspects. First, we com-
bine a feature extraction method to obtain mixed features.
Next, we classify the protein using ensemble classifiers.
We use three feature extraction methods in the ensemble
method, including composition and physicochemical fea-
tures (abbreviated as 188D), adaptive skip gram features
(abbreviated as 400D) and g-gap (abbreviated as 670D).

There are six traditional classifiers in this study: decision
tree, Naive Bayes, logistic regression, part, k-nearest neigh-
bor, and kernel logistic regression. The ensemble classi-
fiers are random forest and vote. First, we used feature ex-
traction methods and traditional classifiers to classify pro-
tein sequences. Then, we compared the combined feature
extraction methods with single methods. Next, we com-
pared ensemble classifiers to traditional classifiers. Finally,
we used ensemble classifiers and combined feature extrac-
tion methods to predict samples. Results: The results in-
dicated that ensemble methods outperform single methods
with respect to either ensemble classifiers or combined fea-
ture extraction methods. When the classifier is a random
forest and the feature extraction method is 588D (combined
188D and 400D), the performance is best among all meth-
ods. The second best ensemble feature extraction method is
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1285D (combining the three methods) with random forest.
The best single feature extraction method is 188D, and the
worst one is g-gap. Conclusion: According to the results,
the ensemble method, either the combined feature extrac-
tion method or the ensemble classifier, was better than the
single method. We anticipate that ensemble methods will
be a useful tool for identifying diabetic protein markers in
a cost-effective manner.

2. Introduction

Due to continuous improvements and changes in
people’s lifestyles, an increasing number of people are suf-
fering from diabetes mellitus [1]. At present, diabetes is
one of the most prevalent diseases in many countries. Ac-
cording to clinical diagnosis, people who suffer from dia-
betes to be younger, and the incidence of diabetics is rising
[2]. Therefore, improving the diagnostic efficiency of di-
abetes and identifying diabetic protein markers for use are
currently hot topics. The continuous development of ma-
chine learning has resulted in its increasing use for disease
prediction [3-12]. Machine learning methods to predict di-
abetes mellitus (DM) have been around for some time, elic-
iting sufficient controversy.

With the development of sequencing technology,
the protein’s function has gradually been found. Thus,
proteomics has become a popular research hotspot. The
essence of proteomics is to study proteins on a large-scale
level, including protein expression, post-translational mod-
ification, protein-protein interactions [13], etc. Proteome
research can not only provide a material basis for the laws
of life activities, but also provide theoretical basis and so-
lutions for the elucidation and conquering of many kinds
of disease mechanisms [14]. By comparing and analyzing
the proteome between normal individuals and pathological
individuals, we can find certain “disease-specific protein
molecules”, which can become molecular targets for new
drug design, or provide molecular markers for early diagno-
sis of diseases. Therefore, proteomics research is not only a
necessary work to explore the mysteries of life, but also can
bring huge benefits to human health. Proteomics research
is a symbol which indicates that life science has entered the
post-gene era [15]. Currently, we can make relevant predic-
tions based on machine learning and protein markers. For
example, machine learning has also been used for age pre-
diction using protein markers [16] as well as the detection
of other prevalent age-related diseases. Fleischer et al. [16]
studied a computational method that can use ensemble ma-
chine learning methods to predict biological age from gene
expression data of skin fibroblasts. Reboucas et al. [17]
used biomarkers to detect the potential for recurrence of
lung adenocarcinoma after surgical resection. These stud-
ies illustrate the importance of predicting protein markers.
So, in this study, we use machine learning method to predict
diabetic protein markers.

Protein is the material basis of all life, an impor-
tant part of the composition of cells, and the primary raw
material for the regeneration and repair of human tissue.
Changes in protein morphology and quantity may lead to
a variety of diseases, and some diseases may affect protein
synthesis. Diabetic marker proteins are linked to diabetes,
and these proteins directly or indirectly affect the diagnosis
of diabetes [18]. Huth et al. [19] used proteomics to predict
T2D. In this experiment, the authors selected 892 people
who were 42 to 81 years old. Through the experiments, the
authors found that the level of mannan-binding lectin ser-
ine peptidase (MASP) was positively correlated with T2D
and prediabetes. However, adiponectin is negatively corre-
lated with the T2D. MASP, adiponectin, apolipoprotein A-
IV, apolipoprotein C-II and C-reactive protein are related to
prognosis. The results show that diabetes can be predicted
by protein levels in the body. As we all know, diabetes can
cause a series of complications, such as diabetic nephropa-
thy (DN). Hirao et al. [20] conducted a comprehensive
analysis of the diabetic patients and healthy people, using
label-free semi-quantitative methods. Protein identifica-
tion analysis showed that there are 327 proteins unique to
healthy people and 30 unique proteins to diabetic patients.
There are a total of 615 proteins in the two groups. Ges-
tational diabetes mellitus (GDM) refers to abnormal blood
sugar that occurs during pregnancy. It is one of the com-
mon pregnancy complications in obstetrics, and it has seri-
ous adverse effects on the health of mothers and babies [19].
Through experiments, Kim et al. [21] proved that the level
of apolipoprotein C IIT in women with GDM was signifi-
cantly increased. According to experimental data, it can be
found that there are biomarkers in patients with gestational
diabetes at 16-20 weeks of pregnancy. Therefore, it is com-
pletely feasible to determine protein biomarkers and predict
the later development of GDM.

As above, there are many proteins related to dia-
betes. Their presence or level of presence can usually be
used as a criterion for judging diabetes. So, it is important
to identify the kind of proteins which are associated to dia-
betes. Establishing a good protein classification model and
identifying diabetic marker proteins are important steps for
understanding and predicting diabetes. The main methods
currently used to study proteomics include two-dimensional
gel electrophoresis (2-DE), time-of-flight mass spectrome-
try (TOFMS), semi-quantitative multiple reaction monitor-
ing (SQMRM) and bioinformatics technology, etc. [22].
These methods mainly use biological methods to analyze
proteins. Biological methods can accurately perform quali-
tative analysis, but these methods produce a series of costs.
Moreover, when biological methods face an unknown pro-
tein, they cannot rapidly judge the protein’s function based
on the structural characteristics. Therefore, we hope to use
machine learning methods to predict diabetes protein mark-
ers.
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Table 1. Using machine learning methods to predict protein.

Authors

Feature extraction method

Classifier

Feng et al. [23]
Ding et al. [24]
Song et al. [25]
Yuan et al. [26]
Chou et al. [27]

Liu et al. [28]

Zhou et al. [29] and

Tian et al. [30]

Han et al. [37]
Babhri et al. [38] -
Chen et al. [39]
Wang et al. [40]

8-gap

fusing Pse-ACC with the dipeptide composition and auto-covariance

amino acid composition and frequency of occurrence of each dipeptide
188-dimensional features

the structural information between amino acids

pseudo-amino acid information

Physicochemical Properties

188-dimensional features
PSSM-SPF and RER features

Naive Bayes
SVM
Ensemble classifier
RBF network

augmented covariant-discriminant algorithm

physicochemical distance transformation (PDT) SVM

SMOTE

two-stage multiclass support vector machine
Greedy-Boost
Mulit-classifiers and k-means
ensemble random forests

Machine learning has been widely used in protein
classification. Machine learning methods can build models
based on known proteins, which can make function predic-
tions for unknown proteins faster. For example, Feng et
al. [23] used the amino acid composition and frequency
of occurrence of each dipeptide to extract certain features
and used Naive Bayes as the classifier to predict samples.
Ding et al. [24] used the g-gap method to extract features
from protein sequences. They used the support vector ma-
chine (SVM) to classify protein sequences. Song et al. [25]
converted protein sequences into 188-dimensional features
according to their composition, physical and chemical prop-
erties and distribution. Yuan et al. [26] extracted features
according to peptides. This method considered the struc-
tural information between amino acids and obtained com-
prehensive and informative characteristics. The pseudo-
amino acid information proposed by Chou et al. [27] con-
tained the sequence information of two amino acids sepa-
rated by one or more amino acid residues, and this method
obtained good accuracy. Liu et al. [28] proposed an en-
hanced method called pseudo amino acid composition (Pse-
ACQ). In this method, the authors reduced the amino acid
alphabet profile, proposing physicochemical distance trans-
formation (PDT), which is similar to Pse-ACC. Zhou et al.
[29] and Tian et al. [30] enhanced feature extraction of pro-
tein sequences by fusing Pse-ACC with the dipeptide com-
position and auto-covariance, encoding proteins based on
their grouped weight. In addition to research on feature ex-
traction methods, reconstruction of classifiers is also cur-
rently a research hotspot, particularly research on ensemble
learning. Several previous studies established a series of
random forest models based on different features [31-36].
They ultimately obtained results by voting on the results of
each classification. Han et al. [37] constructed a two-layer
multi-classification support vector machine model to pre-
dict subcellular localization. The output of the first layer is
the input of the second layer. Bahri et al. [38] built an en-
semble method called Greedy-Boost. This method not only
improves stability but also enhances the speed of classifi-

cation. Lin et al. [39] used 18 classifiers to predict protein
sequences, using K-means to cluster the results. Wang et
al. [40] predicted protein-protein interaction sites using an
ensemble random forests with synthetic minority oversam-
pling technique. We use Table 1 (Ref. [23-30, 37-40]) to
summarize the above methods.

We are committed to building a predictive model
for diabetes protein markers. In this way, it is possible to
discover the diabetes protein markers whether contained in
the human body or not, and we can label the function of
unknown proteins. In this study, we focused on building a
diabetes protein markers predictive model, which is based
on machine learning.

3. Materials and methods

To build an efficient classification model, the fol-
lowing steps are required. First, the protein sequences must
be converted into vectors. Then, the dimensionality of the
feature vectors are reduced, if necessary. Finally, the classi-
fication model is obtained by training the classifier. In this
study, we developed a feature extraction method and a clas-
sifier. We used an ensemble method to predict diabetic pro-
tein markers. First, we obtained positive data from Uniprot,
and then, we obtained negative data from the positive data.
Next, we used three methods to extract the features and six
classifiers to predict proteins. Then, we obtained four new
feature sets by combining three feature extraction methods.
Finally, we used a dimensionality reduction method to re-
duce the features that were obtained in the previous step. In
the classification experiment for each step, we used ensem-
ble classifiers and traditional classifiers. The process flow
chart is shown in Fig. 1.

3.1 Dataset

Due to the low number of diabetic marker proteins
currently available, it is very important to build a represen-
tative and non-redundant negative dataset. In this study, we
used the protein family database (PFAM) based on struc-
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Fig. 1. Overall process of the method described in this paper.

tural information to build a negative dataset according to
two principles [41, 42]: (1) extract all positive PFAM infor-
mation and then choose the longest sequence as the negative
sequence among the rest of all positive PFAM members; (2)
the positive sequence is derived from the Uniprot Database.

Using ‘diabetes’ as the key word, 574 sequences
were extracted from UniProt (Universal Protein, http://
www.uniprot.org/uniprot/), containing human, mouse, cow
and other species’ protein data. After screening, we ob-
tained 310 human protein sequences, and then, we used CD-
HIT [43] to reduce redundant data and removed sequences
that contained illegal letters. We were left with 309 diabetic
protein markers and 9695 negative protein sequences. Be-
cause the data set was unbalanced, we randomly selected a
negative dataset according to the positive samples’ length
and proportion. We randomly selected 5 sets of negative
samples and averaged the results of 5 experiments using
these 5 sets.

3.2 Feature extraction method

Since a computer cannot directly recognize a pro-
tein sequence, it needs to convert the sequence into a set of
vectors to recognize the information, which is called fea-
ture extraction [44-52]. A good feature extraction method
will comprehensively consider the information contained in
the protein sequence. As we know, protein is composed of
20 amino acids arranged in combination, so we reflect the

Logistic

Decision
Tree

[

Classifiers /

properties of proteins through the position of amino acids,
physical and chemical properties, etc. At present, feature
extraction methods mainly take into account the following
aspects: (1) amino acid composition, (2) amino acid physic-
ochemical information, (3) intrinsic correlation information
of amino acid sequences and (4) structural information of
proteins. Feature extraction methods have a strong influ-
ence on experimental results. Therefore, how to enhance
the feature extraction method is a problem worth studying.

3.2.1 Composition and physicochemical features

Composition and physicochemical features
(188D) can extract 188 features containing composition,
transform and distribution information [53]. This method
includes three parts: composition, transform and distri-
bution [54, 55]. The first section is the amino acid (AA)
composition. By calculating the frequencies of amino
acids in a protein sequence, sequences are converted into
20D vectors [53]:

T (N1 N2 20
(v17v271]37"' ,'Ugo) - Ty

'L’ L
where n; represents the quantity of an AA in the protein
sequence.

The second section is transform. According to the

physicochemical properties of a protein, 20 AAs can be di-
vided into 3 different groups. The proportion of each group
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in the protein sequences is calculated. We use the secondary
structure as an example:

countp,

C; (i=1,2,3;j=1,2,---,8)

where D, represents the number of each kind of amino acids
and L is the length of the sequence. In this study, we con-
sidered [56] eight physicochemical properties. For each
physicochemical property, there are three types of amino
acids. Therefore, we can obtain 24D features.

The third section is distribution [55, 57]. We cal-
culate the distribution at five positions: at the beginning,
25%, 50%, 75% and the end. We obtained 120D features in
this section. Then, we considered the number of different
amino acid dipeptides. According to this step, we obtained
the 24D features. The formulas are as follows.

D;D:orD:D;

T, = 2 J i

sJ L—l
,7e{(i=1,7=2),i=2,j=3),(i=3,7=1)}
H..

D=—"Y
L

(j = begining , 25%, 50%, 75%, ending ;i = 1,2, 3)

where the chain length is measured as H;; at the beginning,
25%, 50%, 75% and end of AAs at which a particular prop-
erty is located.

This method divides amino acids into three types
according to different physical and chemical properties, and
considers the position information of three different types
of amino acids under different physical and chemical prop-
erties. This method comprehensively considers the location
information and physical and chemical properties of amino
acids. The method is simple and easy to understand. Al-
though the method uses physical and chemical properties,
it still mainly focuses on the position information of amino
acids, and the physical and chemical properties are not fur-
ther reflected.

3.2.2 G-gap

G-gap dipeptide composition is a method used to
describe the information about the composition of dipep-
tides in protein sequences. In this study, we used an en-
hanced method proposed by Huan et al. [56], who added
a pseudo amino acid composition to the g-gap. Thus,
each protein sequence is converted into 400 + n\ vectors
[56, 58, 59].

T
FVy_gap = [®1, T2, %400, T400415" " * » £4004n))

F ‘/;kipgram = {

ST ey, (S U < 400)

sy s (400 4 1 < w < 400 + 1)

j=1Ti

-

where the number of occurrences of i-th dipeptide appear-
ances is denoted by n{ and w is the weight. \ is the num-
ber of total counted ranks or tires of the correlations along
a protein sequence, and n is the number of physicochem-
ical properties used in this study. 7; is the i-th tier corre-
lation factor, which reflects the sequence-order correlation
between all the i-th most contiguous dipeptides along a pro-
tein sequence. In this study, n is 9 and g is 2. Finally, we
obtained the 670D features.

This feature extraction method is based on two
amino acids. This method first considers the position of
each amino acid in the sequence, and fuses the physical and
chemical properties of the amino acid through the pseudo
amino acid composition.

3.2.3 Adaptive Skip Gram Features

Adaptive Skip Gram Features (hereafter referred
to as 400D) can extract 400 features. This method ex-
tracts features according to the distance between amino
acids [55, 60, 61]. We assume a given protein sequence
P. P is expressed as follows.

A1 AxAs--- A,
DT (A;, A;) is the distance between amino acids.
DT (A, A;) = j —i— 1

where i and j represent the position of amino acids. Accord-
ing to the definition of amino acid distance, if two amino
acids are adjacent, the distance is 0. The maximum distance
between amino acids is L-2. The k-skip-n-gram algorithm
counts the frequency of occurrence of any n amino acid se-
quences in the sequence, expressed as follows:

N (am,@m, - - am,,)
N (Tskipgram)

k
Tskipgram = {Ua—O Sklp(DT = a)|a =0,1,2,--- ,k; k<

Tikipgram Tepresents subsequences, which are com-
posed of n amino acids in the sequence. N (Tsipgram)
represents the number of elements in Tigipgram-
N (@ G, -+ - am, ) Tepresents the number of occur-
rences of all n amino acid component sequences in
Tskipgram- The number of F'V sipgram is 20™. Due to the

1gm1§20,--~,1§mn§20}
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differential value of k, Wei et al. [61] proposed the adaptive
skip-n-gram model. This model cancels the limitation of k.
The values of k are adaptive according to the length of the
sample sequence, which makes the features contain more
distance information and makes the k-skip-n-gram model
have no parameters, avoiding the overfitting problem. In
this study, n is 2, so we obtained 400D features using this
method.

This method is derived from the n-gram model in
natural language processing. It mainly considers whether
each amino acid or each polypeptide appears in the se-
quence and how often it appears. So, this method take into
account the distance between amino acids.

3.3 Classifier
3.3.1 Logistic regression

Logistic regression [62, 63] is a logarithmic
model, and its form is a parametric logistic distribu-

tion represented by the conditional probability distribution
P(Y|X).

HYlw)ﬁiﬁL?@
PV =0]z) = 1—|—ex1:1)(w-x)

where 2 € R™ is the feature, Y € {0, 1} is the class, and w
is the weight vector. For a given sample, we should calcu-
late both probabilities.

In this study, we used two kinds of logistic regres-
sion models. One is shown above. The other is kernel lo-
gistic regression. LR is a linear classifier. Therefore, kernel
logistic regression (KLR) [64] was proposed, which can be
used to classify nonlinear data. KLR uses kernel functions
to project the features into high-dimensional space.

3.3.2 Decision tree

Two kinds of decision trees are used in this study.
One is C4.5 [12, 65], and the other is PART [66], which is
based on C4.5.

(1) C4.5. This model uses the tree structure to de-
scribe the process of classification. C4.5 contains nodes
and directed edges. There are two kinds of nodes, inter-
nal nodes and leaf nodes. Internal nodes indicate attributes,
which are the conditional basis of classification. Leaf nodes
are classes, which are the labels of samples. The process
of C4.5 classifying instances is that C4.5 arranges samples
from the root node to a leaf node. Feature selection is based
on the information gain ratio.

(2) PART. PART is based on C4.5 and the par-
tial decision tree, proposed by Eibe Frank et al. [67] in
1998. PART extracts rules from a dataset according to an
incomplete decision tee. The original principle of the algo-

rithm comes from the separate-and-conquer strategy. This
method creates a rule and then removes the instance that
is covered by the rule. The method builds rules for the re-
maining instances until there are no existing instances, re-
cursively.

3.3.3 Naive Bayes

Naive Bayes [23, 53] is a classifier based on
Bayes’ theorem and features condition independent hy-
potheses. In this algorithm, first, the input’s and output’s
joint probability distribution are studied, which is based on
the independent hypothesis of feature conditions; then, for
a given input x, we used Bayes’ theorem to calculate the
maximum posterior probability of output y. Naive Bayes
is a common classification method, which is easy to imple-
ment [23, 66].

3.3.4 K-Nearest Neighbor

K-Nearest Neighbor (KNN) [68, 69] is a basic
classification and regression method. In this study, we only
discuss the application of KNN in classification problems.
KNN contains three important factors: the selection of k
values, distance functions and decision rules. The algo-
rithm for KNN is as follows:

(1) According to the determined distance function,
we can derive k points that are closed to instance x in the
training set. The neighborhood of x that covers these k
points is called N (x);

(2) In Ng/(x), the class of x is determined accord-
ing to the classification decision rule.

ymagmax Y Ii=e),
K CEIENk(CE)

i=1,2,3,....N;j=1,2,3,...,K

where x; is the feature vector and y; = {c1, cq, ..
the label. I(x) is the indicator function.

3.4 Ensemble method

.,CK} is

The ensemble method uses many kinds of meth-
ods to process a dataset, which may obtain superior results
[7, 70-77]. Different methods have different emphases on
data processing. We combined different methods to im-
prove the classification efficiency. In this study, we mixed
feature extraction methods and used ensemble classifiers to
improve their performances.

3.4.1 Ensemble feature extraction methods

We used the 188D, g-gap and 400D to extract
features from sequences. These methods have different
emphases. 188D contains the amino acid composition
and physical and chemical properties. G-gap contains the
dipeptide composition, which can indicate the importance
of the peptide chain. Since proteins are produced by the
distortion and folding of peptide chains, dipeptides can bet-
ter recognize proteins. G-gap adds nine kinds of physical
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and chemical properties to improve its accuracy. 400D fea-
tures take into account the distance between amino acids.
Therefore, it is meaningful to combine these three methods
to more comprehensively extract features and improve ac-
curacy.

In this study, we used four combination methods.
First, we combined 188D and g-gap and obtained 858D
features. 188D divides amino acids into three groups and
studies the physical and chemical properties of each type
of amino acid. However, g-gap considers the properties of
each amino acid.

Second, we combined 188D and 400D and ob-
tained 588D features. Since 400D does not consider the
physicochemical properties of amino acids, the combina-
tion of 188D and 400D extracts features based on the AA
composition and physicochemical properties.

Third, we combined g-gap and 400D and obtained
1070D features. 400D is different from g-gap. The dipep-
tides in g-gap are adjacent, while in 400D, two amino acids
can be separated by several amino acids, that is, the two
amino acids considered are not adjacent. G-gap focuses on
the composition of dipeptides in the protein sequence, and
400D focuses on the relative position of the amino acids.

Fourth, we combined 188D, g-gap and 400D and
obtained 1258D features. 188D considers the frequency
of occurrence of a single amino acid and the amino acid’s
position according to its physical and chemical properties,
which are different from the other two methods. G-gap fo-
cuses on the composition of dipeptides in the protein se-
quence, which is different from the other two methods.
400D focuses on the distance between two amino acids,
which is different from the other methods.

Ensemble feature extraction methods can make up
for the shortcomings between different methods, and then
can construct a set of comprehensive features. By combin-
ing feature extraction methods, we can get four different
sets of feature vectors.

3.4.2 Ensemble classifiers

Ensemble classifiers can organically combine
multiple traditional learning models to obtain more stable
and accurate results. There are three common ensemble
learning algorithms, including bagging, boosting and stack-
ing.

In this study, we used random forest and vote as
the ensemble learning methods to classify proteins.

(1) Random Forest (RF) [78-82]. Random forest
is an extension of bagging. Leo Breiman proposed RF. RF
is composed of many decision trees, with no correlation be-
tween different decision trees. When we need to classify a
sample, each decision tree in the forest makes a judgment
and classification. The final result is the class with the high-
est number of votes.

(2) Vote. This method classifies the sample ac-
cording to the seven classifiers. First, we use LR, KLR,

NB, DT, PART, RF and KNN to classify protein sequences.
We obtain seven results, and we use majority voting to ob-
tain the final result. If a label receives more than half the
votes, the prediction is that label; otherwise, the prediction
is rejected.

. I j N T k
¢ if ;hl () > 0.5, > i hi(x)

reject,

H(x) =
otherwise

where A/ (z) is the output of classifier h; on the label ¢;. T
represents the number of base classifiers, and N represents
the number of labels.

3.5 Measurement

In this study, we used accuracy (ACC), the
Matthews correlation coefficient (MCC), F-Measure and
the area under the receiver operating characteristic curve
(AUC) to measure classifier efficacy [83, 84]. The formu-
las are as follows:

TP+ TN

A =
cc TN+TP+FN+FP

(TP x TN) — (FN x FP)
MCC =

V(TP + FN)(TN + FP)(TP + FP)(TN + FN)

2 % TP TP
TP+FP TP+FN
TP 4 TP
TP+FP TP+FN

Fl =

where TP represents the number of correct classifications
in the positive dataset. TN is the number of correct classi-
fications in the negative dataset. FN is the number of false
negatives. FP is the number of false positives.

4. Result and discussion

Due to the imbalanced dataset, we randomly ex-
tracted 5 sets of negative samples and averaged the results
of 5 experiments using these 5 sets. Each experiment was
subjected to 10-fold cross-validation. The dataset was di-
vided into 10 sections. Nine groups were used to train the
model, and the remaining group was used to test the model.

4.1 Using the single feature extraction method and a
single classifier

To evaluate the ensemble methods, first, we used
the single feature extraction method and traditional classi-
fier to predict proteins. When we used 188D to extract fea-
tures from the protein sequences, the performances of the
six classifiers had negligible differences. The best AUC
from KLR was 0.81, and the worst AUC from KNN was
0.70. When 400D was used to extract features, the best clas-
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Fig. 2. Performances comparison of single feature extraction method. (A) The ROC curve of 188D with six classifiers. (B) The ROC curve of g-gap

with six classifiers. (C) The ROC curve of adaptive skip gram feature with six classifiers.

sifier was NB, the AUC of which was 0.77, and the worst
AUC was 0.66 from DT. The best AUC of g-gap method
was 0.74 from KLR, and the worst AUC was 0.52 from NB.
The detailed classification results are shown in Fig. 2. The
overall effect of KLR was the best. KLR can map nonlinear
features to high-dimensional space by adding kernel func-
tions, which solves nonlinear problems. NB, which is the
best classifier for 400D, but the worst for g-gap, assumes
that each feature is independent with an identical distribu-
tion, so the classification effect of the different feature ex-
traction methods fluctuates greatly.

In the previous section, we evaluated the classi-
fiers according to the ROC curve and AUC. Next, we eval-
uated the feature extraction methods, as shown in Fig. 3,

which are more vivid. According to Fig. 3, 188D has the
best performance among the five classification results, ex-
cept for NB. 400D has the best performance among the
three feature extraction methods when the classifier is NB.
The performance of NB indicates that features obtained us-
ing 400D have the highest independence among the three
feature extraction methods. According to the DT and PART
results, 188D has the best performance, which may indicate
that features extracted from 188D contain more effective
information for classifying diabetic protein markers. All of
the experimental results using the single methods are shown
in Appendix Table 5.
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Fig. 3. The results of using single feature extraction method and traditional classifier. Compare the feature extraction methods by controlling the

classifier.

4.2 Comparison of the ensemble methods with single
methods

4.2.1 Ensemble feature extraction methods outperform the
single methods

In this section, we compare the joint features with
single ones. We combined the three feature extraction
methods, obtaining four joint features: 588D (combining
188D with 400D), 858D (combining 188D with g-gap),
1070D (combining 400D and g-gap) and 1258D (combin-
ing 188D with 1070D). In this section, we also use six clas-
sifiers for prediction.

First, we conducted the classification experiment
on 588D. To make the comparison of the results clearer, we
used the DT, NB and PART experimental results to create
a histogram, which is shown in Fig. 4. When the classi-
fier is DT, 188D has the best result. NB and PART were
selected for similar reasons. 400D had the best result with
NB, and 588D had the best result with PART. The experi-
mental results of the other classifiers are shown in Appendix
Table 6. According to Fig. 4, 588D is the best feature ex-
traction method among the three methods, except for DT.
588D improves accuracy most of the time, but it is slightly
worse than 188D when the classifiers are DT and LR.

Similar to the above method, we created his-
tograms of the remaining three combined methods, which
are shown in Fig. 5. According to Fig. 5, we found the
accuracy was generally improved, but the improvement
rate was not large. Specifically, 1258D had little improve-
ment compared to 588D and 1070D. However, when the
classifier was NB, the performance of 1070D was worse
than 400D, potentially because the ensemble method in-
creases the correlation between features and reduces fea-
ture independence. We used Max-revelation-Max-Distance

(MRMD) to reduce the dimensionality, which may improve
the accuracy. This method used the Pearson correlation co-
efficient (PCC) to calculate the relevance and the Euclidean
distance to identify instances of redundancy. The results
are shown in Appendix Table 7. Compared to the results
without dimensionality reduction, the effect of the classi-
fiers increased and decreased. When the classifiers are LR,
DT and NB, the results improved. Compared to the single
method, overall accuracy was improved. Therefore, using
the ensemble feature method is better than the single feature
extraction method.

4.2.2 Ensemble classifiers outperform single classifiers

In this section, we compare the ensemble classi-
fiers with traditional classifiers. We use RF and VOTE as
the ensemble classifiers. RF is an ensemble classifier based
on the bagging algorithm, using DT as the base learner. RF
combines all the classification results for voting and desig-
nates the label with the most votes as the final result. We
proposed the vote method. In this method, we used seven
classifiers to classify the samples, obtaining the final result
according to majority voting. The seven classifiers are DT,
PART, KLR, LR, KNN, RF and NB, which were used in the
previous sections. The results are shown in Fig. 6. There
are three ROC curves in each subgraph. Two of them are RF
and VOTE, and the other is the traditional classifier with the
best performance. From Fig. 6, we observe that the results
using ensemble classifiers are better than the results using
traditional classifiers. The best AUC was 0.90, for which
the classifier was RF and the feature extraction method was
188D. Moreover, the worst AUC in the section was 0.70,
for which the classifier was PART and the feature extrac-
tion method was g-gap. According to Fig. 6, RF is supe-
rior to VOTE. The reason the ensemble method is better
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Fig. 4. The results of combining 188D and 400D. Three classifiers are selected for comparison. (A) When classifier is DT, 188D has the best performance.

(B) When feature extraction method is 400D, using NB can have the best performance, but performance of 588D is better than 400D. (C) When classifier

is PART, 588D has the best performance.
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Fig. 5. Results of using ensemble feature extraction method. In this section, we used traditional classifiers. (A), (B), (C) are the results of 188D, g-gap
and 858D. (D), (E), (F) are the results of 400D, g-gap and 1070D. (G), (H) are the results of 588D, 858D, 1070D, and 1258D.

Table 2. The results of using ensemble classifiers with single
feature extraction method.

Method  Classifier ACC F_measure MCC

188D RF 0.8139 0.8255 0.6334
188D VOTE 0.8042 0.8013 0.6087
400D RF 0.7718 0.7800 0.5452
400D VOTE 0.7573 0.7541 0.5147
g-gap RF 0.7977 0.8109 0.6013
g-gap VOTE 0.7686 0.7682 0.5372

than the traditional classification method is that the ensem-
ble method avoids the accidental errors of single methods
by comprehensively considering multiple classifiers. All
experimental results are shown in Table 2.

According to the results, we found ensemble clas-
sifiers are better than single classifier. Ensemble classi-
fiers are beneficial in three ways. First, since the learn-
ing task has a large hypothesis space, there may be many
hypotheses in the training set to achieve the same perfor-

mance. Therefore, the single classifier may choose the hy-
pothesis space by mistake, resulting in poor generalization.
Ensemble classifiers can reduce this risk. Second, ensem-
ble classifiers can reduce the risk of falling into a terrible
local minimum. Third, by combining multiple classifiers,
the corresponding hypothesis space will expand, making it
possible to learn the best approximation.

4.3 Ensemble classifiers with a combined feature
extraction method have the best performance

According to the above results, we know that when
the classifier is traditional, the ensemble extraction method
is better than a single method, and ensemble classifiers are
better than traditional classifiers when a single feature ex-
traction method is used. Therefore, in this section, we dis-
cuss the performance, which used ensemble classifiers and
ensemble extraction methods.

In this section, we created a histogram accord-
ing to the RF, VOTE and traditional classifiers results, as
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Table 3. The results of using ensemble classifiers with

Table 6. The results of using ensemble feature extraction

combined feature extraction method. methods.

Method Classifier ACC F_measure MCC Method Classifier ACC F_measure MCC
188 + 400D RF 0.8366 0.8463 0.6786 188 + 400D NB 0.7492 0.7496 0.4984
188 + 400D VOTE  0.8269 0.8277 0.6538 188 + 400D LR 0.6440 0.6393 0.2881
188 + g-gap RF 0.8172 0.8296 0.6411 188 + 400D DT 0.7476 0.7383 0.4964
400 + g-gap RE 0.8269 0.8366 0.6585 188 + 400D PART 0.7864 0.7836 0.5730
400 + g-gap VOTE 0.7864 0.7871 0.5728 188 + 400D KNN 0.7136 0.6788 0.4376
188 + 400 + g-gap RF 08317  0.8448  0.6730 188 + g-gap LR 0.6197 0.6010  0.2405
188+400 + g-gap ~ VOTE  0.8285  0.8323  0.6576 188 + g-gap NB 0.5340 —0.6705  0.1214
188 + g-gap KNN 06327 04829  0.3256
188 + g-gap PART  0.7427 0.7381 0.4857
Table 4. The results of using ensemble classifiers with 188 + g-gap KLR 0.7654 0.7563 0.5322
combined feature extraction method after dimensionality 188 + g-gap DT 0.7621 0.7586 0.5245
reduction. 400 + g-gap NB 0.5858  0.6974  0.2541
. 400 + g-gap LR 0.6068 0.5714 0.2166

Method Classifier ACC F_measure MCC
400 + g-gap DT 0.7071 0.6917 0.4163
188 + 400D (reduced) RF 0.8285 0.8374  0.6610 400 + g-gap KLR 0.7184 0.6990 0.4406
188 + 400D (reduced) VOTE 0.8123 0.8135 0.6246 400 + g-gap KNN 0.6489 0.5373 0.3399
188 + g-gap (reduced) RF 08155 0.8262  0.6359 400 + g-gap PART 0.7104 0.7136 0.4208
188 + g-gap (reduced) VOTE 0.7961 0.7886  0.5937 188 + 400 + g-gap DT 0.7654 0.7619 0.5310
400 + g-gap (reduced) RF 08139 0.8250 0.6329 188 + 400 + g-gap LR 0.6036 0.5769 0.2088
400 + g-gap (reduced) VOTE 0.7913 0.7923  0.5826 188 + 400 + g-gap NB 0.6133  0.7131 0.3154
188 + 400 + g-gap (reduced) ~ RF  0.8333  0.8451  0.6745 188 +400 + g-gap PART 0.7945 0.7955 0.5890
188 + 400 + g-gap (reduced) VOTE 0.8220 0.8308  0.6475 188 +400 + g-gap KLR 0.7670 0.7592 0.5351
188 + 400 + g-gap KNN 0.6570 0.5583 0.3508

shown in Fig. 7 and Table 3. The selected traditional classi-
fier had the best performance among the six classifiers. Ac-
cording to Fig. 7, we found the ensemble classifiers were
better than traditional classifiers when we use combined
feature extraction methods. In this section, RF was bet-
ter than VOTE. This conclusion is the same as for Section
4.2.1. When we used MRMD, the effect was not improved.
The results are shown in Table 4.

Table 5. The results of using three feature extraction
methods.

Method  Classifier ACC F_measure MCC
188D DT 0.7605 0.7574 0.5212
188D NB 0.6634 0.5873 0.3517
188D LR 0.7443 0.7367 0.4895
188D KLR 0.7362 0.7279 0.4734
188D KNN 0.6957 0.6459 0.3955
188D PART 0.7492 0.7488 0.4984
400D LR 0.6019 0.5759 0.2054
400D NB 0.7249 0.7543 0.4633
400D DT 0.6667 0.6634 0.3334
400D KLR 0.6845 0.6620 0.3722
400D PART 0.6828 0.6689 0.3670
400D KNN 0.6796 0.6387 0.3688
g-gap DT 0.6812 0.6755 0.3627
g-gap LR 0.6424 0.6061 0.2898
g-gap NB 0.5259 0.6659 0.0949
g-gap KNN 0.5793 0.3467 0.2258
g-gap PART 0.7023 0.7070 0.4047
g-gap KLR 0.7023 0.6761 0.4099

According to performance, the ensemble method
is better than the single method. When the classifier is RF
and the feature extraction is 588D, the performance is the
best among all the methods. The second best ensemble
method was 1285D with RF. Therefore, we can use 588D
and RF to build the prediction model. All of the experimen-
tal results are shown in Appendix Table 6.

5. Conclusions

Diabetes is a common chronic disease. If diabetes
is not detected and treated in time, it can lead to serious
complications. In this study, we conducted research on di-
abetic protein markers. By classifying proteins, we can de-
termine whether there are diabetic protein markers in the
human body that can be used to better diagnose diabetes.

In this study, we proposed using ensemble meth-
ods to predict diabetes protein markers, including ensemble
feature extraction methods and ensemble classifiers. We
used three feature extraction methods and six traditional
classifiers. We combined three methods, obtaining four
combined methods. We used seven classifiers to form an
ensemble learning method. To validate the performance of
our ensemble classifier, we evaluated and compared it with
the traditional classifier using 10-fold cross validation.

According to the results, ensemble method is bet-
ter than single method. We compared the combined fea-
tures with existing features. The performance revealed that
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Table 7. The results of using MRMD.

Method Classifier ACC F_measure MCC
188 + 400D (reduced) NB 0.7573  0.7440  0.5173
188 + 400D (reduced) LR 0.6780  0.6700  0.3564
188 + 400D (reduced) KLR 0.7540 0.7556  0.5081
188 + 400D (reduced) PART 0.7751 0.7702  0.5506
188 + 400D (reduced) KNN 0.7136 0.6811  0.4363
188 + 400D (reduced) DT 0.7621  0.7648  0.5244
188 + g-gap (reduced) DT 0.7346  0.7320  0.4693
188 + g-gap (reduced) LR 0.7282  0.7143  0.4585
188 + g-gap (reduced) NB 0.6586  0.5772  0.3437
188 + g-gap (reduced) KNN  0.6926 0.6520  0.3960
188 + g-gap (reduced) PART 07249 07231  0.4499
188 + g-gap (reduced) KLR 0.7330  0.7236  0.4671
400 + g-gap (reduced) NB 0.5922  0.7000  0.2652
400 + g-gap (reduced) LR 0.6133  0.5770  0.2299
400 + g-gap (reduced) DT 0.7282  0.7191  0.4573
400 + g-gap (reduced) KLR 07152 0.6966 0.4337
400 + g-gap (reduced) KNN 06505 05365 0.3457
400 + g-gap (reduced) PART 0.7071  0.7076  0.4142
188 + 400 + g-gap (reduced) DT 0.7605 0.7613  0.5210
188 + 400 + g-gap (reduced) LR 0.6683  0.6623  0.3368
188 + 400 + g-gap (reduced) NB 0.7282  0.7742  0.4997
188 + 400 + g-gap (reduced) PART  0.7913  0.7875  0.5829
188 + 400 + g-gap (reduced) ~KLR  0.7443  0.7492  0.4890
188 + 400 + g-gap (reduced) KNN  0.7168 0.6858  0.4424

the combined feature extraction method was more effective.
Especially when the feature dimension is 588D and the clas-
sification method is random forest, the effect is best. There-
fore, 588D features and random forest can be used to con-
struct a model for predicting diabetes protein markers. Us-
ing machine learning methods can quickly predict protein
function. 188D divides amino acids into three groups and
studies the physical and chemical properties of each type
of amino acid. Since 400D does not consider the physic-
ochemical properties of amino acids, the combination of
188D and 400D extracts features based on the AA composi-
tion and physicochemical properties. Combining these two
feature extraction methods, protein sequences can be ana-
lyzed in terms of physical and chemical properties, amino
acid positions, amino acid fragments, etc. The ensemble
feature extraction methods can analyze the sequence com-
prehensively, and the ensemble machine learning method
can avoid many problems, e.g., poor generalization ability.
According to the results, the ensemble method, either the
combined feature extraction method or the ensemble clas-
sifier, was better than the single method. We anticipate that
ensemble methods will be a useful tool for identifying dia-
betic protein markers in a cost-effective manner.

In this study, we only made predictions for dia-
betes marker proteins. We can use the model to predict pro-
tein. Due to lack of relevant data, we are temporarily unable
to predict diabetes. Currently, the obtained diabetes marker
proteins are not used for diabetes prediction. Therefore, in
the next step of research, we will focus on using diabetes
marker proteins to predict diabetes, which is more valuable
in clinical applications.
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