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1. Versatile and stratified functionalities of
lncRNAs

Long noncoding RNAs (lncRNAs) are emerging
nucleic acid polymers that play key regulatory and struc-
tural roles in numerous cellular processes [1–3]. While
the true gamut of their impressive functional repertoire still
awaits full investigation, much is now known about some
of their diverse nuclear and cytoplasmic functions. In the
nucleus, lncRNAs can reshape chromosome architecture,
modulate chromatin interactions and remodeling, regulate
transcription initiation and elongation, etc. [4–10]. No-
tably, both the act of lncRNA biogenesis and the result-
ing transcripts can contribute to regulation [11, 12]. In-
terestingly, lncRNAs are also found to act as scaffolds to
nucleate the formation of dynamic ribonucleoprotein as-
semblies termed nuclear bodies [13–15]. Although most
lncRNAs are retained in the nucleus, some function in the
cytoplasm and even mitochondria to rheostat mRNA sta-
bility and translation, through direct interactions with mR-
NAs, microRNAs, RNA-binding proteins, and even ribo-
somes [16–18]. Even post-translational modification such
as phosphorylation can be controlled by lncRNAs by alter-
ing target protein interaction with kinases and phosphatases
[19, 20].

Despite these fascinating biological effects, there
exist significant barriers in the functional and mechanis-
tic elucidations of lncRNAs. First, frequent gene redun-
dancy in humans makes it difficult to assign function to
individual lncRNA genes based on single-gene manipula-
tions. This is exemplified by the case of Drosophila roX1
and roX2 genes and possibly also MALAT-1 (Metastasis
Associated Lung Adenocarcinoma Transcript 1) genes [21–

23]. Second, as lncRNA genes can function at various
points of regulation and in distinct forms, it can be difficult
to distinguish among the effects of the lncRNA transcripts
per se, protein products some lncRNAs are now known
to encode, and the act of their transcription and process-
ing [10, 24]. Third, the primary sequences of most lncR-
NAs are not well conserved, and many of them are lim-
ited to mammalian genomes [25, 26]. This hampers effec-
tive multiple sequence alignments which are used to extract
information about conserved regions and sequence motifs.
Finally, at the levels of secondary and tertiary structures,
many if not most lncRNAs exhibit limited sequence co-
variation that would support the presence of well-conserved
stem regions, which are hallmarks of conserved functional
structures found in known structured RNAs [25, 27, 28].
With the recent flourish and application of artificial intelli-
gence and neural networks in biology, there may be oppor-
tunities to apply these emerging technologies in the analy-
sis, classification, pattern search, and prediction of the sec-
ondary and tertiary structures of lncRNAs. If successful,
these approaches may also provide another route towards
establishing structure-function relationships.

2. Regulatory roles of lncRNAs in neural
development and pathology

The versatile and stratified functionalities of lncR-
NAs are especially pronounced in the central nervous sys-
tem (CNS), particularly in the brain. Many lncRNAs are
expressed to much higher levels in the brain and some con-
served lncRNAs appear to be brain-specific [29, 30]. These
findings are in line with the notion that gene expression
programs during CNS and brain development, compare to
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Fig. 1. A simplified view of regulatory lncRNA functions in neural development and pathology. (A) Multi-domain secondary structure of an
envisioned lncRNA, featuring numerous hairpin stem loops, single-stranded regions, multi-helix junctions, compact domains harboring tertiary folds,
long-range interactions such as pseudoknots, etc. (B) Diagram of neural development regulation by representative lncRNAs. Depicted are lncRNA-
regulated developmental phases of neural stem cell self-renewal (left), commitment to differentiation (middle), and synaptogenesis and synaptic plasticity
(right).

those of other tissues and organs, require more precise, so-
phisticated and coordinated control. However, as discussed
above, the mechanistic analyses of lncRNAs in various bi-
ological contexts have been challenging, due to their low
copy numbers, gene redundancy, general lack of significant
sequence conservation and co-variation, and a paucity of
structural information at secondary, tertiary and quaternary
levels (Fig. 1A) [27, 31–33]. Indeed, high-resolution struc-
tural and mechanistic analyses of noncoding RNAs much
smaller than most lncRNAs are already technically chal-
lenging, despite the recent resolution revolution brought
by single-particle cryo-EM analyses [34–38]. These defi-
ciencies have partially contributed to seemingly conflicting
findings and models for the proposed mechanisms of action
by some lncRNAs. Therefore, comparative meta-analyses
that compare and contrast multiple lines of evidence to syn-
thesize and derive general insights and trends are valuable,
at this early developmental stage of lncRNA biology.

One such analysis, by Oe et al. [39], starts with
the known roles of select lncRNAs in the course of neu-
ronal differentiation, from the self-renewal of the neuronal
stem cells, to commitment to cell fates, and to their func-
tional maturation (Fig. 1B). Indeed, a great number of
lncRNAs contribute to this initial phase of neural develop-
ment, includingMALAT1, TUNA (Tcl1 UpstreamNeuron-
Associated lincRNA), etc. [40, 41]. Once the neurons have
differentiated and their characters assigned, dendrites and
axons grow outward and make the first synapses to start

forming neural circuits, in a process known as synaptogen-
esis. LncRNAs such as MALAT1, FMR4 (fragile X mental
retardation 4) and BC1 (Brain cytoplasmic RNA 1) regu-
late synaptogenesis or synaptic plasticity [40, 42]. Synaptic
plasticity is the final phase of neural development in which
synaptic transmissions change strength or efficacy in re-
sponse to stimuli, and is essential for brain functions includ-
ing learning and memory. Interestingly, synaptic plasticity
is suggested to also modulate the expression of a large set of
lncRNAs, thus allowing for mutual regulation and potential
feedback control [43].

Logically, deregulation of lncRNA expression and
operation is linked to the onset and pathogenesis of a num-
ber of neurological diseases. Oe et al. [39], focuses on dis-
cussing known correlations between lncRNA deregulation
and primary neurological diseases including neurodegen-
erative diseases such as Alzheimer’s and Parkinson’s dis-
eases, and glioma, brain cancers of glial cells that surround
and support neurons. Interestingly, the proposed mechanis-
tic pathways connecting the implicated lncRNAs (e.g., HO-
TAIR, NEAT1, 51A) to the disease pathologies frequently
involved direct lncRNA interactions with microRNAs, reg-
ulation of target mRNA and protein stability, as well as epi-
genetic regulation such as alteration of DNA methylation.

While the analysis of Oe et al. [39], highlights
two decades of exciting progress at the crossroads between
lncRNA biology and neural development and pathology,
much remains to be affirmed and clarified, in order to trans-
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late such basic knowledge to reliable diagnostics, therapies
and clinical applications. What is also clear is that funda-
mental mechanistic analyses of lncRNAs at the molecular
and structural level are needed to deepen our understand-
ing of these newly adopted regulatory polymers, which fre-
quently exhibit novel and often surprising modes of opera-
tion and unusual patterns of conservation [32, 44].
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