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1. Abstract
Introduction: Cancer is a widespread phe-

nomenon occurring across multicellular organisms and rep-
resents a condition of atavism, wherein cells follow a path
of reverse evolution that unlocks a toolkit of ancient pre-
existing adaptations by disturbing hub genes of the human
gene network. This results to a primitive cellular pheno-
type which resembles a unicellular life form. Methods:
In the present study, we have employed bioinformatic ap-
proaches for the in-depth investigation of twelve atavistic
hub genes (ACTG1, CTNNA1, CTNND1, CTTN, DSP, ILK,
PKN2, PKP3, PLEC, RCC2, TLN1 and VASP), which ex-
hibit highly disrupted interactions in diverse types of cancer
and are associated with the formation of metastasis. To this
end, phylogenetic analyses were conducted towards unrav-
elling the evolutionary history of those hubs and tracing the

origin of cancer in the Tree of Life. Results: Based on our
results, most of those genes are of unicellular origin, and
some of them can be traced back to the emergence of cellu-
lar life itself (atavistic theory). Our findings indicate how
deep the evolutionary roots of cancer actually are, and may
be exploited in the clinical setting for the design of novel
therapeutic approaches and, particularly, in overcoming re-
sistance to antineoplastic treatment.

2. Introduction

Cancer’s origin dates back to the emergence of
multicellularity itself, about one billion years ago [1], since
cancer and cancel-like phenomena have been observed in
almost all species that exhibit either clonal or aggregative
multicellularity [2], indicating that spontaneous tumor for-
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mation has deep evolutionary roots [3]. Cancer is the result
of the breakdown of complex molecular and cellular mech-
anisms, which are necessary to enable multicellular coop-
eration by regulating cell growth, cell differentiation, cell
death and senescence, resulting in a more primitive cellular
phenotype that resembles a unicellular life form [4]. Each
one of the hallmarks of cancer [5] is a direct “violation” of
the principles of multicellular cooperation [2]. In point of
fact, the transition from unicellular to multicellular life was
only possible when cooperating cells acquired a selective
advantage over those who lived independently by inhibit-
ing their own growth and replication [6].

From an evolutionary perspective, cancer is sug-
gested to occur because early in the evolution of life, cells
were ‘designed’ so as to maximize their replication capac-
ity. However, cancer is actually uncommon because dur-
ing the emergence of multicellularity, natural selection at
the level of the individual led to the emergence of robust
mechanisms to suppress it [1]. Nevertheless, the paradox
of cancer is that cancer cells, which initially disrupt the
principles of multicellular cooperation, end up implement-
ing those same principles [7, 8], especially in neoplasms
of advanced stages [2]; as a consequence, tumors resem-
ble more of an ecosystem than a simple aggregate of cells
[1] or a rather “pseudomulticellular neotissue” [9]. Cancer
cells represent a lower level of organization of life, simi-
lar to our Cambrian ancestors, and as such are capable of
transitioning from multicellularity to unicellularity, but can
never adapt the phenotype of complex multicellularity [10].

Although healthy cells, of both unicellular and
multicellular origin, exhibit a finely tuned coordination of
expression of biological processes during carcinogenesis,
this coordination is markedly disrupted, resulting in a char-
acteristic up-regulation of genes of unicellular origin, de-
tected in various human cancer types where cancer cells
maintain control over cell cycle activity [11], as well as
significant inactivation of genes which are associated with
multicellularity and, therefore, have evolved more recently
[4]. This phenomenon of enhanced segregation of cellular
processes with different evolutionary ages is called “mutual
exclusivity” and is common among tumors, and is of partic-
ular importance for tumor development [4] and, ultimately,
cancer progression.

For mutual exclusivity events to occur, certain
fundamental alterations to the gene network need to take
place. The human gene network consists of two main sub-
networks comprised of genes of unicellular and multicel-
lular origin, respectively. The “multicellular” network has
been progressively built upon the “unicellular” one during
billions of years of evolution, which led to the formation
of an intricate network [12, 13], dedicated to maintain the
complex phenotypes and cooperative growth required for
multicellularity [4]. Those subnetworks are interconnected
in the human gene network through “hub” genes that ap-
peared during the early metazoan life in order to enhance in-

tercellular cooperation [14], and more precisely at the evo-
lutionary boundary between unicellularity and multicellu-
larity; as a result, they reflect key points in the evolutionary
transition from unicellular to multicellular life [15]. Those
genes represent “points of vulnerability”, since mutual ex-
clusivity occurs particularly due to the alteration of their in-
teractions [4]. Hence, only a limited amount of driver muta-
tions is thought to be responsible for the transition of a nor-
mal cell to a malignant state [16–18], indicating that muta-
tions in these hub genes result in widespread dysregulation
of the gene network and are sufficient to initiate carcinogen-
esis, partially, through a process of de-differentiation [19].
Particularly, since the “unicellular” subnetwork is denser
and exhibits a higher inside/outside interaction ratio com-
pared to the “multicellular” subnetwork, the former acts as
an attractor that renders the cells of multicellular organisms
vulnerable to carcinogenesis (principles of atavistic model
for cancer evolution) [20].

The phenotype exhibited by cancer cells resem-
bles that of a unicellular form of life because it is achieved
through a process of de-differentiation, also referred to as
“reverse evolution” [21]. Through a series of consecutive
reversionary transitions, cancer progression follows a sim-
ilar pattern, but in reverse, that is, to the gradual transition
from unicellularity to multicellularity [22]. Particularly, the
emergence of common characteristics among cancer cells,
regardless of the tissue they originated from, indicates that
the occurrence and progression of cancer may be a con-
trolled transition from a complex multicellular phenotype
to a primitive unicellular one [15]. Through a small num-
ber of mutations in hub genes, mutual exclusivity events
occur, and cancer cells activate pre-existing ancestral genes
and pathways which render cancer cells remarkably robust.
Besides, themechanisms and genes involved in carcinogen-
esis aremainly evolutionarily ancient and highly conserved,
mostly because they play a crucial role in vital cellular func-
tions of a healthy cell [23].

Therefore, according to the “atavistic model” of
cancer, cancer represents an atavism at the cellular level
and cancer cells are not just “rogue” cells that were gen-
erated through a series of random mutations, but rather an
ancient form of life that lies dormant within healthy meta-
zoan cells [24]. In other words, cancer cells do not construct
a gene network ab intitio and acquire traits through random
mutations and a few decades of internal Darwinian selec-
tion within the host’s body, but strategically take advantage
of certain components of the existing gene networks [24].
Characteristic examples include the healthy cells’ ability to
multiply rapidly and migrate during wound healing [25],
traits that at the same time render cells vulnerable to cancer
[26]. The same applies to rapid angiogenesis, which is nec-
essary in wound healing to supply new cells with oxygen
and nutrients [25], but also a hallmark of cancer [27], with
cancer cells even utilizing the same angiogenic signaling
pathways as the ones used by the healthy cells of a multicel-



281

lular organism to develop the vascular system [28]. Another
example is the behavior of cells in the early developmental
stages, such as the invasion of cells into adjacent develop-
ing tissues during gastrulation and the ability of some cells
to transform from immotile epithelial cells into motile mes-
enchymal cells, a process termed “epithelial-mesenchymal
transition” (EMT). If cells do not possess the necessary
capabilities to perform these functions, growth cannot be
achieved; however, these same cell capabilities enable can-
cer cells to metastasize [26].

The pathways of cell differentiation are initially
identical to all organisms and then branch off in different
taxonomic divisions [29]. Accordingly, tracing the origin
of emergence and evolutionary history of certain genes can
be important, especially for the most ancient genes that play
a crucial role in cancer progression compared to the more
recently evolved ones, since the effects of inactivating the
former tend to be more pronounced as they are more likely
to lead to cell death [24].

In the present study, we investigated certain genes
which have previously been proven to exhibit a highly dis-
rupted number of interactions across multiple tumor types
and contribute to the phenomenon of mutual exclusivity
[4]. More precisely, Trigos and colleagues [4] studied a
pair of cellular processes, that is, chromosome organiza-
tion and cellular junction organization. The co-expression
of genes involved in those processes is highly important for
the eukaryotic cells of a multicellular organism and the co-
expression of those genes was strongly disrupted in tumors.
Both of these processes involve genes of both unicellular
and multicellular origin, and the dramatic change in the co-
expression of those genes suggests that mutual exclusivity
between these processes occurs during carcinogenesis and
is actually advantageous to the development of different
cancer stages such as early cancer, late cancer, and metas-
tasis. A set of twelve atavistic genes, which represent the
“hubs” between the unicellular and multicellular processes
was identified: RCC1, TLN1, VASP,ACTG1, PLEC,CTTN,
DSP, ILK, PKN2, CTNNA1, CTNND1 and PKP3. Those
genes act as regulators of co-expression of the genes in-
volved in the two aforementioned processes and their hub-
ness was dramatically changed in seven different solid tu-
mor types. Therefore, due to their central role in the human
gene network, those genes represent fundamental points
of vulnerability particularly regarding the phenomenon of
mutual exclusivity and, consequently, carcinogenesis. To
these data is added the fact that these 12 genes interact with
genes associated with genomic instability, as well as genes
associated with poor prognosis for cancer progression and
metastasis [30]. Moreover, these 12 genes play a critical
role in regulatory networks associated with genomic insta-
bility and metastasis and are generally involved in key pro-
cesses of carcinogenesis [4]. Therefore, these genes can be
considered as pan-cancer molecular markers or regulators
of malignancy in diverse cancer tumors [4].

To this end, we have employed a bioinformatics
approach to explore the involvement of those genes in vari-
ous cancer types and performed phylostratigraphic analyses
[14, 31], in an effort to elucidate the evolutionary trajectory
of these genes aiming towards tracing the origin of cancer
in the Tree of Life.

3. Materials and methods

3.1 Sequence database searching

In this study, we followed the evolutionary lin-
eage of the contemporary human species since the or-
ganisms or taxonomic divisions under investigation rep-
resent important links of human evolution: Homo sapi-
ens (human), Pan troglodytes (chimpanzee), Macaca mu-
latta (Rhesus monkey), Callithrix jacchus (marmoset),
Mus musculus (mouse), Rattus norvegicus (rat), Canis lu-
pus familiaris (dog), Equus caballus (horse), Sus scrofa
(pig), Bos taurus (cattle), Tursiops truncatus (dolphin),
Pteropus vampyrus (bat), Monodelphis domestica (opos-
sum), Ornythorhynchus anatinus (platypus), Gallus gal-
lus (chicken), Xenopus laevis (frog), Latimeria chalumnae
(coelacanth), Danio rerio (zebrafish), Callorhinchus milii
(shark), Petromyzon marinus (lamprey), Ciona intestinalis
(vase tunicate), Strongylocentrotus purpuratus (sea urchin),
Amphimedon queenslandica (sponge), Monosiga brevicol-
lis (choanoflagellate), Saccharomyces cerevisiae (baker’s
yeast), Schizosaccharomyces pombe (fission yeast), Acti-
nobacteria, Chlamydiae, Cyanobacteria, Proteobacteria,
Firmicutes, Bacteroidetes, Archaea.

The official names of the genes were initially re-
trieved from the HGNC database [32, 33] and then the ac-
cession numbers of the peptide sequences corresponding to
the human genes were retrieved from the publicly available
non-redundant NCBI Reference Sequence Database (Ref-
Seq) [34]. The amino acid sequences were used subse-
quently as probes in an extensive series of BLASTp [35]
reciprocal searches in order to obtain the canonical homol-
ogous amino acid sequences corresponding to the species
included in this study. This process was reiterated until no
novel sequences could be detected, ensuring that a full rep-
resentation of each gene’s family is obtained.

3.2 Alignment and phylogenetic analysis

To investigate the evolutionary history of each
gene, we conducted comprehensive phylogenetic analysis
using the entire length protein sequences of the species
under study. The full-length amino acid sequences were
aligned with MAFFT v.7 (https://mafft.cbrc.jp/alignmen
t/server/) [36]. The alignments were subsequently used
to reconstruct phylogenetic trees by employing two sepa-
rate methods, Maximum Likelihood, a method based on a
heuristic approach for finding the optimal tree that fits the
observed data, and Neighbor Joining, a method based on
a hierarchical clustering algorithm [37], as implemented in
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the software package MEGA (https://www.megasoftware
.net/), version 10 [38]. Furthermore, MEGA v.10 [38] was
used to estimate the best-fit substitution model, which best
describes the number of observed amino acid substitutions
per position. For both methods of phylogenetic tree recon-
struction, bootstrap analyses (150 pseudo-replicates) were
conducted in order to evaluate the robustness and the sta-
tistical significance of the inferred reconstructed trees. Fi-
nally, the phylogenetic trees were visualized with MEGA
v.10 [38].

3.3 Pathways identification

The pathways and biological processes in which
each gene is involved were retrieved from the Reactome
Pathway database [39], the KEGG Pathways database [40,
41] and the biomedical literature.

3.4 Differential gene expression analysis

RNA sequencing data for tumor and correspond-
ing normal tissue samples from the TCGA (The Cancer
Genome Atlas) and GTEx (Genotype-Tissue Expression)
databases, respectively, were retrieved from the GEPIA2
website (http://gepia2.cancer-pku.cn/). The atavistic genes
that are differentially expressed (DE) between tumor and
normal samples were identified using ANOVA; threshold
value for absolute log fold change | log2FC| ≥2 and FDR-
adjusted p-value (or q-value) ≤0.05.
3.5 Functional network of hubs

The twelve hub genes were provided as input to
the STRING (version 11.0) (https://string-db.org/) database
[42] of investigating and visualizing both known and pre-
dicted gene/protein associations.

4. Results

4.1 Atavistic genes’ association with cancer

By conducting a thorough and comprehensive re-
view of studies published in PubMed (https://pubmed.ncbi.
nlm.nih.gov/) and The Human Protein Atlas [43], we found
those cancers each of the 12 genes is involved in; even dif-
ferent types of cancers that can affect the same organ (Ta-
ble 1, Ref. [43–237]). In this context, certain genes have
been shown to exhibit either oncogenic or tumor suppres-
sive effects. In fact, both qualitative and quantitative mod-
ifications were identified in the genes under study which
are associated with the development and progression of dif-
ferent cancers in different tissues. In particular, the types
of alterations observed in those genes and/or their protein
products, include aberrant, increased or decreased, expres-
sion (Table 2), epigenetic modifications, mutations, gene
inactivation or amplification, copy number alterations, al-
tered protein interactions and post-translational modifica-
tions, characteristic protein subcellular localization. Fur-
thermore, these genes constitute diagnostic and prognostic

biomarkers in cancer, regarding malignancy, disease stage,
clinical subtypes, disease progression, metastasis, clinical
outcome and survival and prediction of patients’ response
to therapeutic treatments. In addition, each gene and/or its
products constitute drug targets or are considered as novel
potential drug targets for at least one type of cancer.

The critical role of these genes and their corre-
sponding products in carcinogenesis is highlighted by the
fact that they are all involved in cancer-relevant pathways
and processes, usually more than one (Table 3). More
specifically, the identified cancer signaling pathways in-
clude theWnt pathway (RCC2,DSP,CTNND1), theMAPK
pathway (TLN1, CTTN, PKP3), the VEGF pathway (TLN1,
CTNNA1, CTNND1), the PI3K-Akt pathway (VASP, ILK,
PKN2), the Hippo pathway (ACTG1, CTNNA1), the PPAR
pathway (ILK) and the Rap1 pathway (VASP, CTNND1,
ACTG1, TLN1). Moreover, particularly vital processes
of the cell, which also play a role in carcinogenesis,
are eukaryotic cell cycle regulation and mitosis (RCC2,
ILK,CTNNA1, CTNND1), apoptosis (ACTG1, PLEC,DSP,
CTTN,CTNND1), immune system processes (TLN1, VASP,
ACTG1, DSP, PKP3) and interaction with proteoglycans in
cancer (ACTG1, CTTN). Finally, the proteins that consti-
tute the adherens junctions (ACTG1, CTNNA1, CTNND1)
and contribute to focal adhesions (VASP, TLN1, ACTG1)
play a critical role especially in metastasis.

Of note, based on the STRING database anal-
ysis, the most significantly enriched pathway of the 12
gene/proteins is ‘cell junction assembly’ (GO: 0034329;
FDR = 4.10 × 10−15). In this network (Fig. 1), ten hub
genes/gene products appear to interact either physically or
functionally in the process of cell juction organization, hav-
ing an integral role in EMTwhich is essential in cancer pro-
gression and metastasis [238].

Therefore, the importance of the examined genes
is enhanced by their involvement in pathways related to car-
cinogenesis and the progression of the disease in various
types of cancer.
4.2 Phylogenetic analysis

In terms of overall topology, there is congruence
between the phylogenetic trees that were generated with
both methods. The trees constructed with the maximum
likelihood method are considered more accurate and reli-
able and they display higher bootstrap values (Figs. 2,3,4,
5,6,7,8,9,10,11,12). These high bootstrap values indicate
that the tree nodes are statistically significant and the in-
ferred topology is biologically significant. The trees gener-
ated with the neighbor-joining method can be found at the
Supplementary material.
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283Table 1. Atavistic hub genes’ association with diverse types of cancers.

Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

RCC2

Gene’s expression is regulated by p53, thus it plays an important role in metastasis [44]
It regulates apoptosis by blocking RAC1 signaling. The gene’s expression levels in tumor cells are used to predict response to chemotherapy. [45]
Brain and nervous system Glioblastoma + [46]
Breast Breast Cancer + Wnt pathway [47]

Gastrointestinal

Gastric Cancer Aberrant expression [48]
Colorectal Cancer + [49]
Hepatic Cancer + [43]
Pancreatic Cancer [50]

Genitourinary and gynecologic

Epithelial Ovarian Carcinoma + + [51]
Ovarian Cancer + RalA pathway [52]
Renal Cancer + [43]
Cervical Cancer + [43]

Skin Melanoma + [43]
Thoracic and respiratory Lung Adenocarcinoma + Increased expression [53]

TLN1

Bone and muscle sarcoma
Malignant Fibrous Histiocytoma (MFH)

Mutations [54]Fibrosarcoma (FS)
Ewing Sarcoma Family of Tumors (EFT)

Brain and nervous system Glioblastoma + [55]
Breast Triple-negative Breast Cancer + [56]
Endocrine system Thyroid Cancer + Increased expression [57]

Gastrointestinal Hepatocellular Carcinoma + +
Decreased expression

[58, 59]ERK1/2 pathway
Colorectal Cancer + [43]

Genitourinary and gynecologic
Prostate Cancer + + Increased expression [60, 61]
Renal Cancer + [43]
Ovarian Cancer Increased expression [62]

Head and neck
Nasopharyngeal Carcinoma + Increased expression [63]
Oral Squamous Cell Carcinoma + + Increased expression [64]

Hematopoietic Chronic Myeloid Leukemia Increased expression [65]

VASP

Bone and muscle sarcoma Osteosarcoma + [66]
Breast Breast Cancer + [67]

Gastrointestinal
Hepatocellular Carcinoma + + Increased expression [43, 68]
Colorectal Cancer + + [69]
Gastric (stomach) Cancer + PI3/AKT pathway [70]

Genitourinary and gynecologic Renal Cell Carcinoma + + Post-translational modifications
(phosphorylation)

[43, 71]

Hematopoietic Chronic Myeloid Leukemia +
Aberrant expression

[72]Protein interactions
Post-translational modifications
(phosphorylation)

Skin Melanoma + [73]
Thoracic and respiratory Lung Adenocarcinoma + Increased expression [74]
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Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

ACTG1

Bone and muscle sarcoma Osteosarcoma + + Increased expression [75]
Breast Breast Cancer Increased expression [76]

Gastrointestinal
Alcohol related Hepatocellular Carcinoma + Increased expression [77, 78]
Colorectal Cancer + + [43, 79]

Genitourinary and gynecologic
Renal Cancer + [43]
Cervical Cancer + Epigenetic modification (methyla-

tion)
[80]

Hematopoietic Acute Lymphoblastic Leukemia (children) + SNPs [81]

Skin Skin Cancer + +
Increased expression

[82]ROCK Pathway
Thoracic and respiratory Non-small Cell Lung Cancer + + [83]

PLEC

Gastrointestinal
Hepatocellular Carcinoma + + Decreased expression [84]
Colon Cancer + [85]
Pancreatic Ductal Adenocarcinoma + + [86]

Genitourinary and gynecologic
Renal Cancer + [43]
Testicular Germ Cell Tumors + [87]

Head and neck
Paranasal sinus carcinoma Increased expression [88]
Oral Squamous Cell Carcinoma + Decreased expression [89]

Skin Melanoma + Copy number alterations [90]
Thoracic and respiratory Lung Cancer + [43]

CTTN

CTTN is a well-established oncogene, associated with advanced disease stage and poor prognosis. [91]
Bone and muscle sarcoma Osteosarcoma + Increased expression [92]

Brain and nervous system
Glioma Increased expression [93]
Glioblastoma + [94]

Breast Breast Cancer Post-translational modification
(phosphorylation)

[95]

Endocrine system Thyroid Cancer + +
Increased expression

[96]Protein interactions

Gastrointestinal

Gastric Cancer + SNP [97]

Hepatocellular Carcinoma + +
Increased expression

[98, 99]Protein interactions

Colorectal Cancer +
Increased expression

[100, 101]EGFR-MAPK pathway

Genitourinary and gynecologic

Bladder Cancer + [102]
Ovarian Epithelial Cancer + Increased expression [103]
Prostate Cancer + Increased expression [104]
Renal Clear Cell Carcinoma + [105]

Head and neck

Head and Neck Squamous Cell Carcinomas + + [91, 106]
Esophageal Squamous Cell Carcinoma + + + Increased expression [107, 108]

Oral Squamous Cell Carcinoma + + +
Gene amplification

[109, 110]Increased expression

Pharyngolaryngeal Squamous Cell Carcinomas + +
Gene amplification

[106]Increased expression

Oropharynx Squamous Cell Carcinoma +
Gene amplification

[91]Increased expression
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Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

Laryngeal Cancer + [111, 112]
Hematopoietic B-cell Acute Lymphoblastic Leukemia + + Increased expression [113]

Skin
Melanoma + Ubiquitination [114]
Cutaneous Squamous Cell Carcinoma + Post-translational modification

(phosphorylation)
[115]

Thoracic and respiratory Non-small Cell Lung Cancer + Increased expression [116]

DSP

Breast Breast Cancer + Decreased expression [117]

Gastrointestinal

Colorectal Cancer + + [118]

Gastric Cancer
Decreased expression

[119]
Wnt/β-catenin pathway

Hepatocellular Carcinoma + Decreased expression [120]

Genitourinary and gynecologic

Ovarian Cancer + +
Increased expression

[121]
Immune response

High-grade Serous Ovarian Cancer + Characteristic expression profile [122]
Renal Cancer + [43]
Urothelial Cancer + [43]

Head and neck
Oral Squamous Cell Carcinoma + Decreased expression [123]

Oropharyngeal Squamous Cell Carcinomas + +
Decreased expression

[124]
Isomorph

Skin Melanoma + + Immune response [121]

Thoracic and respiratory

Lung Adenocarcinoma Characteristic expression profiles
[125]Lung Squamous Cell Carcinoma

Characteristic subcellular localization
Adenosquamous Carcinoma

Non-small Cell Lung Cancer +
Decreased expression due to epige-
netic modification (methylation)

[126]

Wnt/β-catenin pathway

ILK

Increased expression is associated with an aggressive phenotype and metastasis in many types of cancer. [127]

Brain and nervous system
Neuroblastoma + LIMS1/ILK pathway [128]
Glioblastoma + + ILKAP pathway [129]

Breast Breast Cancer + + +
Increased expression

[130–132]Twist-ITGB1-FAK/ILK pathway
PI3K/Akt pathway

Endocrine system Thyroid Cancer + + Aberrant expression [133]

Gastrointestinal

Colorectal Cancer + + Increased expression [134]
Pancreatic Ductal Adenocarcinoma + + Increased expression [135]

Hepatocellular Carcinoma
Increased expression

[136]
Akt activation

Gallbladder Squamous Cell Carcinoma
+ + + Increased expression [137]Adenosquamous Gallbladder Carcinomas

Gallbladder Adenocarcinoma
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Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

Pancreatic Cancer + + + KRAS-ILK regulatory feedback
loop

[138]

Gastric Cancer + + Increased expression [139]

Genitourinary and gynecologic

Ovarian Epithelial Cancer + + Increased expression [140, 141]
Bladder Cancer + + + ILK/PI3K/Akt pathway [142]
Renal Clear Cell Carcinoma + + [43, 143]
Prostate Cancer + Cell cycle regulation [144]

Head and neck
Salivary Adenoid Cystic Carcinoma + + Increased expression [145]
Laryngeal Squamous Cell Carcinoma + + + Increased expression [146]
Esophageal Squamous Cell Carcinoma + Increased expression [147]

Hematopoietic
Chronic Myeloid Leukemia

+ [148]
Acute Myeloid Leukemia

Skin Melanoma Impaired post-translational modifi-
cation (phosphorylation)

[149]

Thoracic and respiratory Non-small Cell Lung Cancer + + [150]

PKN2

Breast Triple-negative Breast Cancer + + Increased expression TS [151, 152]

Head and Neck Oral Squamous Cell Carcinoma (smokers) + +
Increased expression

[153]
Post-translational modification (hy-
perphosphorylation)

Gastrointestinal Colon Cancer + +
Decreased expression

TS [43, 154]
DUSP6-Erk1/2 pathway

Genitourinary and gynecologic
Prostate Cancer + Increased expression [155, 156]
Bladder Cancer + Increased expression [155]

CTNNA1

CTNNA1 is generally considered as a tumor suppressor
Brain and nervous system Glioblastoma Increased expression [157]

Breast
Luminal Breast Cancer Increased expression [158]
Triple-negative Breast Cancer (basal-like) NF-kB pathway TS [159]
Lobular Type Breast Carcinoma + Aberrant expression [160]

Endocrine system Differentiated Thyroid Carcinoma + + Decreased expression [161]

Gastrointestinal

Colorectal Cancer + +
Pseudogene CTNNAP1

[162–164]Aberrant expression
Cell cycle regulation

Gastric Cancer +
Deleterious variants

[165]
Mutations

Pancreatic Ductal Adenocarcinoma + +

Inactivation

[166–168]
Aberrant expression
Decreased expression
Impaired epigenetic modification
(methylation)

Hepatocellular Carcinoma + Decreased expression [169]
Cholangiocarcinoma + Decreased expression [170]
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Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

Genitourinary and gynecologic

Bladder Cancer + Protein interactions [171]
Ovarian Cancer + Epigenetic modification (methyla-

tion)
[172]

Renal Cell Carcinoma Decreased expression [43, 173]

Prostate Cancer +
Inactivation

[174]
Protein interactions

Head and neck
Oral Squamous Cell Carcinoma +

Decrease protein levels
[175]

Characteristic subcellular localiza-
tion

Esophageal Cancer + Decreased expression [176]

Hematopoietic
Myelodysplastic Syndromes

+
Chromosome 5q deletion

[177]Decreased expression
Acute Myeloid Leukemia Epigenetic modifications (methyla-

tion and histone deacetylation of the
promoter)

Immune system Thymoma + Characteristic expression profile [178]

Skin Melanoma +
Decreased expression

[179]
Inactivation

Thoracic and respiratory Non-small Cell Lung Cancer + Decreased expression [180–182]

CTNND1

In fact, p120 catenin appears to have both pro-oncogenic and anti-oncogenic effects, depending on the localization and the specific function of p120 catenin in each cell compartment. [183]

Loss, downregulation or mislocalization of p120 catenin is observed in most human cancers. [184]

Bone and muscle sarcoma
Osteosarcoma + Increased expression [185]
Synovial Sarcoma [186]

Brain and nervous system
Astrocytoma + Abnormal post-translational modi-

fication (hyperphosphorylation)
[187]

Glioblastoma + + Increased expression [188]
Neuroblastoma Protein interactions [189]

Breast

Breast Cancer + +

Increased expression

[190, 191]
Wnt/β-catenin pathway
Isomorphs (basal-like and luminal
subtypes)
Characteristic subcellular localiza-
tion

Breast Invasive Lobular Carcinoma +
Decreased expression

[191, 192]Characteristic subcellular localiza-
tion
ROCK1 pathway
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Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

Endocrine-resistant Breast Cancer +
Decreased expression

[193]Characteristic subcellular localiza-
tion

Triple-negative Breast Cancer (basal like) +
Decreased expression

[191, 193]Characteristic subcellular localiza-
tion

Gastrointestinal

Colorectal Cancer + + +
Increased expression

[194–196]Decreased expression

Gastric Cancer + +
Increased expression

[197–199]Characteristic subcellular localiza-
tion

Hepatocellular Carcinoma
Increased expression O

[200, 201]Decreased expression
Wnt/β-catenin pathway TS

Pancreatic Ductal Adenocarcinoma + + +
Decreased expression

TS [202–204]Characteristic subcellular localiza-
tion
RAC1 pathway

Solid Pseudopapillary Tumors of the Pancreas + Decreased expression [203, 205]
Characteristic subcellular localiza-
tion

Genitourinary and gynecologic

Bladder Cancer +
Decreased expression

[206]Characteristic subcellular localiza-
tion

Cervical Cancer + Aberrant expression [207]
Endometrial Cancer Decreased expression [208]
Prostatic Adenocarcinoma + + Decreased expression [209]
Renal Cancer + + + Isophorm Increased expression [43, 210]

Ovarian Cancer +
Characteristic subcellular localiza-
tion

[211]

RAC1 pathway

Head and neck
Head and Neck Squamous Cell Carcinomas + Decreased expression [212]

Esophageal Squamous Cell Carcinoma +
Decreased expression

TS [213]Characteristic subcellular localiza-
tion

Hematopoietic Acute Lymphoblastic Leukemia + Increased expression [214]

Skin
Skin Squamous Cell Carcinoma

Decreased expression
[215, 216]Characteristic subcellular localiza-

tion
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Organ system
Types of
cancer

Metastasis Biomarker Drug target
Type of
alteration

Oncogenic (O) or tumor
suppression (TS) effect

Reference

Melanoma
Aberrant expression

[179]Characteristic subcellular localiza-
tion

Thoracic and respiratory

Lung Cancer +
Increased expression

O [217]Characteristic subcellular localiza-
tion

Lung Adenocarcinoma
+ Decreased expression [218]Lung Squamous Cell Carcinoma

Non-small Cell Lung Cancer Decreased expression [219]

PKP3

Downregulation of PKP3 leads to tumor formation, a decrease in cell adhesion, promotion of EMT and metastasis [220–222]
Breast Breast Cancer + Increased expression [223]

Gastrointestinal
Gastric Adenocarcinoma

Decreased expression
[224]Inactivation

Gastrointestinal Cancer + + Increased expression [225]
Pancreatic Cancer + [43]

Genitourinary and gynecologic

Ovarian Cancer + + +
Increased expression

O [121, 226, 227]MAPK-JNK-ERK1/2-mTOR path-
way
Immune response

Bladder Cancer +
Increased expression

[228]Characteristic subcellular localiza-
tion

Prostatic Adenocarcinoma +
Increased expression

[229, 230]Decreased expression
Protein interactions

Renal Cancer + [43]
Uterine Carcinosarcoma + Epigenetic modification (methyla-

tion)
[231]

Head and neck Oropharynx Squamous Cell Carcinoma + +
Decreased expression

[232]Inactivation
Nasopharyngeal Carcinoma + Decreased expression (DNP car-

cinogen factor)
[233]

Skin Melanoma + + + Immune response [121, 234]

Thoracic and respiratory
Lung Adenocarcinoma + + Increased expression [235]
Mesothelioma + Increased expression [236]
Non-small Cell Lung Cancer + Aberrant expression [237]
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Table 2. The differential expression (DE) status of atavistic genes in diverse TCGA cancers.
Gene Cancer type DE

ACTG1 DLBC, THYM Up
CTNNA1 PAAD, THYM Up
CTTN THYM, DLBC Up
CTTN OV, LAML, UCS Down
DSP CESC, COAD, LUAD, LUSC, OV, THYM, TGCT, UCEC,UCS, READ Up
DSP SKCM Down
ILK UCEC, UCS Down
PKP3 UCS, LUSC, OV, THYM, STAD, UCEC, PAAD, READ, CESC, COAD Up
PKP3 SKCM, LAML Down
PLEC PAAD Up
RCC1 GBM, THYM, DLBC Up
TLN1 READ Down
VASP GBM, PAAD Up

Up, up-regulation; Down, down-regulation.

Fig. 1. STRING network depicting the associations (connecting lines)
of the hub genes/gene products (nodes) under investigation in the cell
junction assembly.

The ILK, CTNNA1, CTNND1 and PKP3 genes are
detected exclusively in multicellular Animals as shown in
the phylogenetic trees in Figs. 2,3,4, respectively. There-
fore, those genes most likely first appeared in a eukaryotic
multicellular organism which was the common ancestor of
Metazoa.

Catenins A (CTNNA) and catenins D (CTNND) are
members of the catenin superfamily (Fig. 3). CTNNA1,
CTNNA2, CTNNA3, CTNND1, CTNND2 genes are par-
alogs which probably occurred through a series of gene du-
plication events. The corresponding orthologous proteins
of each gene form distinct clades, and as a result the phylo-
genetic tree is divided into twomajor subtrees, comprised of
protein sequences encoded by CTNNA and CTNND genes,
respectively. The subtree of CTNNA includes the protein

sequences encoded by CTNNA1, CTNNA2 and CTNNA3.
CTNNA2 appears to be the primordial gene as it was first de-
tected in Amphimedon queenslandica, thus it probably first
emerged in an ancestor of Porifera after their divergence
from Choanoflagellates, since an ortholog was not found
in Monosiga brevicollis. On the other hand, CTNNA1 and
CTNNA3 were detected for the first time in Callorhinchus
milli, and thus, they appeared later in evolution and prob-
ably occurred due to duplication events of the CTNNA2
gene, as they most likely first appeared in an ancestor of
Chondrichthyes after their divergence fromTunicates, since
orthologs were not detected in Ciona intestinalis and in
fact they demonstrate high similarity to each other. The
subtree of catenins D includes the protein sequences en-
coded by CTNND1 and CTNND2. CTNND2 is apparently
the primordial gene as it was first detected in Amphimedon
queenslandica, and thus it probably first arose in an ances-
tor of Porifera after their divergence from Choanoflagel-
lates, since an ortholog was not detected in Monosiga bre-
vicollis. On the other hand, CTNND1 appeared later in evo-
lution and probably occurred due to CTNND2 gene dupli-
cation, as it was detected for the first time in Ciona intesti-
nalis. Therefore, CTNND1 might have arisen in an ances-
tor of Tunicates after their divergence from Echinodermata,
given thatCTNND1 orthologs were not detected in Strongy-
locentrotus purpuratus.

The PKP1, PKP2, PKP3, PKP4 genes are likely
paralogs (Fig. 4) which probably occurred through a series
of gene duplication events of an ancestral PKP gene. The
corresponding orthologs of each gene form distinct clades.
All PKP genes were detected for the first time in Cal-
lorhinchus milli, suggesting that they probably appeared in
an ancestor of Chondrichthyes after their divergence from
Tunicates, since PKP orthologs were not detected in Ciona
intestinalis. Based on the inferred phylogenetic tree, how-
ever, PKP1 and PKP2 exhibit the highest similarity, fol-
lowed by PKP3. We could speculate that PKP4 is the pri-
mordial gene of this family, since it is basal to PKP1, PKP2
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Table 3. Atavistic genes’ association with pathways and processes related to cancer.
RCC2 TLN1 VASP ACTG1 PLEC CTTN DSP ILK PKN2 CTNNA1 CTNND1 PKP3

Wnt + + +

MAPK + + +

VEGF + + +

PI3K-Akt + + +

Hippo + +

PPAR +

Rap1 + + + +

Cell cycle regulation and mitosis + + + +

Apoptosis + + + + +

Immune system processes + + + + +

Interaction with proteoglycans in cancer + +

Adherence junctions + + +

Focal adhesion + + +

and PKP3. PKP3 appeared later in evolution, probably
due to PKP4 gene duplication, while PKP1 and PKP2 have
emerged even more recently through another series of du-
plication events in a chondrichthyan PKP1/2 gene and have
not accumulated a large number of mutations.

The VASP, CTTN andDSP genes are detected dur-
ing the relatively late transition phase from unicellularity to
multicellularity, based on the inferred phylogeny shown in
Figs. 5,6,7, respectively.

VASP and Enah/Vasp-Like are likely paralogs
(Fig. 5). In Monosiga brevicollis, Strongylocentrotus pur-
puratus, Ciona intestinalis and Callorhinchus milli the cor-
responding detected genes were annotated as VASP-like in
RefSeq, but display high similarity to the VASP genes of the
rest of Metazoa.

The PLEC and TLN1 genes were detected in uni-
cellular and multicellular organisms, as shown in Figs. 8,9,
respectively, and they probably first appeared in a eukary-
otic unicellular organism that was the common ancestor of
Animalia and Fungi.

PLEC homologs were found in Animalia as well
as in Fungi (SAC6 in Saccharomyces cerevisiae and FM1 in
Schizosaccharomyces pombe) (Fig. 8).

The TLN1 and TLN2 genes are likely paralogs
(Fig. 9), and their corresponding orthologous protein se-
quences form distinct clades. TLN1/2 is probably the pri-
mordial gene of this family, since it was first detected in
Amphimedon queenslandica, Monosiga brevicollis, Ciona
intestinalis and Strongylocentrotus purpuratus which gave
rise to TLN1 and TLN2 after successive gene duplications.
Talin homologswere also identified in Fungi, that is, SLA2P
in Saccharomyces cerevisiae and END4 in Schizosaccha-
romyces pombe, as also confirmed in literature [239, 240].
Therefore, althoughmembers of the TLN1 gene familywere
found only in Metazoa, it has deep evolutionary roots in
some ancient unicellular eukaryotic organism, which is the
common ancestor of Animalia and Fungi.

The characteristically long clade corresponding to
Monosiga brevicollis, as shown in Figs. 5,6,7,8,9, is due
to the evolutionary course of the organism, as it evolved
for many millions of years separately from the rest of the
Metazoa.

The evolutionary origin of ACTG1, RCC2 and
PKN2 genes can be traced to a universal common ancestor,
namely an ancient prokaryotic unicellular organism, that is
the common ancestor of Animalia, Bacteria and Archaea as
illustrated in Figs. 10,11,12, respectively.

The ACTA1, ACTA2, ACTB, ACTC1, ACTG1,
ACTG2 genes are likely paralogs (Fig. 10), the orthologs of
which cluster together in distinct clades. The phylogenetic
tree is divided into two major subtrees, one comprised of
protein sequences encoded by genes of different types of cy-
toplasmic actins and the other includes sequences encoded
by genes of different types of muscle actins.

The subtree of cytoplasmic actins harbors the pro-
tein sequences encoded by ACTG1 (Actin cytoplasmic 2),
ACTB (Actin cytoplasmic 1) as well as various other actin
genes. ACTG1 is apparently the ancestral gene of this fam-
ily as it was detected in Animalia, Bacteria (Microbac-
terium arborescens (Actinobacteria),Chlamydia trachoma-
tis (Chlamydiae), Leptolyngbya sp. PCC 7376 (Cyanobac-
teria), Kangiella spongicola (Proteobacteria), Staphylococ-
cus aureus (Firmicutes)), as well as Archaea (Candidatus
Heimdallarchaeota (Archaea), Candidatus Lokiarchaeota
(Archaea)). The sequences detected in bacteria do not clus-
ter together, but are rather scattered among those corre-
sponding to genes that encode the two types of cytoplas-
mic actins in Metazoa. This is indicative of high similarity
among the aforementioned genes, since the encoded pro-
tein sequences appear to be highly conserved. Addition-
ally, Actin genes found in Fungi (Saccharomyces cerevisiae
and Schizosaccharomyces pombe) exhibit high similarity to
Actin genes found in Archaea, which encode cytoplasmic
actin 2.



292

Fig. 2. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the ILK genes. TNNI3K is used as outgroup. The
branch length represents evolutionary distance. A discrete Gamma distribution was used to model evolutionary rate differences among sites. The scale
bar at the lower left denotes the length of amino acid substitutions per site.

On the other hand, the ACTB gene likely appeared
later in evolution and probably occurred due to a duplica-
tion event of the ACTG1 gene, as it was detected for the first
time in Petromyzon marinus. Also, in Ciona intestinalis, a
cytoplasmic actin gene and a muscle actin gene were iden-
tified, and in fact the gene encoding the cytoplasmic actin
shows high similarity to the only ACTIN gene detected in
Monosiga brevicollis. Finally, Actin-85C-Like gene found
in Amphimedon queenslandica also demonstrates high sim-
ilarity to types of cytoplasmic actin.

The subtree of muscle actins, includes the protein
sequences encoded by ACTA1 (Actin alpha 1, skeletal mus-
cle), ACTA2 (Actin alpha 2, smoothmuscle), ACTC1 (Actin
alpha cardiac muscle 1) and ACTG2 (Actin gamma 2, en-
teric smooth muscle). Muscle actin genes appear to be the
primordial genes of all muscle actin encoding genes as they
were first identified in Strongylocentrotus purpuratus and
Ciona intestinalis; thus, the gene probably first appeared
in a common ancestor of Echinodermata and Chordata af-
ter their divergence from Porifera, since an ortholog was
not detected in Amphimedon queenslandica. ACTA2 and
ACTC1 genes were first detected in Callorhinchus milli,
ACTA1 in Danio rerio, and ACTG2 in Latimeria chalum-
nae, respectively. We would expect to find the ACTA1 and
ACTG2 genes in Callorhinchus milli, as it is the first or-
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Fig. 3. Maximum likelihood-based unrooted phylogenetic tree of the protein sequences encoded by the CTNNA1, CTNNA2, CTNNA3, CTNND1
and CTNND2 genes. The conventions are the same as in Fig. 2.

ganism in this study to have differentiated organs, but the
sequences were not detected using BLAST. In any case, we
believe that these genes occurred through a series of gene
duplication events yielding four paralogs that probably first

appeared in an ancestor of the Chondrichthyes after their
divergence from Echinodermata and Tunicates.

In summary, those genes encoding different types
of cytoplasmic actins are evolutionarily older, since those
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Fig. 4. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by thePKP1, PKP2, PKP3 andPKP4 genes. CTNND2
is used as outgroup. The conventions are the same as in Fig. 2.
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Fig. 5. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the VASP and ENAH-LIKE/ENAH/VASP-LIKE
genes. EVL is used as outgroup. The conventions are the same as in Fig. 2.

genes that encode different types of muscle actins appeared
later in evolution. Specifically, ACTG1 is the ancestral gene
of the entire family, since it is the evolutionarily older out
of all paralogs found in Metazoa.

The RCC1 and RCC2 genes are likely paralogs,
and their corresponding orthologous protein sequences
form distinct clades (Fig. 11). RCC1 is probably the primor-
dial gene of this family as it was detected in Metazoa, Bac-
teria Bifidobacterium asteroides (Actinobacteria), Parach-
lamydia sp. C2 (Chlamydiae), Synechococcus sp. WH
8103 (Cyanobacteria), Myxococcus xanthus (Proteobacte-
ria), Cohnella sp. CAU 1483 (Firmicutes), Hymenobacter
chitinivorans (Bacteroidetes) and Methanocella conradii
(Archaea). RCC1 andRCC2 homologs have also been iden-
tified in Fungi, that is, SRM1 in Saccharomyces cerevisiae
and PIM1 in Schizosaccharomyces pombe, as confirmed
in literature [241, 242]. Furthermore, although the corre-
sponding gene in Monosiga brevicollis and Amphimedon
queenslandica is annotated as RCC in RefSeq, it displays
high similarity to the RCC1 gene. Thus, RCC1 probably
first appeared in a common ancestor of Eukaryotes, Bac-
teria and Archaea. RCC2 on the other hand, might have
appeared later in evolution, as it was detected for the first

time in Strongylocentrotus purpuratus, and probably oc-
curred due to duplication of the RCC1 gene in an ances-
tor of Echinodermata after their divergence from the phy-
lum of Porifera, since an RCC2 ortholog was not detected
in Amphimedon queenslandica. Therefore, although RCC2
is found only in Metazoa, its ancestor is traced to some an-
cient prokaryotic unicellular organism, that is, the common
ancestor of Eukaryotes, Bacteria and Archaea.

The PKN1, PKN2, PKN3, PKN, PKC genes
are likely paralogs, the orthologs of which cluster to-
gether in distinct clades (Fig. 12). PKN was de-
tected in Amphimedon queenslandica, in the unicel-
lular Choanoflagellate Monosiga brevicollis, in Bacte-
ria Streptomyces seoulensis (Actinobacteria), Chlamydia
ibidis (Chlamydiae), Chloracidobacterium thermophilum
(Cyanobacteria), Escherichia coli (Proteobacteria), Paeni-
bacillus donghaensis (Firmicutes), Spirosoma panaciterrae
(Bacteroidetes) and in Archaea (Methanoregula boonei and
Thermococcus thioreducens) and is likely the primordial
gene of this family and precursor of the PKN1, PKN2 and
PKN3 genes which probably occurred through a series of
PKN gene duplication events. The PKC gene was also de-
tected in Petromyzon marinus, as well as in Fungi (Sac-
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Fig. 6. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the CTTN genes. HCLS1 is used as outgroup. The
conventions are the same as in Fig. 2.

charomyces cerevisiae and Schizosaccharomyces pombe).
PKN2 is apparently the oldest one as it was first detected
in Ciona intestinalis and Strongylocentrotus purpuratus,
so it probably first appeared in a common ancestor of
Tunicates and Echinodermata after their divergence from
Choanoflagellates, since an PKN2 ortholog was not de-
tected inMonosiga brevicollis. PKN1 most likely emerged
later as it was first detected in Callorhinchus milli; it prob-
ably first appeared in an ancestor of Chondrichthyes after
their divergence from Tunicates, since an PKN1 ortholog
was not detected in Ciona intestinalis. PKN3 was detected
for the first time in Latimeria chalumnae, so it probably
first emerged in an ancestor of Actinists after their diver-
gence from Osteichthyes, since an PKN3 ortholog was not
detected in Danio rerio. Therefore, although PKN2 was
found exclusively inMetazoa, it has very deep evolutionary
roots found in some ancient prokaryotic unicellular organ-
ism, that is the common ancestor of Animalia, Bacteria and
Archaea.

5. Discussion

According to the findings of this in silico study,
three different types of genes were identified within the 12
‘hub’ genes, in terms of their evolutionary age. Fırst and

foremost, genes of unicellular origin that are in fact associ-
ated with the emergence of the first cellular life forms. In
particular, ACTG1, RCC2 and PKN2 were detected in all
domains of life, namely the empire Eukaryota (Animal and
Fungi kingdoms) and the empire Prokaryota (Eubacteria
and Archaebacteria kingdoms). Second, genes of unicellu-
lar origin that are associated with the emergence of the first
eukaryotic life forms, namely theVASP,DSP,CTTN,PLEC
and TLN1 genes. Third, genes of multicellular origin that
are in fact associated with the evolution of multicellularity
in the Animal kingdom. In particular, the ILK, CTNNA1,
CTNND1 and PKP3 genes were detected exclusively in
Metazoa; hence, they could be considered as genes ofmulti-
cellular origin. Therefore, these are highly conserved genes
of unicellular origin, which are in fact associated with the
emergence of the first cellular life forms. Consequently, the
investigated genes are considered to have deep evolutionary
roots, with the most recently evolved ones being linked to
the emergence ofMetazoa and the most ancient ones having
an evolutionary age of billions of years, thereby coinciding
with the emergence of the first cellular life forms (Fig. 13).

In addition to their evolutionary age, the genes
are involved in multiple cancer-related pathways and pro-
cesses, and are associated with various forms of cancer, es-
pecially metastasis. Furthermore, they are characterized as
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Fig. 7. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the DSP genes. PLEC is used as outgroup. The
conventions are the same as in Fig. 2.

hub genes and hold a particular position in the human gene
network, on the boundary of unicellularity and multicellu-
larity, and thus, contribute to the phenomenon of mutual ex-
clusivity. Of particular note, all 12 genes have been linked
to the most aggressive trait of cancer, that is, metastasis, in
various types of cancers.

To further support the theory of “atavistic rever-
sion” of cancer, the emerging model of the germ-and-soma
life cycle [243] shows that cancer, uses not only first cellu-
lar, first eukaryotic, and Metzaoa I genes, but also genes of
the late evolved unicellular organisms, respectively stem-
ness and differentiation genes, as well as genome repair
genes, including their own mechanisms of cancer stem cell
production.

The findings of the present study can be applied on
the design of therapeutic strategies, since the investigated
genes and their products, as well as the processes and path-
ways in which they participate, could represent candidate
pan-cancer biomarkers and potential targets for the devel-
opment of a new class of pan-cancer treatment protocols
that can be applied to any type of cancer. The develop-
ment of therapeutic strategies based on the analysis of the
configuration of the human gene network itself have been
proposed. These approaches entail the cellular processes of
a specific evolutionary age to be used as targets, and espe-

cially the genes of unicellular or multicellular origin that are
highly interconnected and contribute to the phenomenon of
mutual exclusivity, rendering them vulnerable and also po-
tential drug targets [15].

Although the concept that cancer is linked with
evolution was first proposed almost a century ago, laying
in this way the foundation for the atavistic model of can-
cer [244–246], the application of evolutionary biology ap-
proaches to the study of neoplasms’ formation and pro-
gression is a recent endeavor. Comparative oncology is a
novel and highly promising field of cancer research that can
lead to a deeper understanding of cancer and contribute to
the discovery of novel biomarkers and clinical therapeutic
strategies.

Several other possible evolutionary approaches
to cancer treatment and prevention have been proposed,
mainly to address the problem of cancer cells’ remarkable
resistance to therapeutic regimens. Given the resilience and
diversity of different forms of cancer, the key lies in the
common characteristics of all cancer cells, regardless of tu-
mor type. The pathways and genes involved, in particular,
can be utilized to the design of drugs that target cancer cells
selectively and are effective against any cancer cell [5].

Another very promising approach concerns neo-
plasm ecology. In particular, the therapeutic approaches
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Fig. 8. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the PLEC genes. MAKF1 is used as outgroup.
The conventions are the same as in Fig. 2.

that have been proposed include the use of a combination of
drugs [247], alteration of the competition between healthy
and cancer cells by enhancing the adaptability of the former
[248], selection of cells sensitive to chemotherapy [248] or
cells exhibiting genetic stability [249] and, above all, treat-
ments aiming at preventing the survival of resistant cells
which lead to disease recurrence and recession after treat-
ment [250].

Apart from the type of treatment, the manner in
which it is administered is also important, as it can in-
fluence the evolutionary dynamics of tumor cells [250].
Chemotherapy, for example, has different effect on cell
competition when administered in large individual doses in-
stead of small continuous doses [251], since the latter strat-
egy diminishes the likelihood of creating resistant clones in
the neoplasm population [250].

6. Conclusions

Herein, we have made an effort to track the emer-
gence of twelve important hub cancer genes in the evolu-
tionary history by phylostratigraphy. Based on our analy-
ses, those genes that have been proven to play a crucial role
in several aspects of cancer biology, as being part of an intri-
cate regulatory network, are evolutionarily ancient, with a
high fraction of them (67%) being of unicellular origin and
existing well before humans emerged and evolved. The fact
that most of the hub genes are of unicellular origin adds fur-
ther support to the atavistic model of cancer, according to
which the biological origin of cancer is believed to date be-
fore the emergence of multicellular animals, approximately
600 million years ago. In the light of evolution, cancer
arises as a phenomenon that is inextricably linked with mul-
ticellularity itself, and therefore this should be taken into
consideration, in order to deeply understand and efficiently
tackle probably one of the oldest chronic diseases on the
planet. In this way, anti-neoplastic therapeutic strategies
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Fig. 9. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the TLN1 and TLN2 genes. HIP1R is used as
outgroup. The conventions are the same as in Fig. 2.
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Fig. 10. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the ACTA1, ACTA2, ACTB, ACTC1, ACTG1
and ACTG2 genes. ACTR1, ACTR1A and ACTRB are used as outgroups. The conventions are the same as in Fig. 2.
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Fig. 11. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the RCC1 and RCC2 genes. HERC3 is used as
outgroup. The conventions are the same as in Fig. 2.
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Fig. 12. Maximum likelihood-based rooted phylogenetic tree of the protein sequences encoded by the PKN1, PKN2, PKN3, PKN, PKC genes.
SGK2 is used as outgroup. The conventions are the same as in Fig. 2.
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Fig. 13. Species tree representing the evolutionary relationships among taxa under study. The marker symbols on the tree nodes indicate the common
ancestral taxon, to which the evolutionary roots of a given gene family under study are traced.

could be developed tailored to the atavistic model, by tar-
geting the most recently evolved key innovations (i.e., the
so-called weaknesses) that have lost their ancestral func-
tionality in cancer.
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