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1. Abstract

Background: Osteosarcoma is a common bone
tumor with extremely high malignancy, occurring mostly in
children and adolescents. At present, the survival rate of os-
teosarcomas has made progress in some aspects; however,
this can only be regarded as a partial success because sub-
stantial progress has not been made in the last few decades.
Object: The kinesin superfamily is a group of proteins that
play regulatory roles in various metabolic processes and are
closely related to tumor metastasis. Increasing evidence
shows that kinesins play key roles in the occurrence and
development of human cancer. Purpose: This review sum-
marizes the roles of the kinesin superfamily proteins in os-
teosarcoma and related functions.

2. Introduction

Osteosarcoma is one of the most common primary
malignant bone tumors, with a 5-year survival of 70% to
80% [1]. It usually occurs in adolescents aged between 10
and 25, and its prevalence is slightly higher in men than
in women [2]. Osteosarcoma is a rare disease but is still
considered the third most common cancer owing to its high

metastasis andmortality rates [3, 4]. The focal feature of os-
teosarcoma is that approximately 80%–90%of tumors grow
in the long bones of the limbs, 60% of which are located
around the knees, although it may also occur in other bones
such as the femur, tibia, fibula, humerus, ulna, and pelvis
[5]. The malignancy of osteosarcoma is characterized by
a high rate of metastases. Approximately 85%–90% of os-
teosarcomas are transferred to the lungs, 8%–10% are trans-
ferred to the bones, and a few are transferred to the lymph
nodes [6–8]. At present, patients with osteosarcoma are
treated by removing the primary lesions, removing small
lung metastases, and inhibiting lung metastasis, combined
with multi-drug chemotherapy using cisplatin, carboplatin,
etoposide, and isocycline [9, 10]. In addition, phospho-
ramide, doxorubicin, and high-dose methotrexate can re-
duce the malignant transformation of primary tumors, but
approximately 50% of osteosarcoma patients still relapse
[11]. The prognosis of patients with primary osteosarcoma
and lung metastases is still very poor, and the 5-year overall
survival rate is only 25%. Therefore, it is important to con-
tinue studies on the mechanism of osteosarcoma and dis-
cover novel treatment methods and target molecules.

The kinesin superfamily is a class of conserved
microtubule-dependent molecular motor proteins with
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adenosine triphosphatase (ATPase) activity andmotor prop-
erties [12]. Studies have shown that abnormal expression
of the kinesin superfamily proteins (KIFs) is related to the
development and progression of various human cancers
[13, 14]. For example, Wang et al. [15] showed that KIF2A
is highly expressed in osteosarcoma, and inhibiting the ex-
pression of KIF2A can effectively prevent the spread and
migration of tumors and the invasion of osteosarcoma cells
in vitro, as well as block tumor growth and metastasis in
mice [16]. Gu et al. [17] showed that KIF18B is highly ex-
pressed in osteosarcoma tissues and cells and that inhibit-
ing the expression of KIF18B significantly inhibits the pro-
liferation, migration, and invasion of osteosarcoma cells,
as well as the tumor formation ability. Other studies have
shown that KIFs can be used as biomarkers for the diagno-
sis and treatment of osteosarcoma. This review emphasizes
the importance of KIFs in the pathobiology of osteosarcoma
and discusses their potential clinical uses.

3. Biological functions of KIFs

KIFs were first discovered in 1985. To date,
45 mouse- and human-derived KIFs have been identified,
and they have been classified into 14 families (kinesin-1
to kinesin-14) according to their molecular characteristics
[18, 19]. The original kinesin, also known as KIF5/kinesin-
1, is a tetramer protein consisting of twomotor active heavy
chains (110–120 kDa) and two light chains (60–70 kDa).
All KIFs heavy chains have a highly conserved motor do-
main, including ATP binding sequence and microtubule
binding sequence, which can bind to ATP, hydrolyse ATP,
and transfer chemical energy, enabling KIFs to carry out
mechanical movement along microtubules, while by com-
bining with specific cargo, including vesicles, organelles,
macromolecules, chromosomes and spindle fibres through
light chains [20, 21]. Thus, the KIFs protein is involved in
a variety of biological functions within the cell.

KIFs participate in a variety of biological func-
tions in cells, including mitosis, meiosis, membrane trans-
port, mRNA and protein transport, signal transduction, and
microtubule transport [12, 22, 23]. A growing body of
evidence indicates the importance of KIFs in regulating
many physiological events, including brain function, devel-
opmental patterns, and even tumorigenesis [19]. Abnormal
expression of KIFs plays a key role in the occurrence and
development of various human cancers, by affecting the
even distribution of chromosomes, leading to changes in
genetic material during mitosis and the formation of abnor-
mal spindles, thereby resulting in cytokinesis defects and
mitotic arrest. Defective genetic material induces multi-
ple functional defects in daughter cells, which may pro-
mote tumorigenesis and tumor cell invasion and metastasis
[14, 24]. Therefore, a better understanding of the function
of KIFs may help to develop drugs for molecular targeted
therapies against various human cancers.

4. KIFs in cancer biology

Abnormal expression and functions of KIFs are
closely related to the development of a variety of human
cancer types (Table 1, Ref. [25–64]). KIF5B, a member
of the kinesin-1 family, is mainly involved in lysosomal
membrane and mitochondrial transport. KIF5B is highly
expressed and may be used as a diagnostic marker in neu-
rofibromas, breast cancer [25], lung cancer [26], bladder
cancer [65], skin cancer [66], and gastric cancer [67].

Table 1. Kinesin expression in cancers.

Kinesins Member (s)
Expression in

cancer
Tumor type

Kinesin-1 KIF5B High
Neurofibromatosis [27]
Breast cancer [25]
Lung cancer [26]

Kinesin-2 KIF3A, KIF3B High

Lung cancer [28]
Brain tumor [29]
Breast cancer [30]

Colorectal cancer [31]
Bladder cancer [32]

Kinesin-3 KIF1A, KIF1B KIF14 High
Brain tumor [33]
Colon cancer [34]
Oral cancer [35]

Kinesin-4 KIF4A, KIF7 High

Colorectal cancer [36]
Lung cancer [37]
Gastric cancer [38]
Oral cancer [39]
Breast cancer [40]

Kinesin-5 KIF11 High

Breast cancer [41]
Colorectal cancer [42]
Gastric cancer [43]
Ovarian cancer [44]
Oral cancer [45]

Kinesin-6 KIF20B, KIF23 High

Oral cancer [46]
Breast cancer [47]

Colorectal cancer [48]
Bladder cancer [49]
Pancreatic cancer [50]

Kinesin-7 KIF10 High
Liver cancer [51]
Breast cancer [47]

Kinesin-8 KIF18A High

Prostate cancer [52]
Gastric cancer [53]
Lung cancer [54]
Breast cancer [55]
Liver cancer [56]

Kinesin-10 KIF22 High Breast cancer [57]

Kinesin-11 KIF26B High
Breast cancer [58]
Osteosarcoma [59]

Kinesin-12 KIF15 High
Breast cancer [60]
Osteosarcoma [61]

Kinesin-13 KIF2C High
Breast cancer [47]
Gastric cancer [62]

Colorectal cancer [63]
Kinesin-14 KIFC1, KIFC3 High Breast cancer [64]
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KIF3A and KIF3B are members of the kinesin-2
family. Kinesin-2 is a heterotrimeric complex composed
of a KIF3A/3B heterodimer and KAP3. KAP3 can bind
KIF3A/KIF3B to other functional proteins, such as adeno-
matous polyposis coli and breast tumor kinase, which are
involved in regulating the occurrence of tumors [14, 68].
Kinesin-3 family proteins act as organelle transporters.
There are three members in this family, namely KIF1A,
KIF1B, and KIF14, and these are mainly involved in the
transport of mitochondria and synaptic vesicles [69, 70].
KIF1B plays a key role in nerve cell apoptosis; low ex-
pression of KIF1B can protect nerve cells and exert an anti-
apoptotic effect, and therefore, low expression of KIF1B is
positive for the 5-year overall survival rate and metastasis-
free survival rate of breast cancer patients [71].

KIF4A is a member of the kinesin-4 family and
participates in the regulation of mitosis and cytokinesis of
eukaryotic cells. Cells cannot complete mitosis and cyto-
plasmic separation in the absence of KIF14. This suggests
that targeting KIF14 may be a new cancer treatment strat-
egy. Additionally, KIF14 is a prognostic marker of breast
cancer. At present, changes in the expression of KIF4A
can be observed in different types of human cancers. For
example, Narayan et al. [72] found that the expression of
KIF4AmRNA in cervical cancer was much higher than that
in normal tissues. Taniwaki et al. [37] demonstrated that
inhibiting the expression of KIF4A in non-small cell lung
cancer cells inhibited their growth and that patients with tu-
mors with high KIF4A expression had a poorer prognosis
than patients with tumors expressing KIF4A. KIF7 is an-
other kinesin-4 family member. KIF7 is an effective in-
hibitor of the Hedgehog pathway [73] and is activated in a
variety of tumors. Recent studies have shown that blocking
the Hedgehog pathway may be a treatment-related cancer
strategy [74, 75].

KIF11 is a member of the kinesin-5 family and
is overexpressed in breast, colorectal, gastric, ovarian, and
oral cancers. Overexpression of KIF11 is associated with
cancer staging and recurrence [76–78]. For example, in la-
ryngeal squamous cell carcinoma, high KIF11 expression is
associated with lymph node metastasis, TNM staging, and
poor prognosis [79]. In oral cancer, significantly high ex-
pression of KIF11 is associated with a shorter survival time
[45].

KIF20B and KIF23 are kinesin-6 family members
and have been identified as potential biomarkers that pro-
mote the progression of multiple cancers [46–50]. The
kinesin-7 family member KIF10 can be used as a survival
and prognostic biomarker as well as a potential therapeu-
tic target for liver [51] and breast [47] cancers. The ex-
pression of KIF18A is abnormally increased in most cancer
cells. Overexpression of KIF18B is associated with poor
prognosis of liver cancer [80, 81]. Furthermore, KIF18B is
an oncogene of cervical cancer [82]. Heriberto et al. [57]
showed that KIF22 is overexpressed in hyperplastic breast

cancer tissues and can also be used as one of the biomarkers
of breast cancer. KIF26B plays an important role in kidney
development and is involved in the occurrence and devel-
opment of certain types of tumors, including breast cancer,
esophageal adenocarcinoma, and colorectal adenomatous
polyposis [58, 83–85]. KIF2C is significantly upregulated
in gastric and colon cancer tissues, and the 5-year overall
survival rate of gastric and colon cancer patients with high
expression of KIF2C is much lower than that of patients
with low expression of KIF2C [62, 63]. KIFC1 overexpres-
sion in breast cancer cells increases paclitaxel resistance,
and the combination of KIFC1 inhibitors with paclitaxel is
a novel treatment for breast cancer [64].

5. Development of KIFs targeting inhibitors

Since multiple members of the KIFs have tumori-
genic properties, scientists were keeping research the spe-
cific inhibitor. Eg5, the protein is encoded by the gene
KIF11 which involved in the progression and development
in a variety of tumor types. Monastrol as a small molecules
blocks tumor cell proliferation growth by targeting specifi-
cally Eg5 and not microtubules [86]. This finding was sig-
nificant. Some traditional chemo drugs based on micro-
tubule targeting agents, such as taxol, are associated with
severe side effects [87, 88], since all cells, healthy and tu-
mor cells, need microtubule functions. Therefore, a va-
riety of Eg5 inhibitors have been developed, a certain of
them have entered clinical trials, including Arry-520 (Spon-
sor: Array Biopharma) [89–92]; LY2523355 (Sponsor:
EliLilly) [93, 94]; 4SC-205 (Sponsor: 4SC); ALN-VSP02
(Sponsor: Alnylam) [95]; ispinesib (Sponsor: GSK) [96–
100]; AZD4877 (Sponsor: AstraZeneca) [101, 102]; SB-
743921 (Sponsor: Cytokinetics) [103]; ARQ 621 (Sponsor:
ArQule); MK-0731 (Sponsor: Merck) [104]. Moreover,
as the development of drug resistance, the strategies of re-
versing drug resistance were researching, and alterations in
tubulin interactions are an important aspect of these strate-
gies. Kinetin modulates docetaxel resistance by interact-
ing with microtubules [13], and thus kinesin is assumed to
be the main target of cancer chemotherapy. However, the
mechanisms of PTX- and docetaxel resistance and their re-
lationship with kinesin remain to be elucidated [64].

6. KIFs in osteosarcoma

As noted previously, there are 14 KIFs [12, 18]
that are mainly involved in formation of the intracellular
spindle in cells, chromosomal reorganization and arrange-
ment, and cytokinesis [105]. The abnormal expression and
functions of KIFs are closely related to the development of
a variety of human cancers. Increasing evidence shows that
KIFs may be used as molecular therapeutic targets for hu-
man cancers. Furthermore, the detection of KIFs expres-
sion in human cancers may provide biomarkers suitable for
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Table 2. Roles of kinesins in osteosarcoma.
Kinesins Member (s) Preclinical or clinical model of OS Expression in osteosarcoma Functions

Kinesin-2 KIF3B 143B, MG-63, U2OS, SOSP9607, SJSA-1, and HOS High Proliferation, migration, invasion [106]
Kinesin-11 KIF26B SJSA-1, G-292, Nude Mouse Tumor Model High Proliferation and tumorigenesis [59]
Kinesin-12 KIF15 MNNG/HOS, U2OS, human osteosarcoma tissue High Proliferation, migration, invasion [61]

Kinesin-13 KIF2A MG-63 and U2OS human osteosarcoma tissue High
Proliferation, migration, invasion,

tumorigenesis [16]

Kinesin-8 KIF18B
HOS, U2OS, and Saos-2, human osteosarcoma

tissue, Nude Mouse Tumor Model
High

Proliferation, migration, invasion,
tumorigenesis cell cycle [17]

early detection and prognosis of human cancers [24].

At present, there are relatively few studies on KIFs
in osteosarcoma. Available literature suggests that KIFs
may be used as diagnostic biomarkers and targets for the
treatment of osteosarcoma; however, it is necessary to fur-
ther study the roles of KIFs in osteosarcoma to discover
novel markers for the clinical diagnosis and identify novel
targets for the prognosis and treatment of osteosarcoma.
Based on the important roles of KIFs in various cancers, we
have summarized the functional roles of KIFs in osteosar-
coma in Table 2 (Ref. [16, 17, 59, 61, 106]) and the follow-
ing sections.

6.1 KIFs in osteosarcoma metastasis

Osteosarcoma is a highly invasive and metastatic
tumor. Current research on the functional roles of KIFs in
osteosarcoma shows that some KIFs are closely related to
the migration and invasion ability of osteosarcoma cells.
For example, Gu et al. [106] showed that KIG3B levels are
high in osteosarcoma cell lines and can promote the prolif-
eration, migration, and invasion of osteosarcoma cells. Pu
et al. [59] and others found that inhibiting the expression
of KIF26B increased the sensitivity of osteosarcoma cell
lines to a variety of drugs, including doxorubicin, etoposide,
methotrexate, cisplatin, and carboplatin. Wu et al. [61] re-
ported that the expression of KIF15 in osteosarcoma tissues
was much higher than that in adjacent tissues. Knockdown
of KTF15 in osteosarcoma cells significantly inhibited the
proliferation of osteosarcoma cells and DNA synthesis in
the S phase and promoted cell apoptosis. Similarly, inhibi-
tion of KTF15 expression reduced the migration and inva-
sion of osteosarcoma cells [61].

Wang et al. [16] found that the expression of
KIF2A in human osteosarcoma tissues was much higher
than that in adjacent tissues, and KIF2A promoted the pro-
liferation, migration, and invasion of osteosarcoma cells.
Inhibiting the expression of KIF2A in osteosarcoma cell
lines reduced their tumorigenesis and their ability to metas-
tasize to the lung [16]. A study by Gao et al. [17] demon-
strated that KIF18B is a potential oncogene and is highly
expressed in osteosarcoma tissues and cells; furthermore,
they demonstrated that KIF18B can promote osteosarcoma
in vivo and increase osteosarcoma cell proliferation and mi-
gration in vitro.

High metastasis is a malignant manifestation of
osteosarcoma. Metastatic osteosarcoma has a poor prog-
nosis and a high recurrence rate. Therefore, the study of
genes closely related to metastasis of osteosarcoma from
the molecular biology perspective may facilitate the identi-
fication of targeted drugs for osteosarcoma.

6.2 KIFs in osteosarcoma prognosis

Because osteosarcoma is highly metastatic, the
prognosis of patients with metastatic osteosarcoma is very
poor, with a 5-year overall survival rate of only 25%.
Therefore, timely and accurate diagnosis is of great signif-
icance for effective treatment of the disease and improve-
ment of the overall survival rate of patients. At present,
the diagnosis of osteosarcoma is very limited. More than
90% of the early diagnosis of osteosarcoma in children
and young/adult patients occurs based on bone pain and a
non-pathological fractures. Some patients experience lo-
cal swelling and a limited range of motion of the affected
limb. Overall, the clinical symptoms are usually mild, last-
ing for several months, and are often not valued by doctors
and patients [107–109]. Therefore, accurate or auxiliary di-
agnosis is particularly important for the early recognition of
osteosarcoma.

Studies have shown that KIF3B, KIF26B, KIF15,
KIF2A, and KIF18B are all highly expressed in osteosar-
coma tissues and cells and can act on oncogenes to pro-
mote the proliferation and migration of osteosarcoma cells.
Groth-Pedersen et al. [110] showed that interference with
the expression of KIF11, KIF20A, KIF21A, and KIF25 in
human osteosarcomaU2OS cells significantly reduced their
proliferation. Therefore, the auxiliary detection of KIFs ex-
pression in patients with suspected osteosarcomamay assist
in the diagnosis of osteosarcoma, and KIFs may be used as
a new biological marker for the diagnosis of osteosarcoma.

6.3 KIFs in osteosarcoma treatment

Currently, the most common osteosarcoma treat-
ment involves surgical resection of the lesion, supple-
mented by chemotherapy and radiotherapy. However, these
treatments have certain limitations, for example, poor cura-
tive effect on patients with metastatic osteosarcoma, high
recurrence rate, and poor prognosis [111]. Therefore, ex-
ploring new treatments is extremely critical for patients
with metastatic osteosarcoma. Liu et al. [112] found that
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Fig. 1. Roles of KIFs in osteosarcoma.

intrathecal injection of a KIF17 antisense oligodeoxynu-
cleotide into an osteosarcoma mouse model could relieve
pain, inhibit tumor growth, and increase the survival rate
after surgery. Saeki et al. [113] indicated that inhibiting the
expression of KIF15 and KIF11 in osteosarcoma cell lines
U2OS and HOS that are anti-S-trityl L-cysteine can signif-
icantly reduce the anti-S-trityl L-cysteine ability of these
cells. Pu et al. [59] found that inhibiting the expression
of KIF26B in the osteosarcoma cell line SJSA-1 reduced
the resistance of these cells to multiple drugs such as dox-
orubicin, etoposide, cisplatin, and carboplatin. Gao et al.
[17] found that inhibiting the expression of KIF18B in vivo
decreased the tumor growth in U2OS osteosarcoma cells.
Overall, these findings suggest that KIFs may be used as
new targets for the treatment of osteosarcoma.

The identified studies indicate that KIFs partici-
pats in multiple modes of regulation for the development
of osteosarcoma. (a) High-expression of KIF15 promotes
osteosarcoma proliferation. (b) High-expression of KIF2A
promotes osteosarcoma proliferation and metastasis. (c)
CircRNA0032462 is high expression and promotes os-
teosarcoma proliferation and metastasis by enhancing the
expression of KIF3B. (d) MiR-20a-5p can be used as a po-
tential targeted drug to inhibit drug resistance of osteosar-
coma by inhibiting the expression of KIF26B. (e) KIF18B
upregulates β-catenin expression at the transcriptional level
by transporting transcription factor ATF2 into the nucleus
and at the post-transcriptional level by competitive binding
with the adenomatous polyposis coli (APC), then releasing
activated β-catenin in osteosarcoma cells. Finally, KIF18B
promotes the proliferation of osteosarcoma through the
above mechanisms (Fig. 1).

7. Summary and perspective

Osteosarcoma is the most common primary bone
malignant tumor in children and adolescents, with high
metastatic rates [114]. Routine surgical treatment combined
with systemic chemotherapy and directed radiotherapy can
increase the 5-year survival rate of patients to 70%. How-
ever, the long-term survival rate of patients with metastatic
or recurrent osteosarcoma is still less than 20% [115].

Abnormal KIFs expression and function are
closely related to the development of a variety of human
cancer types. KIFs play key roles in osteosarcoma. A vari-
ety of KIFs (KIF3B, KIF26B, KIF15, KIF2A, and KIF18B)
are highly expressed in osteosarcoma tissues and cells and
are closely related to the invasion and metastasis of os-
teosarcoma. KIF11, KIF20A, KIF21A, and KIF25 can reg-
ulate the proliferation of osteosarcoma cells, and inhibiting
the expression of these KIFs can reduce the proliferative
ability of osteosarcoma cells. In addition, interfering with
the expression of KIF17 in the mouse sheath can relieve
pain and inhibit tumor growth, as well as improve postoper-
ative survival, whereas inhibiting the expression of KIF15,
KIF11, and KIF26B can reduce the resistance of osteosar-
coma cell lines to multiple drugs. Therefore, in-depth re-
search on KIFs may provide novel markers and targets for
clinical diagnosis as well as prognosis and treatment of os-
teosarcoma.
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