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Abstract

David Hunter Hubel (1926–2013) was an internationally recognized neurophysiologist and vision neuroscientist noted for his life-long
studies on the columnar structure and highly integrated function of the brain’s primary and secondary visual cortex. He was co-recipient
with the American neuropsychologist and neurobiologist Roger Wolcott Sperry (1913–1994) and the Swedish neurophysiologist Torsten
Nils Wiesel (1924-present) of the 1981 Nobel Prize in Physiology or Medicine, for their significant discoveries concerning the functional
specialization of the cerebral hemispheres, the layered structure of the human cerebral visual cortex and information processing in the
visual system, how the human visual cortex is organized into columns, and how this remarkable cellular organization and connectivity
for the human visual system can be modified by lifestyle, experience, aging and disease. This commentary integrates these significant
findings with current observations on SARS-CoV-2, the causative agent of COVID-19, and its invasion of the human visual system via
the angiotensin converting enzyme 2 (ACE2) receptor.
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1. Introduction
Once during a lecture in the early 1980’s, and just after

receiving his Nobel prize in Physiology or Medicine Hubel
described the columnar nature and the polarity of the vi-
sual circuitry of the human visual system and how signals
travel from the exterior environment to the anterior surface
of the eye, to the posterior of the eye, to the retina, through
the optic nerves across the optic chiasm, optic tract and lat-
eral geniculate nuclei (LGN), and on to the primary visual
cortex in the occipital lobe at the posterior of the human
cerebrum (Brodmann Area 17) [1,2].

2. Neurochemical gradients, visual signaling
pathways and the ‘Circe effect’

Hubel proposed that there might be some kind of a
‘neurochemical gradient’ driving visual signals along this
neural pathway for vision, perhaps via a series of tandem
receptors—initially at a low density to a higher density of
the same receptor along a visual circuit culminating at the
highest density of receptors in the occipital lobe in the deep-
est anatomical regions of the brain. Hubel went on to further
describe the concept of the ‘Circe effect’, a phenomenon
first proposed by the American biochemist William Platt
Jencks (1927–2007), as has been since widely observed in
chemical and biochemical signaling reactions (https://en.w
ikipedia.org/wiki/Circe_effect; this process was named af-

ter the enchantress Circe in Homer’s Odyssey from Greek
mythology who ‘lured warriors to their fates’) [3]. In
modern biological chemistry the ‘Circe effect’ thereby in-
volves a gradient of chemical, biochemical or biophysical
components—such as receptors—from a lower to higher
density that would initially attract and drive signals forward
along a classical biochemical pathway involving an increas-
ing gradient from a low to a higher molecular receptor den-
sity. Hubel provided an interesting analogy of a string of 10
lighted electrical lamp posts along a street with the faintest
light at the top of the first lamp post and the brightest light
along a gradient 10 lamp posts away. Hubel’s electrical or
molecular signals were represented by a box full of moths.
As we all know moths are attracted to light and especially
to bright lights—so when the moths were first released at
the lamp post with the least bright light the moths initially
clustered around the faintest light but as time passed all
moths moved along the lighted pathway to the brightest
light source 10 lamp posts away.

The analogy of the driving force for light signals trav-
elling from the anterior to the posterior of the human vi-
sual pathway to moths moving up a gradient of dim light
to bright lights was an insightful example of Hubel’s cre-
ativity, innovation and genius. Fifty years after the Nobel
laureate first proposed these innovative biological systems
a very recent and exciting example is how the SARS-CoV-2
virus may move across the human visual system from the
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surface of the eye through to the optic nerve and ultimately
to the primary visual cortex in deeper regions of the human
brain.

3. Vision and visual processing disturbances
associated with COVID-19 infection

Disturbances in vision and visual processing are com-
monly reported by COVID-19 patients. SARS-CoV-2 RNA
has been found in tears of infected COVID-19 patients, and
several reports suggest that the ocular surface could serve
as a portal of entry and/or serve as a reservoir for viral trans-
mission to the upper respiratory tract via the nasolacrimal
duct [4]. Besides the respiratory and digestive tracts, the oc-
ular exterior presents an additional mucosal surface that is
constantly exposed to infectious droplets and direct/indirect
contact, and there is abundant data that SARS-CoV-2 is
most easily spread via an aerosolized transmission and cap-
tured by the moist surface of the eye [5–7].

In addition, there are also multiple emerging reports of
SARS-CoV-2 infection of the visual system with detrimen-
tal sensory consequences that include an inflammation or
infection of the transparent conjunctival membrane (con-
junctivitis) [4–10], photophobia and acute retinal necro-
sis [11–14], loss of visual acuity, visual distortion, blurred
vision and disturbances in visual perception and balance
[14–18] and persistent visual dysfunction and hallucina-
tions [1,18–20]. These later pathological phenomenon are
a product of highly integrated neuroanatomical regions and
connections associated with the deeper regions of the vi-
sual brain [11–19,21,22]. The observation of a pathologi-
cal ACE2 receptor gradient from the eye’s exterior surface
to the primary visual cortex, combined with the presence
of SARS-CoV-2 in tear fluid and viral translocation via the
nasolacrimal duct into the upper respiratory tract provides
novel routes of SARS-CoV-2 transmission involving mul-
tiple anatomical elements across the human visual system.

4. Discussion
Keeping this in mind, Table 1 (Ref. [20,22,23]) shows

the density of the angiotensin converting enzyme 2 (ACE2)
receptor along a gradient from the anterior surface of the eye
through to the primary visual cortex. ACE2 is known to be
the primary and critical cell surface receptor for the SARS-
CoV-2 virus essential for viral entry into host cells, neces-
sary for successful infection, and is the causative agent for
COVID-19. It appears that just like in Hubel’s proposed
model in line with the concept of the ‘Circe effect’ signal-
ing, an increasing gradient of the ACE2 receptor might en-
able the single-stranded RNA (ssRNA) SARS-CoV-2 virus
to travel from the exterior surface of the eye into deeper
visual processing regions of the brain. There visual distur-
bances and dysfunction in vision and visual neuropathology
may develop as a consequence of a successful SARS-CoV-
2-mediated viral invasion of susceptible human host cells
along these visual pathways.

Table 1. A molecular highway for SARS-CoV-2 infection of
the visual system.

corneal epithelial cells 1.5
trabecular meshwork cells 4.5
non-pigmented ciliary epithelial cells 6.1
ocular choroid fibroblasts 7.7
retinal ganglion cells (RGCs) 8.1
whole retina 8.9
retinal pigment epithelial cells 10.2
optic nerve 10.6
optic chiasm 11.3
optic tract 11.5
thalamus 11.7
lateral geniculate nucleus (LGN) 12.1
occipital lobe - primary visual cortex (Brodmann area A17) 12.5
Visual signals and visual signal processing in humans typically
proceeds from the outer eye and retina into deeper areas of the
brain, and different cell types, tissues or anatomical structures are
encountered along this major sensory pathway. The visual path-
way extends from the corneal epithelial cells of the outermost
layer of the cornea of the external eye through to the primary vi-
sual cortex located deep in the occipital lobe of the brain. Inter-
estingly, SARS-CoV-2 infection is also associated with olfactory
disturbances, however a similar gradient for the ACE2 receptor
along single bipolar olfactory neurons from the cribiform plate
of the nasal cavity into deeper brain regions of the olfactory lobe
has yet to be demonstrated. The numbers in Table 1 are rep-
resentative of the densities of the primary SARS-CoV-2 viral re-
ceptor, the angiotensin converting enzyme 2 (ACE2) cell surface
acceptor protein, from the anterior (outer) surface of the eye to
the primary visual processing center in the occipital lobe (Brod-
mann area 17) of the brain; ACE2 receptor abundance was deter-
mined employing an ELISA assay using a quantitative colorimet-
ric (450 nm) sandwich ELISA specific for human ACE2 and a
Fluoroskan Ascent FL Microplate Fluorometer and Luminome-
ter (Cat no. 5200220, ThermoFisher Scientific, Waltham MA;
sensitivity 1052 pg/mL; detection range 1.5 ng/mL–255 ng/mL;
human ACE2 ELISA Kit ab235649; Abcam Cambridge MA,
USA) as previously described in detail [20,22,23]. The numbers
in Table 1 represent the statistical mean of 3–5 analyses for each
visual pathway cell, tissue or anatomical structure.

5. Conclusions

From these observations we can speculate that other
neuroanatomical, neurochemical and/or neurobiological
pathways may utilize ‘Circe effect’ signaling in the trans-
mission of biological entities or molecular-encoded infor-
mation by means of specific receptor gradients in the brain
and CNS both in health and during microbial infection and
associated neurological disease.
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Abbreviations
ACE2, angiotensin converting enzyme 2; CNS, cen-

tral nervous system; COVID-19, coronavirus disease of the
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CoV-2, severe acute respiratory syndrome coronavirus vari-
ant 2.
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