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Abstract

Background: Neurons have specialized structures that facilitate information transfer using electrical and chemical signals. Within
the perspective of neural computation, the neuronal structure is an important prerequisite for the versatile computational capabilities of
neurons resulting from the integration of diverse synaptic input patterns, complex interactions among the passive and active dendritic local
currents, and the interplay between dendrite and soma to generate action potential output. For this, characterization of the relationship
between the structure and neuronal spike dynamics could provide essential information about the cellular-level mechanism supporting
neural computations. Results: This work describes simulations and an information-theoretic analysis to investigate how specific neuronal
structure affects neural dynamics and information processing. Correlation analysis on the Allen Cell Types Database reveals biologically
relevant structural features that determine neural dynamics—eight highly correlated structural features are selected as the primary set
for characterizing neuronal structures. These features are used to characterize biophysically realistic multi-compartment mathematical
models for primary neurons in the direct and indirect hippocampal pathways consisting of the pyramidal cells of Cornu Ammonis 1
(CA1) and CA3 and the granule cell in the dentate gyrus (DG). Simulations reveal that the dynamics of these neurons vary depending
on their specialized structures and are highly sensitive to structural modifications. Information-theoretic analysis confirms that structural
factors are critical for versatile neural information processing at a single-cell and a neural circuit level; not only basic AND/OR but also
linearly non-separableXOR functions can be explainedwithin the information-theoretic framework. Conclusions: Providing quantitative
information on the relationship between the structure and the dynamics/information flow of neurons, this work would help us understand
the design and coding principles of biological neurons and may be beneficial for designing biologically plausible neuron models for
artificial intelligence (AI) systems.

Keywords: Neuronal structure; Neural dynamics; Neural information; Information-theoretic analysis; Direct/indirect hippocampal path-
ways

1. Introduction

Neurons are classified structurally according to the
branching patterns of their dendrites and axons: a multipo-
lar neuron has several dendrites and an axon, a bipolar neu-
ron contains a dendrite and an axon, a pseudo-unipolar neu-
ron has an axon that splits into two branches, and a unipo-
lar neuron possesses only a single axon [1]. The multipo-
lar neurons constitute the most prevalent type in the verte-
brate central nervous system and are regarded as responsi-
ble for high-order computations while bipolar and pseudo-
unipolar neurons play important roles in the sensory system.
Unipolar neurons have only a limited role for vertebrates,
although they are the dominant type in invertebrates.

Even for the same type of neurons in the same re-
gion of the brain, the dendritic structures of neurons are
diverse [2–7], leading to different dynamics of action po-
tentials [8–10]. Neurons whose dendritic structures con-
sist of many branches [8] with a high degree of asymme-
try [9] tend to generate high-frequency regular spikes or
burst-firing. Neurons whose apical dendrites are either too

large or too small are less likely to burst upon either so-
matic or dendritic stimulation [10]. Subcellular structures
are also strongly correlated with neuronal dynamics. For
example, spines, which are tiny and highly motile mem-
brane protrusions, are the primary structure for synapse for-
mation that greatly affects neural dynamics and computa-
tions. They are morphologically classified into filopodia,
thin, stubby, mushroom, and branched types, each exhibit-
ing different physicochemical properties [11,12]. Rich dy-
namics in creation, type-transition, translocation, and clus-
tering of spines would influence the synaptic transmission
and learning. The axon initial segment (AIS), the proximal
portion of the axon beginning at the emergence of the axon
from the soma (the axon hillock) and ending at the onset
of the myelin sheath, is responsible for initiating action po-
tentials [13]. Moreover, changes in structural properties of
AIS (which usually occurs in time scales of hours to days
[14]) fine-tune the spiking behavior of neurons: if the AIS
locates distally from the soma, the somatic voltage thresh-
old [15,16] and the width of the action potential decrease
[16].
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Table 1. Structural features of neurons.
Feature Name Description

S1 Average local bifurcation angle The average angle between the first two compartments (in degree) at a bifurcation.
S2 Average contraction The average ratio between the Euclidean distance of a branch and its path length. Euclidean

distance of a branch represents the straight-line distance from the soma to the branch. The
path length is given by the sum of the lengths between each node along the path.

S3 Average diameter The average diameter of all compartments of the neuron.
S4 Average parent-daughter ratio The average ratio between the diameter of a daughter branch and its parent branch. One

value for each daughter branch is generated at each bifurcation point.
S5 Maximum branch order The maximum order of the branch. The order of a branch is defined with respect to the soma

of which the branch order vanishes. The first bifurcation has a branch order equal to unity,
the second bifurcation has a branch order two, and so on.

S6 Maximum Euclidean distance to root The maximum Euclidean distance of all nodes. Euclidean distance corresponds to the
straight line distance from the soma (root) to the node.

S7 Maximum path distance to root The maximum path distance of all nodes. The path distance is the sum of lengths of all
connected nodes from the soma, ending with that node.

S8 Number of bifurcations The number of bifurcations for the neuron. A bifurcation point has two daughters.
S9 Number of branches The number of branches in the neuron. A branch consists of one or more compartments that

lie between two branching points or between one branching point and a termination point.
S10 Number of nodes The total number of nodes in the given input neuron. A node represents a single sample

point of the neuron defined by its coordinates, a radius, and its connectivity to other nodes
in the neuron.

S11 Number of stems The number of stems attached to the soma. Except for the node designating the soma, each
node is labeled as a stem.

S12 Number of tips The number of terminal tips for the given input neuron. This function counts the number of
nodes that are terminal endpoints.

S13 Soma surface area The surface area of the soma is computed by one of twomethods. If the soma is composed of
just one node then the sphere assumption is used; otherwise, the sum of external cylindrical
surfaces of nodes forming the soma is calculated.

S14 Total length The total length of a neuron is computed as the sum of distances between two connected
nodes for all branches of the input neuron.

S15 Total surface area The total surface area of the entire neuron.
S16 Total volume The total volume of the entire neuron.

The strategies for neuron modeling are diverse, rang-
ing from simple integrate-and-fire (IF) modeling [17–19],
Hodgkin-Huxley type biophysical modeling [20,21], to
multi-compartmental biophysical approaches [22,23]. The
multi-compartmental models are of primary importance for
characterizing neural dynamics and computation because
the models can reproduce both spatial and temporal be-
haviors of neurons. Moreover, the model structure can be
highly realistic via three-dimensional morphological recon-
struction of biological neurons [23]. Ever since the pioneer-
ing work of Warren S. McCulloch and Walter Pitts in 1943
[24], developing biologically plausible neuron models for
artificial neural networks and neuromorphic systems has at-
tracted the computational neuroscience community. While
simple neuron models can be easily implemented in arti-
ficial neural networks or neuromorphic systems [25], they
are incapable of modeling properly the rich dynamics of the
dendrite, axon, and subcellular structures that are impor-

tant for neural computations [26–28]. In this context, the
ideal treatment would be to start from biophysically realistic
multi-compartment models and to reduce the models, with
the intrinsic dynamics and computational capabilities of bi-
ological neurons retained, which are then implementable in
artificial intelligence (AI) systems [25,29].

This study explores how the structural properties of
neurons affect neural dynamics and information processing.
We first analyze the Allen Cell Types Database [30] to un-
derstand correlations between structural features and elec-
trophysiological properties of biological neurons. Based on
the knowledge of biological neurons, the dynamics and cod-
ing properties of biophysically realistic multi-compartment
models for three primary neurons in the direct and indirect
hippocampal pathways are systemically investigated.

By way of outline, Section 2 (Methods) describes
structural and electrophysiological features of neurons
(2.1), multi-compartmental neuron models (2.2), and the
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Fig. 1. An information-theoretic framework for evaluating neural information processing of models for hippocampal neurons.
(a) Illustration for the CA1 pyramidal neuron. Two synaptic inputs (blue and red arrows) are presented on the apical dendrite. The
synaptic inputs are triggered by hidden states x1 and x2, with coherence α between them. The output spike train is measured at the soma
(green arrow). Exemplary patterns of the hidden state and output spike train are displayed above the corresponding arrows; that of the
excitatory postsynaptic potential (EPSP) in the upper right (red curve). Mutual information I(xi, y) between xi (i = 1 or 2) and output y
is calculated. Schematics for the (b) CA3 pyramidal neuron and (c) DG granule cell.

information-theoretic framework for evaluating neural in-
formation processing (2.3). Section 3 (Results) begins with
the correlation analysis of the Allen Cell Types Database,
which helps identify relevant structural features for deter-
mining electrophysiological properties (3.1), characterizes
the effects of structural modifications on neuronal dynamics
and computation at a single-cell level (3.2), and describes
the structural effects on the neural circuit behavior (3.3).
Section 4 combines Discussion and Conclusions.

2. Methods
2.1 Structural and electrophysiological features of neurons

We use most of the structural and electrophysiological
features introduced in the Allen Cell Types Database [30]
to characterize both biological neurons and neuron models.
Table 1 lists the structural attributes and their definitions.
In the Allen Cell Types Database, the structural attributes
(S1 to S16) are defined based on the detailed cell morphol-
ogy obtained via tissue sections in situ and reconstructions
of individual neurons [31]. The electrophysiological fea-
tures are based on information about spiking behaviors ob-
tained from whole-cell patch-clamp recordings with three

types of stimulus protocols, including long square current,
ramp current, and short square current injections [32]. The
electrophysiological features are classified into the spike
train-related features (ET1 to ET4) and spike shape-related
features (ES1 to ES36), as summarized in Supplementary
Table 1 in supplementary material.

2.2 Multi-compartment neuron models

The neuron models for three primary cells in the hip-
pocampus, i.e., the pyramidal cell in Cornu Ammonis 1
(CA1), that in CA3, and granule cell in the dentate gyrus
(DG), are systemically analyzed (Fig. 1). These mod-
els were developed by Vetter et al. (ModelDB accession
7907) [33] to examine the effects of dendrite structures on
the efficacy of the forward/backward propagation of ac-
tion potentials; the models describe realistic structures via
three-dimensional morphological reconstruction of biolog-
ical neurons [34–36]. All dendrites are divided into com-
partments with a maximum length of 7 mm. Two Hodgkin–
Huxley-type conductances (gNa and gK) are inserted into
the soma and dendrites at uniform densities. The model
is tuned by attaching a synthetic axon. The uniform pas-
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sive parameters of the model are Ri = 150 Ω·cm, Cm = 1
µF/cm2, and Rm = 12 kΩ·cm2. The standard values for
gNa and gK are 35 and 30 pS/mm2, respectively. Channel
kinetics and densities are adjusted at temperature 37 ◦C.

The synaptic conductance is described in terms of
the dynamics of ionotropic glutamate receptors such as the
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
(AMPA) receptor, based on the work by Vetter et al. [33].
The dynamic behaviors of receptors are fitted with biexpo-
nential function with the exponential rise and decay time
constants of 0.2 and 1.7 ms, respectively; a reversal po-
tential of the conductance is set to 0 mV and a maximum
synaptic conductance to 50 nS. This allows obtaining the
time evolution of the receptor conductance to evaluate the
information processing at the synapse level.

We modify the three primary structural factors (i.e.,
dendritic length, diameter, and the number of branches) to
test if these factors can influence neural dynamics and in-
formation processing. The lengths or diameters of all den-
dritic compartments in themodel are multiplied by the same
value (e.g., 2-fold increase or 0.5-fold decrease). The num-
ber of branches is varied in the following manner: either
new branches with fixed diameter and length (e.g., 0.5 µm
in diameter and 156 µm in length) are added to the bifur-
cation sites (i.e., nodes of a parent branch segment where
the branch is divided into two daughter branches) of the
parent branches, or the shorter branches on the randomly
chosen bifurcation sites are deleted. All simulations have
been performed via the NEURON program (v7.8, https:
//neuron.yale.edu/) [37,38] with a time step of 0.01 ms.

2.3 Information-theoretic framework
Mutual information between a presynaptic binary hid-

den state and the axonal output spike train provides a useful
tool for characterizing neural information processing of the
neuronmodels. We extend the information-theoretic frame-
work, first suggested by Denève and colleagues [39–43],
to include multiple synapses and hidden states, similarly to
our previous work [44]. The binary hidden state of a neuron
represents a stimulus that appears and disappears randomly.
For instance, the stimulus may correspond to a bar with a
given orientation in a visual receptive field or a sound with
a preferred frequency. Each of the hidden states x1 and x2
takes the value 1 or 0 for the state on or off, respectively.
The coherence between x1 and x2 is measured by α in the
range [0, 1]: α vanishes for the two states behaving inde-
pendently while it is set equal to unity for the two fully syn-
chronized.

The binary hidden states follow aMarkov process with
the composite hidden state (x1, x2) that changes according
to the transition probability p(x1x2 → x′1x′2) from (x1, x2)
to (x′1 , x′2 ):

p(00 → 00) = (1− pon )
2
+

(
pon − p2on

)
α,

p(00 → 01) = p(00 → 10) =
(
pon − p2on

)
(1− α),

p(00 → 11) = p2on +
(
pon − p2on

)
α,

p(01 → 00) = p(10 → 00) = (1− pon ) poff ,

p(01 → 01) = p(10 → 10) = (1− pon ) (1− poff ) ,

p(01 → 10) = p(10 → 01) = pon poff ,

p(01 → 11) = p(10 → 11) = pon (1− poff ) ,

p(11 → 00) = p2off +
(
poff − p2off

)
α,

p(11 → 01) = p(11 → 10) =
(
poff − p2off

)
(1− α),

p(11 → 11) = (1− poff )
2
+
(
poff − p2off

)
α,

(1)

where pon = ronδt and poff = roffδt with the simulation
time step δt and rate parameters ron and roff . The synaptic
inputs triggered by hidden state xi follow a Poisson pro-
cess with rates qon and qoff for xi = 1 and 0, respectively.
The postsynaptic spike train y(t) is defined as follows: It
takes the value unity (y = 1) or vanishes (y = 0) accord-
ing to whether or not the membrane potential of the soma
crosses 0 mV in the positive direction. For the simulations
with a single hidden state x, the transition probability is the
marginal distribution of Eqn. 1.

The mutual information I(xi; y) between the hidden
state xi and the postsynaptic spike train y is given by

I (xi; y) = H (xi)−H (xi | y) , (2)

where the entropy H(xi) of xi is estimated as

H (xi) = −⟨xi⟩ log2 ⟨xi⟩ − (1− ⟨xi⟩) log2 (1− ⟨xi⟩)
(3)

and the conditional entropy

H (xi | y) = −⟨xi log2 p (xi = 1 | y) + (1− xi) log2 p (xi = 0 | y)⟩
= −⟨xi log2 p (xi = 1 | y) + (1− xi) log2 [1− p (xi = 1 | y)]⟩

(4)
with angled brackets denoting time averages. The condi-
tional probability p(xi | y) is computed by calculating the
posterior log-likelihood of the hidden state being on (xi =
1), based on the input history:

Li(t) = log2
p (xi = 1 | y)
p (xi = 0 | y)

. (5)

We estimate the posterior log-likelihood Li via the dif-
ferential equation:

dLi

dt = ron (1 + exp [−Li])− roff (1 + exp [Li]) + wδ[y(t)− 1] + θ

(6)
where w ≡ log(f on,i/f off,i) and θ ≡ f on,i–f off,i with the
mean postsynaptic firing rates f on,i and f off,i for xi = 1
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Fig. 2. Correlations between the structural and electrophysiological features of biological neurons in the Allen Cell Types
Database. (a) Pearson correlation coefficients between structural features (S1 to S16) and electrophysiological features regarding spike
shape (ES1 to ES36) and (b) spike train (ET1 to ET4). The value and sign of the Pearson correlation coefficient are color-coded; the color
scale bar is presented at the bottom of (b). (c) List of structural and electrophysiological features considered in this study. Each of the
spike shape-related features has three different values according to the current injection modes. For instance, the ‘threshold current’ is
denoted as ES1 when the output spike is measured upon a long square current injection, ES2with a ramp injection, and ES3 for a short
square mode. Other spike shape-related features are also displayed in the same order. Eight structural features (S5, S7, S8, S9, S12, S14,
S15, and S16) taken as the primary set to characterize neuron models are marked with asterisks (*). See Table 1 in Methods for detailed
descriptions of the structural features and Supplementary Table 1 in the supplementary material for electrophysiological features.

and 0, respectively. The Dirac delta function δ[y(t)–1] pro-
duces a discontinuous jump when the postsynaptic neuron
fires. Eqs. (5) and (6) give p(xi=1| y), which is used for
calculating Eq. (4) and thus I(xi; y).

3. Results
3.1 Correlations between structural and
electrophysiological features of biological neurons

Fig. 2 displays Pearson correlation coefficients be-
tween the structural and electrophysiological features (i.e.,
spike shape-related features, denoted as ESi for i = 1,…, 36
and spike train-related ones, ETi for i = 1, …, 4) of biologi-
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Fig. 3. Correlation analysis of the biological neurons in the Allen Cell Types Database. The most strongly correlated electrophysio-
logical feature for each of the primary structural features is displayed: (a) S5, (b) S7, (c) S8, (d) S9, (e) S12, (f) S14, (g) S15, and (h) S16.
The black dashed line denotes the trend by linear regression and r is the Pearson correlation coefficient.

cal neurons in the Allen Cell Types Database. While the av-
erage single-neuron structural features, i.e., ‘average local
bifurcation angle S1’, ‘average contraction S2’, ‘average di-
ameter S3’, and ‘average parent-daughter ratio S4’, are not
strongly correlated with either spike shape- or spike train-
related features, the non-averaged structural features (S5 to
S16) generally exhibit relatively high positive/negative cor-
relations with the electrophysiological features.

The ‘threshold currents (ES1 to ES3)’ are positively
correlated with most of the non-averaged structural features
(S5 to S16). In particular, the correlations are much higher
with the short square input currents (with the Pearson corre-
lation coefficients ranging from 0.30 to 0.75 for ES3), com-
pared with the long square (–0.06 to 0.24 for ES1) or ramp
(0.03 to 0.41 for ES2) modes (Fig. 2a). Several features
such as ‘threshold time (ES5)’, ‘peak time (ES8)’, ‘trough
time (ES11)’, ‘fast trough time (ES14)’, and ‘slow trough
time (ES17)’ have positive correlations with the structural
features only when the ramp current injection is applied
(Fig. 2a). Upon all three injection types (i.e., long square,
ramp, and short square modes), ‘peak voltages (ES22 to
ES24)’ and ‘upstroke-downstroke ratios (ES34 to ES36)’ are
positively correlated with most of the structural features. In
contrast, ‘threshold voltages (ES19 to ES21)’ are negatively
correlated with the structural features for all the input types.
For the spike train-related features, ‘average interspike in-
terval (ET1)’, ‘latency (ET2)’, and ‘adaptation index (ET3)’
are positively correlated with the structural features, but the
‘I-f curve slope (ET4)’ is negatively correlated.

Overall, among the non-averaged features (S5 to S16),
the following features exhibit relatively higher correla-
tions with the above-mentioned electrophysiological fea-
tures: ‘maximum branch order (S5)’, ‘maximum Euclidean
distance (S6)’, ‘maximum path distance (S7)’, ‘number

of bifurcations (S8)’, ‘number of branches (S9)’, ‘num-
ber of nodes (S10)’, ‘number of tips (S12)’, ‘total dendritic
length (S14)’, ‘total surface area (S15)’ and ‘total volume
(S16)’. However, ‘maximum Euclidean distance (S6)’ and
‘number of nodes (S10)’ may not be defined in the multi-
compartment neuron models used in the present study. Ac-
cordingly, the eight structural features (S5, S7, S8, S9, S12,
S14, S15, and S16, each marked with an asterisk (*) in
Fig. 2c) are considered as the primary set for characteriz-
ing neuronal structure in most analyses.

Fig. 3 illustrates that the eight primary structural fea-
tures (i.e., S5, S7, S8, S9, S12, S14, S15, and S16) are highly
correlated with the electrophysiological features. Each
panel displays the relationship between each structural fea-
ture and its most strongly correlated partner. Most struc-
tural features have the highest Pearson correlation coeffi-
cient values for ES3 (i.e., Threshold current to evoke action
potentials upon short square input) except S5 and S7; S5 and
S7, which exhibit the highest values with ES23 (Peak volt-
age upon ramp input) and ES22 (Peak voltage upon long
square input), respectively. The highest Pearson correla-
tion value amounts to 0.75 for the case between S14 and
ES3 (Fig. 3f). The full list of Pearson correlation values is
presented in Supplementary Table 2 in the supplementary
material.

3.2 Influence of structural change on neuronal dynamics
and information processing

The essential dynamic behaviors of the three hip-
pocampal neurons are exhibited in Fig. 4. The long square
current input for one second is fed into the soma, and the
output spike train at the soma is measured. The I-f curve,
which represents the relation between firing rate f and the
magnitude I of the input current, is presented in the first

6

https://www.imrpress.com


Fig. 4. Dynamics of three hippocampal neurons: (a) pyramidal neuron in CA1 and (b) pyramidal neuron in CA3, and (c) granule
cell in the dentate gyrus. The first row displays the I-f curves, followed by the time evolution of output spike trains (left) and the phase
portraits of steady-state dynamics (100–200 ms) on the V̇ -V plane (right) in the second row.

row of Fig. 4. The I-f relations of CA1 and CA3 pyrami-
dal neurons show similar patterns, with their maximum fre-
quencies around 190 Hz, observed at the input current I ~
1.26 nA and 1.03 nA for the CA1 neuron and CA3 neuron,
respectively. The maximum frequency for the DG granule
cell is approximately 315 Hz, much higher than pyramidal
neurons. In addition, the rheobase (i.e., the minimum cur-
rent amplitude that results in an action potential) value for
the DG granule cell is much lower than those for the CA1
and CA3 pyramidal neurons.

Upon the input current I = 1.1 nA (indicated with ver-
tical dotted line), while the CA1 neuron and DG cell show
the regular spiking with a frequency of 158 Hz (for CA1
neuron) and 277 Hz (DG cell), the CA3 neuron manifests
bistability at the point called the depolarization block—a
silent state that occurs in every neuron when it receives ex-
cessive excitation [45]. These dynamical changes of the
spike train are captured by the phase portrait of membrane
potential V and its time derivative V ≡ dV/dt (right panel
in the second row of Fig. 4). At I = 1.1 nA, the limit cycle
attractors of CA1 neuron and DG cell reflect their regular
spiking behaviors with intrinsic frequencies; CA3 neuron
is at the point of transition from the regular spiking to the
silent state as represented by a fixed point.

Fig. 5 exhibits how structural modifications affect
neural dynamics of the CA1 pyramidal neuron. The result-
ing neural dynamics upon the structural modifications ex-
hibit reasonable operations. The first column of each row
displays the modified structure, followed by the character-
ization of the structure using the primary features (S5, S7,
S8, S9, S12, S14, S15, S16) of the Allen Cell Types Database
(see Table 1 and Fig. 2c); the changes are presented relative
to the default values before structural modifications, indi-
cated as Si(0) for i = 5, 7, 8, 9, 12, 14, 15, and 16 (i.e.,
fold increase or decrease with respect to the default value,
Si/Si(0)). The last two columns display the I-f curve and
phase portrait on the V -V̇ plane. The simulation condition

has been taken the same as in Fig. 4: the output spike train
is obtained at the soma upon the long square current input
for one second.

When the dendritic lengths are increased by 2-fold
from the total basal dendritic length of 15.76 mm (Fig. 5a),
two directly related structural features ‘maximum path dis-
tance (S7)’ and ‘total dendritic length (S14)’ are doubled;
‘total surface area (S15)’ and ‘total volume (S16)’ exhibit
~2-fold increases. The I-f curve (the third column) moves
to the right, indicating that the rheobase and the threshold
current for depolarization block become higher. At a given
input current (e.g., I = 0.4 nA, marked with the vertical dot-
ted line), the neuronal firing is reduced compared to the dy-
namics of the original model (the green curve). In contrast,
when dendritic lengths are decreased in half (i.e., S14/S(0)14

= 0.5), its I-f curve is shifted to the left, indicating that
the modified model can fire under smaller input currents
(i.e., lower rheobase) than the normal model (Fig. 5b). The
threshold current for the depolarization block is also lower
than the default value. The shapes and sizes of the limit
cycles of the modified structures are significantly changed
from that of the normal structure (the last column of Fig. 5);
this implies that the meaningful change in the spiking be-
havior occurs upon the modification of dendritic length.

We now compare the results of varying the dendritic
lengths with those frommodifications of the number of den-
dritic branches. Dendritic branches are added to make the
total dendritic length double (Supplementary Fig. 1a in
Supplementary material): a branch (156.07 µm in length,
0.5 µm in diameter) is added to each of all 101 bifurca-
tion points, leading to a total increase of about 15.76 mm.
In accord, five features related directly to the modifica-
tion, ‘maximumbranch order (S5)’, ‘number of bifurcations
(S8)’, ‘number of branches (S9)’, ‘number of tips (S12)’,
and ‘total dendritic length (S14)’ are doubled (i.e., Si/Si(0)
≈ 2 for i = 5, 8, 9, 12, and 14) (the second column of Sup-
plementary Fig. 1a). Dendritic branches are randomly
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Fig. 5. Influence of structural changes in the CA1 pyramidal neuron dynamics: (a) 2-fold increase and (b) 0.5-fold decrease in the
dendritic length, and (c) 2-fold increase and (d) 0.5-fold decrease in the dendritic diameter. The first column displays the modified
model structures, followed by the characterization of modified structures using the primary structural features of the Allen Cell Types
Database (the second column) and the I-f curves (the third column). The I-f curves of the original structure and of the modified structure
are plotted in green and in black, respectively. The last column exhibits the phase portrait on the V -V̇ plane at I = 0.4 nA. The black solid
line/dot and the green dashed line represent the results with and without structural changes, respectively.

removed to reduce the total dendritic length in half (i.e.,
S14/S(0)14 ≈ 0.5). When the number of dendrites is increased
by 2-fold, the I-f curve moves to the right (Supplementary
Fig. 1a), whereas upon removing the dendritic branch
the operation range is extended (i.e., the rheobase is de-
creased and the threshold for depolarization block is in-
creased) (Supplementary Fig. 1b). Although the total
dendritic length change is the same as the corresponding
modifications of dendritic lengths without adding or remov-
ing any branches (Fig. 5a and 5b), the shapes of I-f curves
are significantly different between each of the correspond-
ing conditions (Fig. 5a and 5b): the model with 2-fold in-
creased dendritic length (Fig. 5a) exhibits a larger operation
range, exhibiting a lower rheobase and a higher threshold
current for depolarization block. The model with a 0.5-fold

decreased dendritic length (Fig. 5b) has a similar rheobase
value as the case of deleting branches (Supplementary Fig.
1b), but the threshold current for depolarization block is
much lower. It is revealed that the dendritic diameter also
has a significant influence on the spike dynamics as cap-
tured by the I-f curve. Unlike previous structural modifica-
tions, increasing the diameter by 2-fold significantly lowers
the maximum frequency of firing to ~ 57 Hz (Fig. 5c), and
decreasing the diameter by 0.5-fold (Fig. 5d) promotes the
maximum frequency to ~ 237 Hz (at I = 1.6 nA). Again,
the phase portraits on the V -V̇ plane manifest significantly
different output spike trains between the different struc-
tural modifications. The shapes of action potentials are not
changed notably upon all the structural variations (data not
shown).
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Fig. 6. Effects of stimulus location on dynamics and information processing of the CA1 pyramidal neuron. (a) Schematic diagram
of information transfer in the neuron. The path that we focused on the dendritic tree is colored in red and the locations of the synaptic input
(i.e., A to G) are marked with blue dots. The dynamics of the neuron when the synapse is placed on D is shown on the right. Synaptic
input triggered by the hidden state x is transmitted through the AMPA-type glutamate receptors on the spine. The stimulation changes
the conductance of the receptors, which in turn evokes the excitatory postsynaptic potential (EPSP). The EPSP is propagated down from
the dendrite to soma. Mutual information I(x; y) between hidden state x and spike train y at the soma is quantified. (b) Dependence of
postsynaptic firing rate f on presynaptic firing rate qon for each location of synaptic input (i.e., A–G). The circles are colored according
to the location of the stimulus as follows: black denotes location A; brown, B; pink, C; red, D; green, E; orange, F; blue, G. Error
bars indicate standard error of five independent simulations. Circles for locations A–C overlap at all points. (c) Dependence of mutual
information I(x; y) on qon. (d) Dependence of f and I(x; y) on the location of the stimulus when qon= 200 Hz. Filled and empty circles
indicate f and I(x; y), respectively. In (b) and (c), circles representing frequencies and mutual information upon the stimuli at locations
A, B, C overlap each other; their values are all zero because no action potentials are generated.

The detailed dynamics and information processing of
the CA1 pyramidal neuron model are displayed in Fig. 6.
The schematic diagram in Fig. 6a illustrates the information
transfer pathway in the neuron. The hidden state triggers
a synaptic input that stimulates the AMPA-type glutamate
receptors of a synapse located on a dendritic spine. The
resulting EPSP travels from the dendrite to the soma. The

mutual information I(x; y) quantifies the total information
transmitted from the hidden state to the postsynaptic spike
train. The presynaptic stimulus is provided on a synapse
at one of seven equidistant locations on an apical dendrite
branch labeled A–G; the seven locations are 50 µm apart
with distances ranging from 100 (A) to 400 µm (G) from
the soma along the dendritic branch in three-dimensional
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Fig. 7. Characterizations of the hippocampal direct and indirect pathways. (a) Schematic diagram of the circuit constructed using
pyramidal neurons in CA1 and CA3, and a granule cell in DG. Two hidden states x1 and x2, coupled with a coherence α = 0.1, trigger
synaptic inputs from the entorhinal cortex to the hippocampal neurons. The input triggered by x1 stimulates a distal synapse located on
the dendrite of the CA1 pyramidal neuron and the input triggered by x2 stimulates the DG granule cell, which transmits the signal to
the CA3 pyramidal neuron; this in turn stimulates a proximal synapse on the dendrite of CA1 pyramidal neuron. (b) Primary structural
features (see Fig. 2) of the neurons in the circuit. Black, gray and white colors indicate the CA1 pyramidal neuron, CA3 pyramidal
neuron, and DG granule cell, respectively. Each structural feature has its own unit: S5, 101; S7, 103 µm; S8, 102; S9, 102; S12, 102; S14,
104 µm; S15, 104 µm2 and S16, 104 µm3. (c) The effect of presynaptic firing rate qon,i on the mutual information I(xi; y) between the
hidden state xi and the output y of the CA1 pyramidal neuron. Orange crosses indicate mutual information of the direct pathway I(x1; y)
as a function of qon,1 with qon,2 fixed to 1 Hz, while blue filled circles denote the mutual information of the indirect pathway I(x2; y) as
a function of qon,2 with fixed to 1 Hz. Error bars represent the standard deviations of five independent simulations.

space. On the right of Fig. 6a, the time evolutions of the
hidden state, the conductance of the AMPA-type glutamate
receptor, EPSP, and the membrane potential of the soma are
shownwhen the presynaptic stimulus is provided at location
D.

Fig. 6b and 6c display the firing rate and mutual infor-
mation of the CA1 pyramidal neuron upon varying presy-
naptic firing rate qon. The minimum qon required for firing

(i.e., threshold) is much lower for proximal locations such
as G and F than for distal ones. The threshold values in-
crease nonlinearly with the distance from the soma. Both
the firing rate and mutual information increase in a roughly
linear manner once the threshold is reached. Fig. 6d plots
the postsynaptic firing rate andmutual information for vary-
ing stimulus locations at qon = 200 Hz: there are no neural
activity and information transfer when the presynaptic in-

10

https://www.imrpress.com


Fig. 8. Information processing of the hippocampal pathways depending on the location of synapses in the (a) CA1 pyramidal
neuron receiving input from the direct pathway and (b) indirect pathway, (c) CA3 pyramidal neuron, and (d) DG granule cell.
The coloring and symbols are the same as in Fig. 7. The location of the synapse is expressed as the path distance r from the soma. Firing
rates qon,i (i = 1 or 2) are set to be 150 Hz. Error bars indicate standard errors for five independent simulations.

puts are provided at locations A to C. In contrast, the dy-
namics and information transfer drastically increase as the
input location is moved further toward G.

The information processing of the CA1 pyramidal
neuron shown in Fig. 6 can be mapped to AND/OR-like
Boolean operations depending on the synaptic location.
When the stimulus is given proximal to the soma (e.g., G),
a low qon is sufficient to evoke the postsynaptic neuronal
activity and the information transfer—this can be mapped
to an OR logic gate in which only one ‘true’ input is neces-
sary for ‘true’ output. For distal locations (D or E), a higher
qon is required for the neuronal activity/information trans-
fer, which corresponds to an AND gate that needsmore than
one ‘true’ input for ‘true’ output. At locations A to C, the
synapse is insufficient to transfer information by itself and
cannot be mapped to a logic operation within the observed

qon values (0–300 Hz).

3.3 Structural effects on the hippocampal pathways

Based on the single-cell level information, we analyze
the information processing of the direct and indirect hip-
pocampal pathways consisting of CA1, CA3, and DG cells.
This circuit is a computational representation of the biologi-
cal two-input system of CA1 [46–48], where the CA1 pyra-
midal neuron can take inputs either directly or indirectly.
This circuit is the primary information processing unit for
match/mismatch calculation between what is encountered
and what is expected—this continuous calculation is impor-
tant for memory encoding and retrieval in the hippocampus
[49–51]. Hidden state x1 of the entorhinal cortex initiates
the direct pathway of the circuit, where the input triggered
by x1 is delivered to a distal region of the CA1 dendrite.
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Hidden state x2 is a part of the indirect pathway, whereby
the input propagates from DG, through CA3, to a proximal
region of CA1 (Fig. 7a). Two hidden states x1 and x2 are
coupled with the coherence α, which is set equal to 0.1.

The structural properties of the three neurons in the
circuit are characterized using the eight primary struc-
tural features obtained from the Allen Cell Types Database
(Fig. 7b). Most of the features are the largest for the CA1
pyramidal neuron and the smallest for the DG granule cell.
However, total volume (S16) is the largest for the CA3 pyra-
midal neuron, followed by the CA1 pyramidal neuron and
the DG granule cell.

The dynamic ranges of mutual information of the two
pathways for the firing rate are compared in Fig. 7c. Over-
all, both mutual information increase with the firing rate:
the mutual information of the indirect pathway is higher
than that of the direct pathway under a relatively lower fir-
ing rate (i.e., qon < ~120 Hz), whereas they are reversed
at higher firing conditions. This result from circuit analysis
can be applied to optimal circuit control, as the input con-
trol is usually the most accessible parameter to modify. For
example, let us consider the goal to ensure a similar level of
information transfer from both the direct and indirect path-
ways; then the correct choice would be around I(x1, y) =
I(x2, y) = 0.2, qon,1 ~ 200 Hz and qon,2 ~ 500 Hz.

Variations of information flow upon change of the lo-
cation of synapses have been systemically examined. The
location of a synapse is varied while keeping the others at
the initial location (Fig. 8)—the dendritic length and den-
dritic diameters are fixed, while both the direct and indirect
pathways are activated at the same time (qon,1 = 150/qon,2 =
150). For each condition, we calculate the mutual informa-
tion I(xi, y) between xi (i = 1 or 2) and the output y. Themu-
tual information increases as the synapses are located closer
(proximal) to the soma, but up to an extent. The signal gets
saturated, where the mutual information starts to drop af-
terward. We have observed a similar trend when pushing
other variables to induce a stronger response. One interest-
ing observation we make is on the proximal synapse of the
CA1 pyramidal neuron, where the signal from the indirect
pathway is overwhelmed by the signal from the direct path-
way when the proximal synapse is too close to the soma.
The locations of two synapses to CA1 have considerable in-
fluence on the overall operation of the circuit and must be
finely tuned such that none of the pathways dominate the
output. The structural features of each neuron can also be
tuned to maximize the difference between the mutual infor-
mation when only one of the pathways is turned on. For the
ideal operation of the circuit, the location of two synapses
must be placed optimally, which can be inferred from Fig. 8.

We then explore how the modification of neuronal
structure can control the information processing of the di-
rect and indirect hippocampal pathways. The mutual in-
formation increases with shorter dendritic length (L) and
smaller dendritic diameter (D) (Fig. 9). Again, the primary

structural features are used for describing these structural
modifications. Modifying L or D has similar structural ef-
fects for all three neuron types. Four structural features,
S7, S14, S15, and S16, have a linear relationship with L. As
D increases, S15 also increases linearly, while the increase
of S16 is proportional to D2. Here, either direct or indirect
pathway is activated (i.e., qon,1 = 150/qon2 = 1 or qon,1 =
1/qon,2 = 150) to characterize the information processing
of each pathway. In the CA1 pyramidal neuron, which is
the only neuron in the circuit in the direct pathway, struc-
tural features (S7, S14, S15, and S16 for length modifica-
tion; S15 and S16 for diameter modification) are negatively
correlated with I(x1; y). For the indirect pathway, I(x2; y)
remains unchanged by the length modification in CA1 and
CA3 pyramidal neurons. When the diameter is modified,
I(x2; y) shows the inverted sigmoidal shape. Exceeding cer-
tain values of S15 and/or S16 might induce a rapid decrease
in I(x2; y). Structural modifications of the DG granule cell
result in a different outcome. As the length of the dendrite is
increased, S7, S14, S15, and S16 show negative correlations
with I(x2; y), and diameter modification of the DG granule
cell makes no change in I(x2; y).

We notice that the trend is not universal, as certain
parts of the circuit have a very limited impact on control-
ling the mutual information. This is particularly recogniz-
able when the indirect pathway is activated. Structural fea-
tures such as the dendritic diameter of DG (DDG), dendritic
length of CA3 (LCA3), and dendritic length of CA1 (LCA1)
have minimal influence on the mutual information, making
these features nonoptimal targets for neural circuit control.

The results under high coherence conditions (i.e., α =

0.9) are presented in Supplementary Fig. 2 in the sup-
plementary material. When two inputs are highly coher-
ent, the profile of the mutual information from the indirect
pathway is synchronized strongly to that of the direct path-
way. Furthermore, we see a non-negligible basal level of
the mutual information regardless of the input status, re-
ducing the overall dynamic range. By comparing the re-
sults under low and high coherence conditions, we identify
conditions that can be mapped to the specific Boolean logic
operations. The OR operation is trivial as the CA1 neuron
can transfer signals from either direct or indirect pathway
and both at the same time, as long as the circuit is config-
ured to process signals through each pathway. The AND
operation emerges when signals from individual pathways
are configured to be weak (e.g., both synapses to CA1 are
too distal or the dendritic length and diameter are too large),
but the synchronized input from both pathways starts to re-
cover I. We also notice the possibility of the XOR-like op-
eration by controlling the firing rate under low coherence
conditions. When firing rates qon from both pathways are
high, the signal can get saturated and I starts to drop; this
XOR-like nature may contribute to the intrinsic computa-
tional capability of the circuit, that is mismatch/match cal-
culations for memory encoding/retrieval [49–51].
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Fig. 9. Influence of structural changes of the (a) CA1 pyramidal neuron, (b) CA3 pyramidal neuron, and (c) DG granule cell on
the information processing of direct and indirect hippocampal pathways. Left and right columns indicate the modification in length
LR and diameter DR of the corresponding neuron (Subscript R denotes CA1, CA3, or DG). The top panels of each subfigure represent
the eight primary structural features (see Fig. 2) changed by the structural modification. In the remaining figures, mutual information
I(x1; y) between hidden state x1 and output y of the CA1 pyramidal neuron is marked with orange crosses and I(x2; y) with blue-filled
circles. For the simulation of I(x1; y) or I(x2; y), firing rates (qon,1, qon,2) have been taken to be (150 Hz, 1 Hz) or (1 Hz, 150 Hz).
Standard errors have been calculated in five independent simulations.

4. Discussion and conclusions
This study has investigated the structural aspects of

neural dynamics and computations via computer simula-
tions and information-theoretic analysis. Beginning with an
exploration of the Allen Cell Types Database [30] to obtain
the correlations between structural and electrophysiological
features of biological neurons, we have systemically inves-
tigated the neuronal dynamics through biophysically real-
istic multi-compartment mathematical models. The three
primary cells in the hippocampus (two pyramidal neurons,
one in the CA1 region and the other in the CA3 region,

and a granule cell of the dentate gyrus) have been chosen
for the computational analysis. These neurons are adequate
for characterizing the relationship between neural dynamics
and underlying structural mechanisms at both the single-
neuron scale and their interactions: the neurons not only
have intrinsic dynamical and coding properties rooted in
their structures but also contribute to mismatch/match de-
tection via the direct/indirect hippocampal pathways [51–
54]. Although their computational properties have attracted
the interest of both theoreticians and experimentalists, de-
tailed dynamics and mechanisms underlying their compu-
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tational capabilities remain to be clarified. The analysis has
been extended with information-theoretic methods to char-
acterize how neuronal structure affects Boolean logic oper-
ations at the single-cell level and higher-level computations
through the hippocampal pathways.

The Allen Cell Types Database is a large unique
dataset containing quantitative structural and electrophys-
iological features measured via the standardized proce-
dure. In the database, structural features (S1 to S16) are
described based on the cell morphology information from
tissue sections in situ and that from reconstructions of in-
dividual neurons. In addition, electrophysiological fea-
tures, i.e., spike shape-related (ES1 to ES36) and spike train-
related features (ET1 to ET4), have been defined accord-
ing to the cell firing properties obtained from whole-cell
patch-clamp recordings. Both structural and electrophys-
iological features are necessary for inferring the correla-
tions between the structural features and neural dynamics
that are usually expressed in terms of electrophysiologi-
cal properties (Fig. 2). The selected structural features ex-
hibiting high correlations with the electrophysiological fea-
tures have been used for characterizing biophysically real-
istic multi-compartment neuron models for the three pri-
mary hippocampal neurons. In consequence, ten biolog-
ically relevant structural features for neuronal dynamics
have been obtained: ‘maximum branch order (S5)’, ‘max-
imum Euclidean distance (S6)’, ‘maximum path distance
(S7)’, ‘number of bifurcations (S8)’, ‘number of branches
(S9)’, ‘number of nodes (S10)’, ‘number of tips (S12)’, ‘to-
tal dendritic length (S14)’, ‘total surface area (S15)’ and ‘to-
tal volume (S16)’. Then eight features out of the ten have
been selected: excluded are S6 and S10, which cannot be
properly defined for the neuron models. The eight primary
features are highly correlated with electrophysiological fea-
tures as illustrated in Fig. 3 and Supplementary Table 2.

It is manifested that the structural differences among
the three primary neurons of the hippocampus lead to large
variations in their dynamics. Operation ranges (i.e., the in-
put current between rheobase and the threshold for the de-
polarization block) and maximum frequencies have turned
out to differ significantly, as revealed in the I-f profiles (the
first row of Fig. 4). In addition, as exhibited by the phase
portraits of the output spike trains, their intrinsic spiking
behaviors vary according to their unique structures. We
have then compared systematically these neurons upon the
structural modifications and probed the link between spe-
cific structural features and the dynamical properties: the
branching patterns have been modified by adding or re-
moving small dendrite branches at bifurcation points, and
the dimensions of dendrites have been altered by increas-
ing/decreasing the dendrite length or diameter (Fig. 5). As
implied by the modified model structures (the first column
of Fig. 5) and the profiles of the structural measures (S5, S7,
S8, S9, S12, S14, S15, S16) (the second column), the neu-
ral dynamics varies significantly, depending on the specific

structural modifications.
We have also analyzed themore realistic model of a rat

neocortical layer 5 pyramidal neuron. The model includes
nine ion channels to faithfully reproduce both perisomatic
Na+ and dendritic Ca2+ firing behaviors [55], wherein six
types of ionic currents (i.e., fast inactivating sodium cur-
rent, persistent sodium current, muscarinic potassium cur-
rent, slow inactivating potassium current, fast inactivation
potassium current, and fast/non-inactivating potassium cur-
rent) are uniformly distributed, while three types (i.e., non-
specific cation current, high voltage-activated calcium cur-
rent and low voltage-activated calcium current) are nonuni-
formly distributed. The effects of structural modifications
of length and diameter (Supplementary Fig. 3) are in
good agreement with the results of the multi-compartment
neuron models based on uniform ion channel distributions
(Fig. 5). Upon increasing dendritic lengths or diameters,
the I-f curve of the neocortical layer 5 pyramidal neuron
is shifted to the right and the size of the limit cycle on the
phase portrait is reduced as in the case of the CA1 pyramidal
neuron (Fig. 5); decreasing dendritic lengths or diameters
leads to a shift in the I-f curve to the left and an increase of
the limit cycle size. The characterization of simple neuron
models and realistic rodent models provides a starting point
for understanding the intrinsic properties of human neocor-
tical neurons. While our understanding of human neurons
is often inferred frommodels based on rodent data, the mor-
phological and biophysical differences between human and
rodent neurons may influence neural dynamics and infor-
mation processing in various ways. The recent develop-
ment of computational models for human layer 5 cortical
neurons by Rich and colleagues lay a foundation for quan-
titative analysis on the inter-species differences [56].

We have used information theory [57,58] to examine
whether the structural modifications of neurons can influ-
ence the intrinsic computational abilities of neurons. Ever
since the seminal work of MacKay and McCulloch in 1952
[59] that first quantified the information contained in a spike
train, numerous measures based on the classical informa-
tion theory [57] have been devised to quantify information
processing in single neurons and between neurons through
synaptic transmission. Among these are mutual informa-
tion which measures the overlapping information between
two quantities (e.g., presynaptic input and postsynaptic out-
put) [58], transfer entropy which measures the directional-
ity of information flow [60,61], and partial information de-
composition which separates the unique, shared, and syn-
ergistic contributions of multiple quantities [62]. We have
adopted the method originally proposed by Denève and col-
leagues [39–43], to measure the mutual information be-
tween a hidden state that triggers presynaptic inputs and
the postsynaptic output spike trains; this framework pro-
vides an ideal means to measure the information process-
ing of a single neuron. Extending this method, we have
included two hidden states to characterize the information
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processing performed by a neuron receiving inputs from
two information sources, which provides a tool to study nat-
urally the hippocampal pathways for mismatch/match cal-
culations via the direct/indirect mutual information flows
that can be interpreted as the XOR Boolean logic opera-
tions [51–54] (Fig. 9 and Supplementary Fig. 2). It has
been demonstrated that structural features greatly influence
the information processing and logic operation performed
at both the single-neuron (i.e., CA1 pyramidal neuron) level
(Fig. 5) and the multi-cellular level (Fig. 9 and Supplemen-
tary Fig. 2).

The quantitative information on the relationship be-
tween the structure and the dynamics/computation of neu-
rons may provide a starting point for the in-depth under-
standing of the design and coding principles of biological
neurons. As we have presented evidence here, the struc-
tural properties of neurons strongly affect the neural dynam-
ics and information processing—this will eventually guide
the cellular-level mechanisms of neural computations in-
cluding the integration of diverse synaptic input patterns
[48,63], complex interactions among the passive and active
dendritic local currents [64], and finally the interplay be-
tween dendrite and soma for determining the action poten-
tial output [8,65–67]. While this computational approach
aims to unveil structural aspects of neurons under phys-
iological conditions, the methods can be applied to ex-
plore the pathological changes in neurons. For example,
in Alzheimer’s disease neurons adjacent to amyloid-β (Aβ)
plaques are characterized by hyperactivity while neurons in
the combined presence of Aβ and tau pathology exhibit hy-
poactivity [68]; our methods can be used to investigate the
mechanisms behind such pathological changes in neural dy-
namics. Furthermore, this approach may be beneficial for
designing biologically plausible neuronmodels for artificial
neural networks and neuromorphic systems.
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