Supporting Information

A rhodamine derivative probe for highly selective detection of Cu(II)

Liming Hu, Yifan Lin, Peng Wang, Hongsheng Zhang, Minyao Liu, Shanyan Mo*

College of Life Science and Chemistry, Beijing Key Laboratory of Environmental and Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China

E-mail: mo@bjut.edu.cn; Tel: +86 15901109693

CONTENTS

1. Experimental conditions
2. Supplementary Table 1
3. Spectral Characterization
1. Experimental conditions

All reagents used are obtained from commercial procurement channels and can be used directly without purification. Different test interference ion solutions were prepared from different chloride salts such as HgCl₂, KCl, CdCl₂, NaCl, BaCl₂, AlCl₃, CoCl₂, MgCl₂, CaCl₂, PbCl₂, FeCl₂, MnCl₂, FeCl₃, ZnCl₂, and NiCl₂. Use dimethyl sulfoxide (DMSO) to prepare a 10 mM probe stock solution, which is diluted with PBS (pH=7.4) buffer solution during the test. The copper ions used in the spectroscopy experiments are all from CuSO₄, and distilled deionized water is used throughout the experiment.

2. Supplementary Table 1. Fluorescent probes for Cu²⁺ detection.

<table>
<thead>
<tr>
<th>Probe</th>
<th>λ_ex</th>
<th>λ_em</th>
<th>Detection limit</th>
<th>Imaging applications</th>
<th>Reaction type</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Probe 1]</td>
<td>556 nm</td>
<td>580 nm</td>
<td>7 nM</td>
<td>HeLa cells</td>
<td>Coordination</td>
<td>[1]</td>
</tr>
<tr>
<td>![Probe 2]</td>
<td>710 nm</td>
<td>743 nm</td>
<td>14 nM</td>
<td>HeLa cells</td>
<td>Coordination</td>
<td>[2]</td>
</tr>
<tr>
<td>![Probe 3]</td>
<td>438 nm</td>
<td>570 nm</td>
<td>49 nM</td>
<td>HeLa cells</td>
<td>Reactive</td>
<td>[3]</td>
</tr>
<tr>
<td>Compound</td>
<td>Wavelength (nm)</td>
<td>Excitation (nm)</td>
<td>Concentration (μM)</td>
<td>Cell Type</td>
<td>Function</td>
<td>Reference</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>680 nm</td>
<td>700 nm</td>
<td>29 nM</td>
<td>HeLa cells</td>
<td>Reactive</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>440 nm</td>
<td>528 nm</td>
<td>1.78 μM</td>
<td>HepG2 cells</td>
<td>Coordination</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>525 nm</td>
<td>545 nm</td>
<td>0.38 μM</td>
<td>MCF-7 cells</td>
<td>Coordination</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>620 nm</td>
<td>669 nm</td>
<td>1.93 nM</td>
<td>HeLa cells</td>
<td>Reactive</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>425/650 nm</td>
<td>520/696 nm</td>
<td>7 nM</td>
<td>Primary human fibroblast cells</td>
<td>Coordination</td>
<td>[8]</td>
</tr>
</tbody>
</table>
3. Spectral Characterization

Supplementary Fig. 1. The HRMS spectrum of EtRh-N-NH2 after adding Cu(II) compound.

Supplementary Fig. 2. The fluorescence intensity increase after adding Cu(II) (30 μM) to EtRh-N-NH2 (10 μM) in 30 min.
Supplementary Fig. 3. 1H NMR spectrum of compound 2 in CDCl$_3$.

Supplementary Fig. 4. 13C NMR spectrum of compound 2 in CDCl$_3$.
Supplementary Fig. 5. The HRMS spectrum of compound 2.

Supplementary Fig. 6. 1H NMR spectrum of compound EtRh-COOH in DMSO.
Supplementary Fig. 7. 13C NMR spectrum of compound EtRh-COOH in DMSO.

Supplementary Fig. 8. The HRMS spectrum of compound EtRh-COOH.
Supplementary Fig. 9. 1H NMR spectrum of compound EtRh-N-NH$_2$ in CDCl$_3$.

Supplementary Fig. 10. 13C NMR spectrum of compound EtRh-N-NH$_2$ in CDCl$_3$.
Supplementary Fig. 11. The HRMS spectrum of compound EtRh-N-NH₂

References

