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Abstract

The skin is the largest barrier organ of the human body and serves to protect the internal structure of the body from the harmful environ-
ment. The epidermis forms the outermost layer and is exposed to the environment. Keratinocytes are important constituent cells of the
epidermis and alter their morphology and structural integrity through a highly complex differentiation process referred to as cornifica-
tion. Abnormalities in the process of epidermal cornification can lead to skin barrier dysfunction. The epidermal differentiation complex
(EDC) is a gene cluster located within a 2 Mb region of human chromosome 1q21. EDC is responsible for epithelial tissue development
and for properties of the stratum corneum. One of the most important features of psoriasis is the abnormal terminal differentiation of
keratinocytes. However, the relationship between EDC and the occurrence of psoriasis is still unclear. In this review, we summarize
current knowledge regarding the physiological functions of EDC and discuss its possible contributions to the pathogenesis of psoriasis.
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1. Introduction
The outermost layer of the skin, or epidermis, pro-

vides a tight barrier for the human body. The cellular com-
position of the epidermis consists mainly of keratinocytes,
melanocytes, Langerhans cells and Merkel cells. Upon
leaving the basal layer, keratinocytes begin a complex
mechanism of terminal differentiation that culminates in
formation of the stratum corneum. This process is known
as epidermal differentiation. The epidermal differentia-
tion complex (EDC) is a cassette of genes present in a
2 Mb region of human chromosome 1q21. It is com-
prised of 62 coding genes present within four gene families,
namely: filaggrin (FLG) and FLG-like, late cornified enve-
lope genes (LCEs), small proline-rich regions (SPRRs), and
S100 genes (Fig. 1). EDC encodes structural and functional
proteins that have a profound effect on terminal differenti-
ation of the human epidermis [1–5].

Epidermal cells undergo a set of programmed prolif-
eration /differentiation events and express specific proteins
during an ordered and sequential process (Fig. 2a). Follow-
ing formation of the spinous layer, the cells acquire ker-
atohyaline granules containing mostly profilaggrin. Pro-
filaggrin is cleaved into filaggrin monomers of approxi-
mately 37 kDa which can cause keratin filaments to aggre-
gate into tight bundles. Other structural proteins including
loricrin (LOR), involucrin (IVL), small proline-rich pro-
teins (SPRRs), and late cornified envelope proteins (LCEs),
are expressed later in the process. Subsequently, the epider-
mal proteins are cross-linked by transglutaminases to form a

cornified envelope. However, abnormalities of this process
may lead to barrier dysfunction, resulting in skin disorders
such as ichthyosis vulgaris, atopic dermatitis (AD), psoria-
sis, and skin-related neoplasia [6–10]. The turnover time of
normal skin cells is approximately one month, whereas in
psoriasis the epidermal cells are replaced in just 4 days [11].
The keratinocyte is the main building block of the epider-
mis and is the target cell for the major cytokines involved in
the psoriatic inflammatory process. The onset and develop-
ment of the psoriatic phenotype occurs because of increased
proliferation and impaired differentiation of keratinocytes
(Fig. 2b) [12,13].

2. Filaggrin
Human filaggrin (FLG) is a filament aggregation pro-

tein derived from profilaggrin and containing more than
10 filaggrin-repeat units. FLG plays a critical role in the
formation of the skin barrier [14]. Based on its cDNA
sequence, human profilaggrin contains 25% serine, 15%
glycine, 12% histidine, and 10% arginine residues. The
profilaggrin precursor mRNA is transcribed as the ker-
atinocytes differentiate into cornecytes [15]. The protein is
then synthesized and phosphorylated in the epidermal gran-
ular layer. It is subsequently dephosphorylated and cleaved
into monomeric filaggrin by a complex group of proteases
during the keratinocyte differentiation process from gran-
ules to cornified cells [16]. Filaggrinmonomers bind to ker-
atin and aggregate the intermediate filaments, thus causing
cytoplasmic collapse and the flattening of keratinocytes. Fi-
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Fig. 1. Schematic representation of human EDC genes on chromosome 1q21.

Fig. 2. The normal and psoriatic epidermic structure. (a) Epidermal structure and establishment of the epidermal barrier. During
the different stages of epidermal differentiation, epidermal cells express different proteins. (b) Altered epidemic structure present in
psoriasis. AMP, antimicrobial peptides; NMF, natural moisturing factor; KIF, keratin intermediate filament; IL, interleukin.

laggrin is then degraded into free amino acids as the corneo-
cytesmove outward through the inner layers of the cornified
layer. Although filaggrin exists only transiently, it main-
tains hydration of the stratum corneum and provides a solid
barrier for the skin [17].

Filaggrin expression in psoriatic lesions is signifi-
cantly reduced compared with normal skin [18]. In addi-
tion, several studies have shown that inflammatory axis-
related cytokines, such as IL-17a, TNF-α, Oncostatin M
and IL-36γ, also induce down-regulation of FLG expres-
sion in psoriasis mouse models and in HaCaT cells. The
level of filaggrin mRNA synthesis in keratinocytes derived
from healthy doners decreased significantly in response to

TH-1- and TH-2-associated cytokines [19–22]. Interest-
ingly, after treatment for psoriasis, increased expression of
FLG occurs following the down-regulation of proinflam-
matory factors, thereby improving the skin barrier and re-
sulting in remission [23]. Many variants have been iden-
tified in FLG genes over the last two decades. These mu-
tations include nucleotide base substitutions, out of frame
insertions or deletions, and noncoding mutations in exon
3 of the profilaggrin gene. Loss-of-function mutations in
FLG genes can cause ichthyosis vulgaris, atopic dermatitis,
atopic asthma, as well as several other allergic or immune
diseases [24].
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Table 1. The association between FLG mutations and psoriasis in different populations.
Population Variant Study group Result Reference number

Ireland and UK
R501X (rs61816761)

Ps (n = 691)
no significant association (p = 0.075)

[27]
Controls (n = 2117)

2282del4 (rs558269137)
Ps (n = 691)

no significant association (p = 0.932)
Controls (n = 2117)

Germany

R501X (rs61816761)

PsV (n = 737)
no significant association (p = 0.398)

[18]

Controls (n = 721)
PsA (n = 720)

no significant association (p = 0.675)
Controls (n = 721)

2282del4 (rs558269137)

PsV (n = 702)
no significant association (p = 0.386)

Controls (n = 704)
PsA (n = 703)

no significant association (p = 0.291)
Controls (n = 704)

China (Taiwan) P478S (rs11584340)
Ps (n = 314)

a significant association (p = 0.020) [25]
Controls (n = 611)

China (Mainland) p.K4022X (rs146466242)
Ps (n = 414)

a significant association (p = 0.011) [26]
Controls (n = 500)

Ps means psoriasis, PsA means Psoriatic arthritis, PsV means Psoriasis vulgaris.

A number of studies have been performed to deter-
mine whether FLG deficiency is involved in the pathogen-
esis of psoriasis (Table 1, Ref. [18,25–27]). Hüffmeier
and colleagues reported that the expression of FLG genes
was downregulated in psoriatic skin. However, muta-
tions linked to filaggrin deficiency showed no obvious as-
sociations with psoriasis vulgaris or psoriatic arthritis in
a genetic analysis of German populations [18]. A case-
control study described a significant difference in FLG
P478S (rs11584340) genotype frequencies between psori-
asis patients and controls in Taiwan, suggesting this poly-
morphism plays an important role in genetic susceptibil-
ity to psoriasis [25]. A novel nonsense mutation in FLG,
p.K4022X, was reported in a Chinese family with psoriasis
coexisting with ichthyosis vulgaris, as well as a significant
association with the occurrence of psoriasis in the Chinese
population [26]. However, parallel studies conducted by
other researchers reported inconsistent results for this mu-
tation. A case-control study conducted to investigate the
R510X and 2282del4 mutations in profilaggrin found no
significant association with psoriasis in the Irish and UK
populations [27]. Similar results were obtained from a gen-
eral population study and from a meta-analysis [28], in-
dicating these profilaggrin null mutations are not associ-
ated with the occurrence of psoriasis. Moreover, loss-of-
function mutations in FLG do not appear to play a major
role in childhood psoriasis [29].

Genetic mutations inFLG and changes in gene expres-
sion may therefore be involved in the susceptibility to pso-
riasis, but these associations have yet to be fully elucidated.
More research is thus required to better understand the role
of FLG mutations in the pathogenesis of psoriasis.

3. Late-Cornified Envelope (LCE)
Since 2008, the LCE gene cluster on chromosome

1q21 has been recognized as a predisposing site for psoria-
sis (Table 2, Ref. [30–35]) [30,31]. This cluster is further
divided into six groups, LCE1-LCE6, based on their rele-
vant amino acid sequence, genomic organization and ex-
pression pattern [36]. Most LCE genes are expressed in
granular keratinocytes during keratinocyte differentiation
and are amongst the final cornified cell envelope (CE) com-
ponents to be cross-linked to this structure. The expression
of LCE2 is upregulated by calcium, while that of LCE1 and
LCE2 is induced by UV light [37]. Differential regulation
of LCE gene expression occurs in the epidermis of psoriatic
skin. Quantitative PCR showed that the expression level
of all members of LCE3 was too low to be detectable in
normal skin, but was significantly upregulated in psoriatic
lesions. In contrast to LCE3, expression levels for the LCE-
1, -2, -5 and -6 groups were significantly downregulated in
psoriasis [38]. Similar results were observed for the expres-
sion of LCE genes after tape stripping [39]. Using immuno-
histochemistry, LCE3 proteins were detected in the stratum
spinosum (SS) and stratum granulosum (SG), but not in the
stratum corneum (SC) [40]. Interestingly, Climbazole can
also induce the expression of LCE2 and LCE3 genes in ker-
atinocytes when used to treat dandruff and where the skin
barrier is thought to be dysfunctional [41,42].

Real-time quantitative polymerase chain reaction
(qPCR) analysis has shown that human LCE1 and LCE2
genes, especially LCE1C, LCE2A and LCE2B, are mainly
expressed in the epidermis [37]. The LCE1 group can be
trans-activated by p53 and is thought to have tumor sup-
pressor functions by regulating the activity of PRMT5 [25].
A GWAS analysis of European and American populations
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Table 2. The association between LCE mutations and psoriasis in different populations.
Population Variant Study group Result Reference number

Europe/America LCE1C (rs6701216)
Ps (n = 233)

a significant association (p = 6.2 × 10−5) [32]
Controls (n = 519)

Mongolia

LCE1C (rs6701216)

a significant association (p < 0.05)
[31]

LCE1B (rs12023196)
LCE3A (rs4845454) PsV (n = 305)
LCE3D (rs512208) Controls (n = 383)
LCE3D (rs4112788)
LCE3D (rs4085613)

no significant association (p > 0.05)
LCE3A (rs1886734)

China

LCE3A (rs4845454)

a significant association (p < 0.05)
[30]

LCE3A (rs1886734)
LCE3D (rs4112788) Ps (n = 1139)
LCE3D (rs4085613) Controls (n = 1132)
LCE1B (rs12023196)
LCE3C_LCE3B-del
LCE3D (rs512208) [35]

Germany LCE3C_LCE3B-del
PsA (n = 650)

no significant association (p = 0.088) [33]
Controls (n = 937)

Italy LCE3C_LCE3B-del
PsA (n = 424)

a significant association (p = 0.03) [34]
Controls (n = 450)

Ps means psoriasis, PsA means Psoriatic arthritis, PsV means Psoriasis vulgaris.

published in 2008 reported that LCE1C (rs6701216) was a
potential susceptibility site for psoriasis [32]. The LCE1C
(rs6701216) and LCE1B (rs12023196) genes were later also
found to have a strong association with psoriasis vulgaris in
a population from Inner Mongolia [31].

The LCE3 gene cluster can be further divided into five
subgroups (LCE3A, LCE3B, LCE3C, LCE3D and LCE3E)
with different structures and functions. Their expression is
barely detectable in normal skin and in non-psoriatic lesions
[37]. However, LCE3 expression is induced in the epider-
mal layer of psoriasis lesions and after superficial skin in-
jury. It has been speculated that LCE3 may play an im-
portant role in repair of the skin barrier after superficial
injury, whereas other LCE members may play significant
roles in the maintenance of normal skin barrier function
[2,38]. Several cytokines associated with psoriasis, includ-
ing TNF-α, IL-1, and IL-6, significantly upregulate the ex-
pression of LCE3, whereas these cytokines plus the Th17
cytokine and IL-22 significantly downregulate the expres-
sion of LCE1B.However, IL-17 and IL-22 have no obvious
effect on the expression of LCE3 [38].

GWAS analysis has revealed that LCE3A gene muta-
tions (rs4845454 and rs1886734) in the Chinese Han pop-
ulation were associated with the occurrence of psoriasis,
suggesting this gene may be a predisposing factor for pso-
riasis [30]. Both LCE3B and LCE3C have been associ-
ated with the development of psoriasis in different eth-
nicities [33,43]. In several different populations, the fre-
quency of LCE3C_LCE3B-del is much higher in psoriasis

patients compared to controls [44,45]. Analysis of 2,831
samples from several European countries demonstrated an
association between the LCE3C_LCE3B-del variant and
psoriasis, consistent with a large family-based study pub-
lished in 2009 [33]. Meanwhile, it was also confirmed that
LCE3C_LCE3B-del is associated with psoriasis in the Chi-
nese population [30]. A multicenter meta-analysis has con-
firmed that LCE3C-LCE3B-del is a susceptibility site for
psoriasis in multiple European and Asian populations [45].

A possible association between LCE3C_LCE3B-del
and arthritic psoriasis (PsA) remains uncertain due to in-
sufficient data. No significant associations were observed
between LCE3C_LCE3B-del frequency and PsA in German
and Tunisian populations [33,44,46]. However, other stud-
ies have reported that LCE3C_LCE3B-del was associated
with PsA in Italian and Spanish populations [34,47]. Al-
though LCE3C_LCE3B-del is a well-established risk fac-
tor for psoriasis, it is not associated with the Koebner Phe-
nomenon in psoriasis [48]. Other studies have shown that
LCE3C and LCE3B are associated with certain immune dis-
eases, such as rheumatoid arthritis and systemic lupus ery-
thematosus [49,50].

With regards to LCE3D, the LCE gene cluster on 1q21
(rs4112788 and rs4085613) was found to have a close asso-
ciation with psoriasis in a large GWAS study of the Chinese
population [30]. Based on the analysis of clinically rel-
evant psoriasis vulgaris subtypes, significant associations
were observed between the severity of cutaneous manifes-
tations and LCE3D variants [51]. A novel missense vari-
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Fig. 3. The typical structure of S100 proteins including two EF-hands, four α-helical segments, a central hinge region connects
these structures.

ant in LCE3D (rs512208) was reported in the Chinese Han
population through a large-scale sequencing study of pso-
riasis patients [35]. A missense variant in the LCE3D lo-
cus (rs512208) was also reported to be the most impor-
tant risk factor for psoriasis patients from Inner Mongolia
[31]. Interestingly, proteins from the LCE3 family show
broad-spectrum antimicrobial activity, with LCE3A being
the most potent [52,53].

The expression of LCE4A and LCE5A is barely de-
tectable in human tissues, whereas LCE6A genes are upreg-
ulated during keratinocyte differentiation [37]. However,
there is still a lack of evidence to link these three genes with
the pathogenesis of psoriasis.

4. S100s
At least 24 different S100 gene members have been

identified to date, most of which are part of the EDC lo-
cated on human chromosome 1q21 [54,55]. These proteins
belong to the Ca2+-binding protein family and have similar
important structural features (Fig. 3) [56]. The S100 protein
has been associated with several human diseases including
cardiomyopathy, cancer and some skin diseases [57,58].

Epigenetic reprogramming is known to be an impor-
tant factor in the development of psoriasis, with epigenetic
regulation of S100 in particular having received a lot of at-
tention. Recent results indicate that S100 protein expres-
sion may be correlated with the extent of DNA methyla-
tion in S100 gene regulatory regions, generally present-
ing as a negative correlation. Differentially methylated
CpGs in S100 were reproducibly identified between pso-
riatic and normal skin tissues, including S100A5, S100A9
and S100A12. Several studies have also reported that the
abnormal methylation of S100 protein returns to a normal
level after anti-TNF-α therapy [59–62].

No consensus has been reached on the relationship
between S100B and psoriasis. S100B protein is overex-
pressed in psoriatic patients and shows a significant associ-
ation with disease severity according to the Psoriasis Area
and Severity Index (PASI) score [63]. However, another
study found no significant association between S100B pro-
tein levels in the serum and the PASI score of psoriatic pa-
tients [64].

S100 protein A2 is expressed at high levels in psoria-
sis and has a protective effect against UV light [65,66]. The
S100 proteins A4 and A6 are expressed in both the hair fol-
licle bulge and during hair follicle germination. They are
significantly associated with the activation of hair follicle
stem cells, suggesting they play a crucial role in epidermal
renewal [67].

The S100 proteins A7, A12 and A15 are highly ex-
pressed in psoriatic skin and blood. Serum levels of
S100A7 and S100A12 are significantly associatedwith pso-
riasis activity [68]. There are some inconsistent results,
however. For example, Borsky and colleagues did not find
any association between S100A7/A12 levels and disease
severity [69]. Furthermore, S100A7 protein can increase
the levels of stress-induced, psoriasis-related angiogenic
factors, which in turn act on dermal endothelial cells to
promote angiogenesis [70]. The interaction between over-
expressed S100A7 and Jab1 may contribute to p27Kip1-
dependent proliferative dysfunction in psoriasis [71]. The
S100A7 serum level is also correlated with the occurrence
of subclinical atherosclerosis in psoriasis [72]. The S100
A15 protein is highly homologous with S100A7. Th17
cytokines play an important role in the pathogenesis of
psoriasis by inducing the expression of pro-inflammatory
S100A15 through the IL-17AR in keratinocytes. This pro-
cess can be suppressed by the vitamin D analog calcipotriol,
or by narrow-band UVB. Therefore, S100 A15 protein may
be a promising marker for the treatment response in psori-
asis [73,74].
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Several studies have investigated the association be-
tween the S100 proteinsA8/A9 and psoriasis. Both S100A8
and S100A9 are expressed and released by keratinocytes
and activated leukocytes during skin inflammation and
wound healing, including psoriatic lesions [75–77]. The
tetramerization of S100A8/S100A9 induced by calcium can
inhibit the pro-inflammatory function of S100A8/S100A9
dimers [78]. The expression of S100A8 and S100A9 is in-
creased in imiquimod-induced, psoriasis-like skin inflam-
mation and can be stimulated by several of the psoriasis-
associated cytokines or chemokines, in particular IL-17A
and IL-1α [75,76]. The significantly increased expression
levels of S100 A8 and A9 in psoriasis patients not only re-
flect the abnormal differentiation of keratinocytes, but also
correlate with disease activity [75]. The S100A8/S100A9
complex exerts functional activity in psoriasis by modulat-
ing the expression of complement factor C3 [79]. S100 A8
and A9 are also considered to be damage-modulating pro-
teins [77].

In conclusion, several studies have suggested that
S100 proteins play an important role in psoriasis because
of their contribution to the severity and progression of dis-
ease, although the mechanisms remain mostly unclear.

5. Loricrin and Involucrin
Loricrin (LOR) and Involucrin (IVL) are structurally

similar and highly homologous proteins. They have
unique internal domains that are cross-linked by glutamine
transaminase to bind different glutamine, proline, and
serine-rich repeats [3]. There is evidence that LOR and IVL
have important roles in terminal epidermal differentiation,
while also being involved in the maintenance of epidermal
homeostasis.

LOR is the major structural protein of the epidermal
keratinocyte envelope (CE) and is mainly expressed in the
granular layers and superior spinous layer [3]. Patients
with LOR mutations share some common features, includ-
ing diffuse palmoplantar hyperkeratosis [78,80,81]. How-
ever, Loricrin knockout (LKO) mice show only mild and
transient erythema in the neonatal period, which then im-
proves in adult mice. This may be explained by compen-
satory mechanisms that upregulate the expression of other
barrier proteins such as SPRRP2D, SPRRP2H, and Lce1 to
make up for the loss of LOR expression [82,83]. Psoriasis-
associated cytokines such as IL17A and IL22 are known
to downregulate the expression of LOR, which then dam-
ages the skin barrier function in psoriasis [84,85]. Currently
however, there is still a lack of evidence regarding the pos-
sible mechanism of action of LOR [86].

Another important CE protein, IVL, is only expressed
in the granular and supra-spinous layers in normal epider-
mitis. IVL is one of the main components of CE and is
a marker of the early differentiation of keratinocytes [87].
Several studies have suggested a trend for increased IVL
expression in patients with psoriasis [88]. Moreover, it is

known that some cytokines related to psoriasis (IL-1, IFN-
γ, IL17A etc.) as well as PKC (protein kinase C associated
with psoriasis) can induce the expression of IVL [89–92].
However, Boniface et al. [84] demonstrated that IVL ex-
pression could be downregulated by IL22.

In brief, LOR and IVL may have important roles in
maintaining skin barrier function and homeostasis. It is rea-
sonable to speculate these proteins may also have differ-
ent roles in the initial and maintenance phases of psoriasis.
More research is needed to reveal the mechanisms by which
LOR and IVL contribute to psoriasis through their effects
on terminal differentiation of the epidermis.

6. Non-Coding RNAs that Control Gene
Expression of the Epidermal Differentiation
Complex

Although past research has mostly focused on genes
that code for proteins, it is now clear that non-coding RNAs
play an important part in the regulation of many biologi-
cal processes. This has led to several new research fields,
and in particular the roles of microRNAs (miRNA) and
lncRNAs. RNA-seq technology has identified many differ-
entially expressed lncRNAs between normal and psoriatic
skin. Interestingly, the EDC is one of the highest lncrna
density regions and was significantly enriched for at least
28 lncRNAs [93–95]. These results suggest not only a dis-
tinct role for lncRNAs in the development of psoriasis, but
also provide further evidence for an important role of the
EDC in the pathogenesis of psoriasis. Although several
studies have found that miRNAs can regulate the prolif-
eration and differentiation of keratinocytes, regulation of
gene expression in the EDC complex of psoriasis patients
requires further exploration [96]. Due to their specific ex-
pression and function, further research on both miRNA and
lncRNA could lead to the discovery of new biomarkers for
the diagnosis, prognosis and monitoring of therapeutic ef-
fects in psoriasis.

7. Summary and Conclusions
The EDC is composed of four gene families:

filaggrin/FLG-like, LCE genes, S100 genes, and small
proline-rich region (SPRRs, including LOR and IVL). EDC
genes encode structural and functional proteins that have a
profound impact on terminal differentiation in the human
epidermis leading to the formation of a solid physical and
chemical barrier of skin. Psoriasis is a common chronic
inflammatory skin disease that can be triggered by multiple
risk factors. This disease involves a number of processes in-
cluding antigen presentation, transcriptional regulation, im-
mune cell activation, inflammatory cytokine networks, and
cell signaling. Abnormalities in the proliferation and dif-
ferentiation of keratinocytes are the main pathophysiologi-
cal manifestations of psoriasis. Traditionally, psoriasis has
been considered as a Th1/17 cell-mediated and IL-23/IL-17
inflammatory axis-dependent systemic disease that is based
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Fig. 4. The possible mechanisms of the expression of EDC genes in the occurrence and development of psoriasis.

on a complex genetic disorder and modulated by environ-
mental factors.

Over the past few decades, considerable progress has
beenmade in our understanding of the role of the EDC in the
pathogenesis of psoriasis. However, much more remains to
be learned about the pathogenesis of this disease.

Several studies have shown that mutations in EDC
genes can not only trigger the development of psoriasis,
but are also associated with the progression and severity
of disease. Although some genetic risk loci for psoriasis
have been identified by GWAS analyses, further studies
are needed to determine the mechanisms by which EDC
gene products affect keratinocyte differentiation and pro-
liferation. In theory, a single or combination of EDC gene
variants could affect differentiation of the epidermidis and
its integrity. Once the keratinocyte differentiation process
from granules to cornified cells is interrupted, the cornified
envelope loses its normal physical function. As a conse-
quence, skin barrier damage will be exacerbated in the pres-
ence of external mechanical stimulation, resulting in disrup-

tion of skin microbiota homeostasis, invasion of pathogens,
activation of innate or adaptive immune responses, infiltra-
tion of inflammatory cells into the epidermis and dermis,
and abnormal proliferation of keratinocytes. Meanwhile,
destruction of the skin barrier may also initiate the repair
process to upregulate the expression of other EDC genes
such as LCE3 and IVL [37,89]. Increased expression of
S100-related genes is correlated with the severity of psori-
asis [76]. Overexpression of the EDC family of genes may
promote the secretion of more inflammatory factors by ker-
atinocytes, rather than inducing the denuclearization pro-
cess. Nevertheless, several EDC genes are downregulated,
including FLG. Both innate and adaptive immunity lead
to the activation of keratinocytes, resulting in the produc-
tion of Th1/17-related cytokines which further influences
the expression of EDC-related genes and damages the epi-
dermal barrier. This process can lead to a cascading inflam-
matory response loop and to abnormal proliferation of ker-
atinocytes (Fig. 4).
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There is currently a lack of suitable animal models
that accurately reflect the clinical features of human pso-
riasis. These could serve as a useful preclinical research
tool for testing new candidate therapeutics and for explor-
ing the pathogenesis of psoriasis. What occurs when a spe-
cific EDC gene is silenced or overexpressed in mice? In
particular, do keratinocyte abnormalities caused by the ab-
sence or overexpression of EDC genes contribute to the oc-
currence and development of psoriatic-like inflammation in
mice? Large cohort studies of EDC gene variants in patients
with different stages of psoriasis and from various world-
wide populations may reveal additional genetic risk factors
for psoriasis. The development of suitable animal models
might also lead to the discovery of novel candidate drugs
for the future treatment of psoriasis.
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