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Abstract

Background: Recently, the incidence of hematological malignancy, such as various leukemias, multiple myeloma and lymphoma, has
revealed an increasing tendency, exhibiting a major impact on human health. Most of the available anti-cancer drugs, however, possess
high non-targeted accumulation, dosage-associated toxicity, fast elimination, and lack specificity towards tumors, which restrict their
utilization in clinical therapy. This extends also to cancer diagnosis where there is a lack of predictive biomarkers. Object: Noble
metal nanomaterials (NM NMs) have the potential to overcome these shortcomings due to several characteristics including ease of
synthesis, ultra-small size, easy surface modification and specific physicochemical properties. At present, gold-, silver- and platinum-
based nanomaterials have been employed in the tracing and treatment of hematopoietic tumors through direct individual endocytosis or
in innovative drug delivery systems (DDS) by conjugation with other targeting biomolecules. Purpose: In this mini review, we focus on
the use of localized surface plasmon resonance (LSPR)-/surface-enhanced Raman scattering (SERS)- and fluorescence-based diagnosis
of NM NMs in the hematological malignancies. Furthermore, the treatment of hematological malignancies utilized the NM NMs or NM
NMs-based therapy technology in the chemotherapy, targeted therapy, and photothermal therapy are depicted in depth. The construction
of effective and promising NM NMs or NM NMs- dependent theranostic methodology has the potential to provide interdisciplinary
knowledge in the development of clinical tracing, diagnosis and treatment of refractory hematological diseases.

Keywords: Hematological malignancy; Noble metal nanomaterials; SERS; Bio-imaging; Chemotherapy; Targeted therapy; Photother-
mal therapy

1. Introduction Over the past several years, hemopathology has

Cancer as the one of three challenges of modern gained a great development, especially the emergence of
medicine is reported to be the leading cause of human ~ NUMerous new technologies for the diagnosis of hemato-
mortality and the main hindrance to prolonging life ex- logical malignancies [11]. The World Health Organiza-
pectancy worldwide in the 21st century [1]. Hematologic tion (WHO) has reported a complex classification standard
malignancies represent malignant tumors of bone marrow, for hematological malignancies, which makes the diagno-
hematopoietic and lymphoid tissues, accounting for 7.2% sis more difficult [3,12]. The increased use of morphol-
of total deaths and 6.5% of new cancers, based on global 08y, immunology, genetics and molecular biology (MIGM)

cancer statistics in 2018 [2]. Generally, hematological ma- has become important diagnostic methodologies for vari-
lignancies are divided into three types, namely leukemias, ~ ©us hematological malignancies [13]. On the other hand,
lymphomas and myelomas, and each of these contain mul- the treatment of hematological malignancies has also been
tiple subtypes [3—5]. Leukemias include acute lymphoblas- gradually improved, resulting in significant improvement in
tic leukemia (ALL), acute myelogenous leukemia (AML), complete remission (CR) rates, disease-free survival (DFS)
chronic lymphocytic leukemia (CLL), chronic myeloge- rates and overall survival (OS) rates for patients [14]. Al-
nous leukemia (CML), acute monocytic leukemia (AMoL) though induction differentiation therapy, autologous stem-
and other less common subtypes [6]. Lymphomas con- cell transplantation (SCT), biological immunotherapy, tar-
tain non-Hodgkin’s lymphoma and Hodgkin’s lymphoma geted and gene therapy have developed rapidly recently,
[7], while myelomas are divided into myelodysplastic syn- ~ chemotherapy and radiotherapy are still predominantly
drome (MDS) and myeloproliferative neoplasms (MPN) used for the treatment of hematological diseases (Fig. 1)
[8]. Among these, leukemia is associated with high mor- [4,7,15,16]. However, the traditional combined treatment
tality and morbidity rates in comparison to other subtypes, with chemotherapy and radiotherapy leads to discomfort
and three quarters of the cases occur in childhood [6,9,10]. and irreversible side effects such as hair loss, fatigue, nau-

sea, even infection and organ damage [17-19]. Patients
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Fig. 1. The schematic principles for treatment of hematological malignancies.

with hematologic malignancy receiving chemotherapeutic
drugs have the complication of febrile neutropenia, which
dramatically increases the infection rate and mortality [20].
Besides, the pharmacokinetics of chemotherapeutic drugs
are suboptimal, leading to inevitable relapse and reduced
limitation to their clinical application. Bone marrow trans-
plantation as one form of stem cell transplantation (SCT)
represents another choice to cure different hematological
malignancies, which has the capacity to achieve better sur-
vival rates [21]. Rare match type, few relevant patients
and likely complications including graft versus host reac-
tion (GVHD), recurrence, infection, and end organ dysfunc-
tion, create prominent resistance to the therapeutic process
[22,23]. Certainly, some patients are not eligible for SCT
or frequently relapse after SCT, therefore, novel treatments
still need to be intensively explored.

Monoclonal antibodies alone or combined with
chemotherapy, referred to as immunotherapy, have intro-
duced an innovative therapeutic regimen for hematologic
malignancies as depicted in Fig. 1 [24-27]. A represen-
tative monoclonal antibody is rituximab which has been
shown to improve the clinical outcome and efficiently
decrease the mortality for the patients with B-cell ma-
lignancies [28]. Moreover, some monoclonal antibodies
such as bispecific T cell engagers (BiTEs), cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) inhibitor, and
programmed cell death protein 1 (PD-1) inhibitor, reg-
ulate the activation of T cell via the histocompatibility-
antigenic peptide complex that expresses a chimeric anti-
gen receptor (CAR), resulting in the eradication of tumor
and strengthening of immune response [4,29-32]. Despite
the fact that immunotherapy provides considerable hope

for patients, these T-cell-engaging therapies are also as-
sociated with certain toxicity [33,34]. With the develop-
ment of molecular biologicals, genomic and nano technol-
ogy, targeted therapy construction of suitable drug deliv-
ery systems has become more efficient, safe and represent
pharmacokinetic treatment alternatives. Integration of tar-
geted drugs into conventional chemotherapy, radiotherapy
and SCT, has become an innovative breakthrough in the tra-
ditional treatment of patients with various refractory tumor
[35,36]. These drugs have a targeted effect on the site of
the neoplasm and impede the biological transduction path-
ways and/or certain oncoproteins to induce the death of car-
cinoma cells by immune system stimulation or apoptotic ef-
fects. Recently, considerable progress has been made on
the discovery of targeted therapeutic methods for hemato-
logic malignancies. For example, employing CD20 mono-
clonal antibodies, fms-related tyrosine kinase 3 (FLT3) in-
hibitor, and tyrosine kinase inhibitor to target therapy for
B-cell lymphoma and CD20 positive leukemia [37], FLT3
positive and high-risk AML [38] and CML [39], respec-
tively. Nevertheless, only few reports showed complete
cure or acquired long-term remission due to short biological
half-life in circulation and damage to healthy tissues [40].
Chemotherapeutic drugs encapsulated by nano-carriers like
liposomes and polymeric micelles, have an ability to retain
active substances during transportation towards malignant
cells and reduce the exposure of drugs to normal tissues,
which has been successfully implemented in some clinical
reports [41-43].

In the past decades, metal nanomaterials (M NMs)
have received extensive attention in the fields of electron-
ics, catalysis, optics, and biology [44—46]. When the size
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of bulk metal compounds is decreased to the nano range,
dramatic physical and chemical properties change due to
the quantum size effect, surface effect, and macro-quantum
tunnel effect [47]. Metal nanoparticles (M NPs) are gen-
erally defined as particle-aggregates with sizes between 2
and 100 nanometers [48,49]. As the free electrons are con-
fined related to Fermi wavelength (<2 nm), M NPs evolve
into metal nanoclusters (M NCs) which bridge a “missing
link” between M NP and atoms [50-53]. Consequently, M
NCs exhibit unique features like discrete electronic state
and size-dependent fluorescence because of their discon-
tinuous band structure. Noble metal is one kind of rare
and popular material which has an inherent resistance to
corrosion and oxidation even under a moist environment
[54]. Various noble metal nanomaterials (NM NMs), such
as copper nanomaterials (Cu NMs), palladium nanomate-
rials (Pd NMs), silver nanomaterials (Ag NMs), platinum
nanomaterials (Pt NMs) and gold nanomaterials (Au NMs),
have been already studied and exploited in the applications
of electrocatalysis, photocatalysis, heterogeneous catalysis,
colorimetric sensing and fluorescent imaging. The diagno-
sis and treatment of tumors rely especially on their extraor-
dinary optical, electronic and surface chemical properties
[46,55,56]. Moreover, cytotoxicity and biokinetics of NM
NMs decide the clinical efficacy of oncotherapy. Typical
Au, Ag, Pt NMs demonstrated less toxic for cellular sys-
tems and excellent drug kinetics which is related to their
chemical nature or surrounding ligands [57—-60], ensuring
their feasible diagnostic and therapeutic application for ma-
lignancies. In this review, we focus on the recent advances
in the multifunctional NM NMs for their practical applica-
tion both in the diagnosis and treatment of hematologic ma-
lignancy. The challenges of NM-based theranostic strategy
for hematological diseases in future are discussed with a
view to providing some new methods and guideline for the
hematologist.

2. The diagnosis of hematological
malignancies

Early and accurate diagnosis of malignancy is one of
the most critical points for patients to alleviate mental pain
and economic burden [44]. Current cell-based diagnos-
tic tools such as immunocytochemistry, anatomical imag-
ing, pathological examination require sufficient malignant
cells, which are usually evident in advanced stages of the
disease. X-ray imaging, computerized tomography (CT),
positron emission tomography (PET), magnetic resonance
imaging (MRI) as the classical anatomical imaging tech-
niques which are associated with intense ionizing radiation
or electromagnetic radiation can be harmful to humans [61].
Finding a less harmful alternative tissue imaging method-
ology in monitoring of cancer is an important issue. Body
fluids (blood, urine, saliva) contain potential biomarkers
associated with the evolution of cancer cells, such as pro-
teins/peptides, microRNAs (miRNAs), exosomes, circulat-
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ing tumor DNA (ctDNA), circulating tumor cells (CTCs)
represent an approach to such imaging [62—67]. Establish-
ing a rapid and non-invasive approach instead of standard
tissue biopsy to test the prognosis agents mentioned above,
even in a low concentration, could reduce the risk of metas-
tasis and detect cancer evolution at early stages. In general,
NM NMs with unique physicochemical properties and low
toxicity are normally employed as sensitive probes or safe
contrast agents to achieve the analyte detection and cellular
imaging of tumors on account of their specific localized sur-
face plasmon resonance (LSPR), surface-enhanced Raman
scattering (SERS), and size-dependent fluorescence.

2.1 LSPR- or SERS-based diagnosis

Since the light is incident to the surface of noble metal-
lic NPs, the conduction electrons exhibit specific collective
oscillations leading to the emergence of a strong optical ab-
sorption and/or scattering peak as shown in Fig. 2A [68].
This unique phenomenon is termed LSPR entirely affected
by the NPs’ size, shape, dielectric environment and other
properties NM NPs, therefore, are frequently used as con-
trast agents for microscopic imaging or as targeted probes
for detection and recognition of tumor cells dependent on
the shifts of LSPR spectral peak when the diagnostic ob-
jects approach the surface of NPs [69,70]. For example,
screening blood samples for leukemia was proposed us-
ing nanohole-arrays on plastic (NAP) as a plasmonic sen-
sor and human immunoglobulin kappa and lambda light
chains in blood serum as a screening compound [71]. NAP
was fabricated by the UV nanoimprinting on thin gold
films to form the nanohole arrays. This typical SPR-based
nanosensing platform has a capacity to accurately examine
the overexpression of light chain antibodies in cancerous
blood samples. Cytokines as one kind of immunomodu-
lating protein biomarker, are secreted from immune cells
and control cell growth, cell differentiation and immune re-
sponse [72]. The classical enzyme-linked immunosorbent
assay (ELISA) and fluorescent-based detection of cytokines
have several disadvantages like time-consuming, complex-
ity, and large sample consumption. A LSPR optofluidic
platform device has been integrated with a polydimethyl-
siloxane (PDMS) supporting layer, a microfluidic layer
which traps and incubates cells, and an LSPR sensing layer
consisting of Au NPs connected with tumor necrosis fac-
tor (TNF)-a for cytokine detection [73]. This new-type
optofluidic system was firstly applied in identifying THP-1
cells (human myeloid leukemia mononuclear cells) utiliz-
ing 100 times less sample volume and 3 times less in detec-
tion time than ELISA.

If molecules are located on the surface of metallic
NPs, the Raman scattering signal is remarkably enhanced,
which is defined as SERS (Fig. 2B) [70,74-78]. SERS
technology offers a new strategy for both biomolecule de-
tection and intracellular imaging [61]. In addition to high
sensitivity, SERS can precisely recognize molecular struc-
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Fig. 2. The schematic principle for localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS).

(A) Since the light is incident to the surface of noble metallic NPs, the conduction electrons exhibit specific collective oscillations leading

to the emergence of a strong optical absorption and/or scattering peak. (B) Raman scattering signal is remarkably enhanced when the

molecules are located on the surface of metallic naoparticles. Reprinted major modification with permission from [70], Copyright 2011,

American Chemical Society.

ture as well as avoid interference from cellular autofluores-
cence [79]. Lentini ef al. [80] constructed Ag NPs assem-
bled phage clone (Ag NPs—EIII1) network as a SERS probe
to identify the human histiocytic lymphoma U937 cells in
vitro. Once Ag NPs-EIIIl targeted to the U937 cells, a
new Raman scattering peak and enhancement intensity ap-
peared, due to the existence of oligosaccharide complexes
by means of molecules involved in probe-target interaction.
Boca’s group initially prepared hollow gold-silver nanopar-
ticles (HNS) and then mixed them with Nile Blue (NB)
Raman reporter, modified by PEG to conjugate with an-
tiCD19 monoclonal antibodies [81]. Consequently, SERS
active molecules, HNS-NB-PEG-antiCD19, were produced
and used for evaluating the uptake and intracellular distri-
bution inside both CD19-positive SKW6.4 cells (Epstein-
Barr virus-transformed B lymphocytes, B-cell lymphoma)
and CD19-negative OCI-AML3 cell line (AML). The re-
sults revealed that HNS-NB-PEG-antiCD19 could selec-
tively targeted and imaged the CD19-positive lymphoma
cells, showing the potential for a luciferous assay in the
early and precise diagnosis of lymphoblastic cancers.

In summary, LSPR-/SERS-based diagnostic strategies
provide sensitive identification of neoplastic indicator and
noninvasive imaging of hematologic cells, designed to un-
derstand and improve the treatment of hematologic system
diseases in advance.

2.2 Fluorescence-based diagnosis

Among various types of diagnostic methods,
fluorescence-based techniques exhibit a highly sensitive,
specific, and time-saving approach for the detection and

imaging of various cancers. To achieve the fluorescence-
based diagnosis involves combining the effective fluores-
cent agents such as organic dyes [82], fluorescent proteins
[83], semiconductor quantum dots (QDots) [84], carbon
nanotubes (CNTs) [85]. Novel NM NCs with discrete
electronic state possess molecular-like behaviors and ex-
hibit size-dependent fluorescence from visible to the near
infrared (NIR) region [50]. In contrast to classical fluo-
rophores, ultra-fine Au, Ag and Pt nanoclusters (NCs) have
stable photobleaching, strong luminescence, and excellent
biocompatibility, which has led to great progress in the ap-
plication of biomolecular detection and cellular labeling for
hematological malignancies. Tan’s group firstly reported
the facile production of multidentate thioether-terminated
poly (methacrylic acid) (PTMP-PMAA) stabilized NIR
fluorescent Au NCs with 660 nm emission wavelength
(Fig. 3A) [86]. These Au NCs were able to bio-label
both adherent HeLa cells and suspended Jurkat cells.
More interesting was the observation that hematopoietic
cancer K562 cells had a distinct tendency for internalizing
more Au NCs than normal cord blood mononuclear
cells (CBMC), exhibiting a great potential application in
diagnostic detection of hematologic malignancies due to
their selective affinity to enter relative mature cells such as
granulocytes and lymphocytes (Fig. 3B) [86]. Fluorescent
glycine dimers capped Ag NPs with the sizes ranging from
9 to 32 nm have been produced (Fig. 3C) [87]. This blue
fluorescent NPs-ligand system has a high quantum yield
of (5.2 £ 0.1) % and was subsequently used to bio-image
rat basophilic leukemia cells (Fig. 3D) [87]. As another
common noble metal, Pt NMs are frequently used as
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catalysts in many chemical reactions based on their high
surface activity in nano dimension [88]. However, the
fluorescence of ultrafine Pt NCs was developed in the past
decades and applied in the metal ion or antibiotic detec-
tion, and bio-imaging in vitro [89-93]. Chen ef al. [94]
developed bifunctional polyethylenimine (PEI)-encased Pt
NCs (short for Pt NCs@PEI, as shown in Fig. 3E), and
then co-cultured them with blood cancer K562 and BV173
leukaemia cell lines. This research demonstrated that Pt
NCs smaller than 2 nm could selectively image K562 and
BV173 cells with the internalized proportion at (97 £ 4)%
and (95 £ 4)% respectively, compared to peripheral blood
mononucleated cells (PBMCs) at (20 + 8)% (Fig. 3F) [94].
These fluorescent Pt NCs have shown a great potential in
the diagnosis of hematopoietic diseases such as leukemia,
lymphoma, and myeloma, avoiding the inclusion of extra
fluorescent biomarkers.

3. The treatment of hematological
malignancies

With the rapid development of nanotechnology, NM
NMs have the potential to play a crucial role in therapeu-
tic applications for various cancers such as lung carcinoma,
prostatic carcinoma, hepatocellular carcinoma and for other
tumors. The intrinsic features of NM NMs including ultra-
fine size, unique optical and electronical properties, espe-
cially their easy modifiable surface, offer an opportunity for
conjugation with contrast agents, chemotherapeutic agents
and physiotherapy agents, to establish innovative theranos-
tic platforms [95]. In this section, we focus on the treat-
ment of hematological malignancies using NM NMs or NM
NMs-based curative system in chemotherapy, targeted ther-
apy, and photothermal therapy.

3.1 Chemotherapy

As mentioned for chemotherapy, Pt(Il)-based
chemotherapeutics are traditional and preferred candidates
for the clinical treatment of solid tumors [96]. After the
approval of the Food and Drug Administration (FDA) in
1978, Pt chemotherapeutic drugs have evolved initially
from cisplatin to carboplatin, lobaplatin and oxaliplatin
[97,98]. The problems of Pt(Il)-based chemotherapeutics
including poor pharmacology, systemic toxicities, rapid
blood clearance, and side effect like nephrotoxicity, neuro-
toxicity, ototoxicity, and myelosuppression which strongly
restrict their clinic efficiency and usable range, needs to
be addressed [99]. Hence, major efforts have been made
in exploring the new Pt-based drugs in order to eliminate
toxic side effects and drug-resistance of tumors. Recently,
the effects of small-sized Pt NPs or Pt NCs as anticancer
nanomedicine to augment chemotherapeutic efficacy have
been investigated [100,101]. Besides the fluorescent
imaging capacity, dual-functional Pt NCs mentioned above
showed selective inhibition of hematopoietic K562 and
BV173 cancer cells [94]. In contrast to hematopoietic
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normal cells, these Pt NCs induce a three times higher
apoptotic rate in hematopoietic cancer cells. Addition-
ally, immunoblotting was used to confirm the molecular
mechanism of Pt NCs’- induced apoptosis and the results
suggested that Pt NCs could induce pro-apoptotic protein
expression (p53, PUMA, cleaved caspase) in hematopoi-
etic cancer cells, leading to apoptosis in these cells. Some
research also reported the apoptosis mechanism of Pt
NCs-based chemotherapeutics, that is, high surface-active
Pt NCs are eroded to an oxidation state caused by inter-
action with intracellular acidic organelles (endosomes,
lysosomes, etc.) whereby Pt ions damage DNA, giving rise
to a synergistic effect of both Pt NCs and Pt ions [52].

In addition to conventional Pt, Au and Ag NMs have
also exhibited the induced apoptosis of hematological ma-
lignancies and the possibility for them to be developed
as novel chemotherapeutics for the effective treatment of
hematopoietic system disease, especially AML, lymphoma
and multiple myeloma [102—-104]. Kumari et al. [105]
proposed a green nyctanthes arbortristis mediated synthetic
method of Ag NPs with an average size of 22 nm. The dif-
ferent concentrations (5-50 pg/mL) of Ag NPs impacted on
cell viability of THP-1 human leukemia cell lines with a half
maximal inhibitory concentration (IC50) of 33.5 ug/mL.
This cytotoxicity in vitro of Ag NPs for leukemia cells was
contributed to cell ROS defense mechanisms resulting in
cell death. Similarly, the Ag NPs produced in the Bras-
sica rapa extract (NBRE) have the highest antioxidant and
cytotoxic activity of 3.53 and 7.38 pug/mL for M-NFS-60
cells (Human Mouse Myelogenous Leukemia carcinoma)
and HeLa cells, respectively [106]. Moreover, the solvent
effect on Au NPs’ size was investigated and dimethyl for-
mamide (DMF) and N-methyl-2-pyrrolidone (NMPL) me-
diated synthesized Au NPs possessed distinct average sizes
of 10.2 and 40.4 nm, respectively [107]. The smaller Au
NPs had a greater inhibitory effect on K562 cells (88% cell
inhibition) due to their ideal size and easier permeability of
cell membranes.

3.2 Targeted therapy

On account of the unsatisfactory bioavailability and
non-specifical biodistribution of conventional chemothera-
peutic drugs, certain molecular ligands like antibodies, pro-
teins (including their fragments), nucleic acids (aptamers),
and other receptor ligands (peptides, etc.) impose upon
the chemotherapeutics the targeting and selective proper-
ties, that is targeted therapy (Fig. 4) [108]. Targeting
agents facilitate the NM NMs to specifically reorganize
the membrane receptors or antigens on target tumor cells
and the type of selective targeting agents greatly determine
the physicochemical properties of conjugates. Hence, NM
NDMs-ligand conjugates (combination with specific target-
ing agents) are a major way to limit the drug distribution in
vivo and target onto the lesion site. Recently, the primary
target site of hematologic malignancies is CD19 despite the
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Fig. 3. The fluorescence-based diagnosis of hematological malignancies using metal nanomaterials. (A) 3D excitation and emission
spectrum of multidentate thioether-terminated poly (methacrylic acid) (PTMP-PMAA) stabilized near-infrared (NIR) fluorescent gold
nanoclusters (Au NCs) and (B) confocal microscopic images of human umbilical cord blood mononuclear cells (CBMC) and hematopoi-
etic cancer K562 cells cultured with Au NCs for 24 h. Cell nuclei were stained by Hochest 33258. Reprinted major modification with
permission from [86], Copyright 2011, American Chemical Society. (C) Photoluminescence emission spectra of Ag NPs with different
sizes excited by 366 nm UV light and (D) confocal microscopic graphs under cross-section (z-stacks) and top view of rat basophilic
leukemia cells imaged by synthesized Ag NPs. Reprinted major modification with permission from [87], Copyright 2016, Springer. (E)
3D excitation and emission spectrum of polyethylenimine (PEI)-encased platinum nanoclusters (Pt NCs@PEI) and (F) confocal micro-
scopic images of hematopoietic cancer K562 and BV173 cells as well as peripheral blood mononucleated cells (PBMCs) cultured with
Pt NCs@PEI. Cell nuclei were stained by 6-diamidino-2-phenylindole (DAPI). Reprinted major modification with permission from [94],
Copyright 2018, Elsevier.
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increased use frequency of CD22 and active agents target-
ing B cell maturation antigen (BCMA) [109-111]. For ex-
ample, Au nanourchins (GNUs) with core diameter at 101
4 12 nm and branch length at 31.9 & 12.9 nm, were initially
modified by the Raman reporter molecule Nile Blue (NB)
and stabilizer polyethylene glycol (PEG) and subsequently
conjugated with antiCD19 IgA monoclonal antibodies in
order to specifically target CD19 positive leukemic cells
[112]. For the acquisition of a nondistinctive cell apoptosis
effect, the dosage of antiCD19-PEG-NB-GNU treatment
(0.17 ng/uL) was much less than that of antiCD19 alone
(0.56 ng/uL). The possible cytotoxic effect was due to high
oxidative stress and a blocking in the growth phases of the
CCRF-SB cell cycle. Cancer stem cells (CSCs) rarely occur
in multiple myeloma because of tumor multiresistance and
recurrence [8]. Dou’s group studied the influence of anti-
ABCG2 monoclonal antibody (McAb) conjugated with Ag
NPs and vincristine (VCR) on myeloma CSCs [113]. They
found that CD44+CD24- cells separated from the murine
myeloma cell line SP2/0 had the characteristics of myeloma
CSCs and McAb-Ag NPs-VCR showed close to 100% cell
apoptosis, displaying an effective method to eradicate seeds
of hematologic malignancies through specifically targeted
therapy. FLT3 is another attractive targeting agent, given its
overexpression on most leukemia cells as well as the high
rate of FLT3 mutations in human leukemia [38]. Astilean
group reported the FLT3 inhibitor-Au NPs conjugates were
fabricated to targeted delivery of anti-drugs (midostaurin,
sorafenib, quizartinib, and lestaurtinib) which have a supe-
rior therapeutic effect for AML comparison with the bare
drugs [114].

Generally, nanomedicines have a tendency to ex-
travasate into solid tumor tissue via permeability and re-
tention (EPR) effects, whereas, vascular phase and diffuse
localization of hematologic malignancies make the EPR ef-
fect less efficient [115]. NM NMs with outstanding chemi-
cophysical and biological properties can be used as the
targeted delivery carriers or functional adjuvants in com-
bination with other carriers like liposomes, biocompati-
ble and degradable polymers, magnetic nanocarrier [40].
The establishment of NM NMs-based drug delivery sys-
tems (DDS) for the development of targeted therapy has
become an innovative breakthrough in the traditional treat-
ment of refractory cancers especially hematopoietic dis-
eases (Fig. 4). Patra et al. [116] proposed a potential Au-
Vel-FA DDS including velcade (Vel) as an anti-cancer drug,
folic acid (FA) as a targeting agent and Au NP as a deliv-
ery vehicle. Au-Vel-FA was capable of inducing apoptosis
against both multiple myeloma U266 and RPMI cells on
the premise of maintaining the functional activity of vel-
cade. This form of DDS could be deemed as an equally ef-
fective alternative to classical chemotherapeutics and capa-
ble of being extended to other malignancies. A triple DDS
called DNA-nanosilver-berberine was constructed employ-
ing DNA as a carrier Ag NPs as a plasmonic accelera-
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tor, and berberine as an effective drug for leukemic can-
cer [117]. DNA-nanosilver-berberine exerted high toxic-
ity against CCRF-CEM cells inducing apoptosis of cells
through increased ROS production and executive caspase
3/7 activation. Ag NPs accelerated the electronic transi-
tions of Berberine and adsorbed the high energy emission
absorbent in the integration with penetrative light radiation
for deeper localized tumors [118].

In a word, either NM NMs-ligand conjugates or NM
NMs-based DDS for targeted therapy not only protect drugs
against the external environment during the transportation
towards the target site, but also increase the blood circu-
lation time and surface multi-functionality. Most impor-
tant is that the long circulation properties will increase the
possibility of medicable drugs encountering malignant cells
in peripheral blood which is one of the main target sites
in hematologic malignancies [115]. High efficiency, spe-
cific selectivity and unique applicability of targeted therapy
makes it advantageous for the treatment of hematologic ma-
lignancies, however, it is regrettable that targeted therapy
has not shown a survival advantage in stage IV disease for
many randomized trials, despite its significantly improving
patient survival and quality of life [119].

3.3 Photothermal therapy

As a form of photodynamic therapy (PDT), photother-
mal therapy (PTT) uses heat created by electromagnetic ra-
diation to eliminate or ablate tumor cells [120,121]. Light-
responsive materials can be activated by light or near in-
frared (NIR) wavelength radiation, resulting in high affinity
for cancer cells through hyperthermia [122]. PTT manifests
aprominent role in the treatment of cancer based on its non-
invasive, non-contact and low cytotoxic properties. Au NPs
are preferred in the photo-based nanomedicine because of
specific optical features like SPR [123,124]. If Au NPs en-
ter into tumors, they trend to aggregate at the local tumor
sites, and absorb energy via a light (wavelength of 700-980
nm/1000-1400 nm) irradiation to generate heat which can
transfer to tumors without damaging normal cells (Fig. 5A)
[121,125]. The first attempt for the photothermal therapy
employing Au NPs in vitro was proposed by Lapotko et
al. [126,127]. They used laser activated nano-thermolysis
for cell elimination technology (LANTCET) to target ther-
molysis of leukemia cells by means of producing microbub-
bles near the NPs under laser irradiation [126,127]. After-
wards, Au nanorod (Au NRs) as one kind of NPs were con-
jugated with CD33 monoclonal antibodies (Au NRs-CD33)
to achieve nano-thermolysis of human acute leukemia cells
by a NIR pulsed-laser illumination [128]. The proportion of
dead hematopoietic tumor cells went up 3—4 times after the
PTT by Au NRs-CD33. Wang’s group creatively combined
both PDT and PTT approaches by constructing an aptamer
switch probe (ASP) connected chlorin e6 (Ce6) photosensi-
tizer onto the surface of Au NRs [129]. ASP was formed as
the initial sgc8 leukemia aptamer (OFF state) and polyethy-
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lene glycol (PEG) linked sgc8 (ON state) to turn on/off the
fluorescence of the photosensitizer, leading to PDT con-
trolled by singlet oxygen generation (SOG) as stated in
Fig. 5B. Au NRs with a length below 100 nm (Fig. 5C)
play a role as a PTT agent by their plasmon resonance ab-
sorption (LPRA) in the NIR region. Positive CCRF-CEM
(acute lymphoblastic leukemia T-cells) and negative control
Ramos cells (acute lymphoblastic leukemia B-cells) were
selected to examine the efficiency of PDT/PTT and the re-
sult revealed that this multimodal therapy could efficiently
kill the CCRF-CEM (cell viability = 39%) after 812 nm NIR
laser irradiation for 10 min compared to nontarget Ramos
cells (cell viability = 88%) as shown in Fig. 5D,E [129].

Although NM NMs have remarkable success in PTT
for various cancers, the limitations such as inapplicability
to metastasing tumors and irreversible tumor growth caused
by hyperthermia need specific attention in the future.

4. Conclusion and perspective

This review summarizes three types of hematological
malignancies and current advances in their diagnosis and
treatment. Considerable effort has been made on the inves-
tigation of NM NMs especially Au, Ag, Pt NMs as sensi-
tive probes and safe contrast agents to achieve the detection
and cellular imaging of hematologic malignancies due to

their peculiar physicochemical properties including LSPR,
SERS, and size-dependent fluorescence, as well as rela-
tively low cytotoxicity. Moreover, the intrinsic features of
NM NMs such as ultrafine size, unique optical and electron-
ical properties, especially the easy modifiable surface have
the ability of integrating these with other contrast agents,
chemotherapeutic agents, targeted agents and physiother-
apy agents to set up innovative chemotherapeutic, targeted
and photothermal therapeutic platforms. In spite of the di-
agnostic and therapeutic effectiveness of NM NMs, several
limitations and imperfections of NM NMs remain to be ad-
dressed: (1) the accuracy of the NM NMs-based probes
need to be further promoted even at trace levels; (2) exploit-
ing the high fluorescent NM NMs-based biomarker in the
NIR range in order to eliminate the interference of autofluo-
rescence and improve the biological imaging effect; (3) NM
NMs-based nanomedicine is urgently required to solve the
problems of short half-lives, lower bioavailability, and re-
sistance to drugs; (4) new theranostic strategies need to be
developed not only limited to traditional chemoradiother-
apy, but also extended to immunotherapy, targeted therapy
and integrated multi-therapy.
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