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Abstract

Background: Triptolide (TP) is a major active component of colquhounia root tablet, which has been long been used in China to treat
diabetic nephropathy (DN) due to its marked anti‑inflammatory, antiproteinuric, and podocyte‑protective effects. Methods: This study
investigated the anti-proteinuria activity and related signaling cascade of TP in DN by utilizing a network pharmacology and molecular
docking approach. Results: From the GeneCard, DisGeNET, and National Center for Biotechnology Information Gene databases, 1458
DN targets were obtained and input together with 303 TP targets into Venny2.1.0 for mapping and comparing. In total, 113 common
targets of TP and DN were obtained, of which 7 targets were found to play an important role through theoretical inhibitory constant
analysis. The common targets were further analyzed by Kyoto Encyclopedia of Genes and Genomes to identify the pathways related to
the therapeutic effect of TP on DN. Among them, the seven targets were found to play key roles in six signaling pathways. The molecular
docking results also showed TP had good binding ability to the seven targets. Conclusions: Analysis of the common targets and key
pathways showed that TP can improve DN via its anti-nephritis, anti-renal fibrosis, antioxidant, and podocyte-protective effects, which
might elucidate the mechanism by which TP improves renal function and reduces proteinuria in DN.
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1. Introduction

Diabetic nephropathy (DN), a serious microvascular
complication of type 1 and type 2 diabetes, is character-
ized by proteinuria and persistent renal function injury [1].
Proteinuria, an independent risk factor of disease progres-
sion, is themost important clinical characteristic of DN, and
is also the leading cause of end-stage renal disease [2,3].
Without early intervention, 50% of patients with microal-
buminuria will progress to macroalbuminuria [4]. There
are many risk factors for the development of DN includ-
ing increased inflammatory factors and oxidative stress,
changes in fat and protein metabolism, and overexpres-
sion of the renin-angiotensin-aldosterone system. These
lead to the apoptosis and loss of renal podocytes and de-
creased filtration capacity of glomeruli, thus aggravating
DN [5,6]. Although several recent studies have confirmed
that angiotensin-converting enzyme inhibitors/angiotensin
receptor blockers can reduce DN proteinuria and play a role
in delaying disease progression, they are ineffective in DN
patients with normal blood pressure [7]. Due to the limita-
tions of traditional Western medical approaches, some DN
patients have turned to alternative treatments such as tradi-
tional Chinese medicine (TCM).

Triptolide (TP) is a component of the following
traditional Chinese herbal medicines: Tripterygium wil-
fordii Hook. F., Tripterygium hypoglaucum Levl. Hutch,
Tripterygium regerii Sprague et Takeda, and Tripterygium
forretii Dicls [8]. It is also a major active component
of the colquhounia root tablet and tripterygium glycoside
tablet, which have long been used in China to treat DN
due to their marked anti‑inflammatory, anti-proteinuria, and
podocyte‑protective effects [9–11]. Several randomized
controlled clinical trials have indicated that TP possibly
imparts nephroprotective effects by decreasing proteinuria,
serum creatinine levels, and blood urea nitrogen levels [12–
14]. Although TP is effective for improving renal function
and reducing proteinuria in DN, the exact mechanism is still
unclear.

Network pharmacology is a research method based on
virtual computing technology, high-throughput data, and
public database, which combines system computing with
experiments, introducing a new field of pharmacology [15,
16]. Network pharmacology constructs a multi-level net-
work of disease-phenotype-gene-drug through multi-target
interaction [17]. Through analysis of the overall network,
we can better predict drug targets to provide help for the re-
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search and design of new drugs [18]. For TCM, each com-
ponent in its prescription has its target, and the effect of the
drug is often the result of the synergistic effects of multiple
component targets [19]. Network pharmacology can reveal
the role of various components at the molecular level so that
people can make better use of TCM [20].

In this study, we used network pharmacology to iden-
tify the potential targets and signaling pathways of the TCM
component TP for the treatment of DN and revealed its pos-
sible mechanism. Fig. 1 shows a flowchart of the online
pharmacological processes of this study.

Fig. 1. Network pharmacological workflow to determine the
potentialmechanisms and targets of triptolide in the treatment
of diabetic nephropathy.

2. Methods
2.1 Prediction Targets of TP

The targets of TP were identified by two databases:
PharmMapper (http://www.lilab-ecust.cn/pharmmapper/)
and traditional Chinese medicine systems pharma-
cology database and analysis platform (TCMSP)
(https://old.tcmsp-e.com/tcmsp.php). The PharmMap-
per database is a platform for targets prediction, which
identifies the potential targets of small molecules by a
pharmacophore mapping approach. The chemical structure
of TP was drawn by ChemDraw (PerkinElmer, Waltham,
MA, USA) and uploaded into the PharmMapper database
(Fig. 2). In the PharmMapper database, the maximum

number of conformation generation was set to 300 and
druggable pharmacophore models were selected as the
target set. The names of these target genes were converted
to official names by UniProt (https://www.uniprot.org/).
TCMSP is a systems pharmacology platform used for
screening the active ingredients of TCM. After inputting
the keyword “triptolide”, targets were obtained from the
TCMSP database.

Fig. 2. TP chemical structure.

2.2 Prediction Targets of DN
DN-associated targets were obtained through three

online databases, GeneCard (https://www.genecards.org/),
DisGeNET (https://www.disgenet.org/), and National Cen-
ter for Biotechnology Information (NCBI) Gene databases
(https://www.ncbi.nlm.nih.gov/gene/). GeneCard is a
database with relevant information on proteomics, tran-
scriptomics, and genomics [21]. DisGeNET is a compre-
hensive database of genes related to human disease [22].
NCBIGene is a database containing information about mul-
tiple species [23]. After searching the keywords “diabetic
nephropathy” in the above three databases, the targets of
DN were obtained.

2.3 Construction and Analyses of the PPI Network
The potential targets of TP and the

disease targets of DN were mapped and
compared with the Venny2.1.0 platform
(https://bioinfogp.cnb.csic.es/tools/venny/index.html),
in order to obtain the common targets of TP and DN. The
STRING database (https://string-db.org/) contains almost
all known and predicted information about protein-protein
interactions, including direct and indirect interactions.
The validity of these interactions was calculated in the
form of confidence scores, ranging from 0 to 1 [21]. The
medium confidence level was set to greater than 0.4, with
the species “Homo sapiens” [22]. The potential targets of
TP and the related targets of TP treatment for DN were
uploaded to the STRING database. The protein-protein
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interaction networks of TP and TP-DN were obtained
[22,23]. Cytoscape (https://cytoscape.org/) is an open
source network software platform, which can be used to
visualize the intermolecular interaction network and com-
bine network and gene expression profile data [24]. The
TP and TP-DN target networks obtained from the STRING
database were imported into Cytoscape software (version
3.8.2, Institute for Systems Biology, Seattle, Washington,
USA), and the “Network Analyzer” function was used to
analyze the topology parameters of the network [25].

2.4 Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes Pathway Enrichment Analyses

Metascape database (https://metascape.org/) is a plat-
form for gene annotation analysis, which can analyze the
signaling pathways and biological processes of uploaded
target genes [26]. For enrichment analysis, the species was
set to “Homo sapiens”, the p-value cutoff was 0.05, and
other parameters were default [27]. Gene Ontology (GO)
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were performed on the targets in
turn. The results were saved and sorted according to score,
and the relevant biological processes and signal pathways
were screened [28]. The results of the filters were put input
into a bioinformatics online tool (http://www.bioinformati
cs.com.cn/), to draw the relevant pictures [29].

2.5 Molecular Docking
The crystal structure of candidate protein binding to

TPwas obtained from the RCSB Protein Data Bank (https://
www.rcsb.org/) and modified using Autodock (version 2.5,
Scripps Research, San Diego, California, USA) to remove
ligand and water molecules, and add hydrogen and Koll-
man charge [30,31]. The three-dimensional structure of TP
was obtained from DrugBank (https://go.drugbank.com/)
and was also modified by Autodock (version 2.5, Scripps
Research, San Diego, California, USA) [32]. First, the ac-
tive site was confirmed by a eutectic small molecule ligand
of the proteins. Then the position of the active site with
60 Å outward was taken as the center of the docking box.
Second, the Lamarckian genetic algorithm was used to find
the best conditions for docking. Finally, the conformation
with the lowest energy was selected as the optimal confor-
mation. The docking results were visualized using PyMol
(https://pymol.org/2/), where the hydrogen bonds and bind-
ing sites were analyzed.

3. Results
3.1 TP-DN Common Targets

A total of 303 targets of TP were obtained through
PharmMapper and the TCMSP database. A total of 1458
targets associated with DNwere identified in the GeneCard,
DisGeNET and NCBI Gene databases. The TP and DN tar-
gets were determined using the Venny2.1.0 data platform,
which identified common targets (Fig. 3).

Fig. 3. VennDiagram of the TP andDN common targets. Note:
303 TP non-common targets (left), 113 TP-DN common targets
(middle), 1458 DN non-common targets (right).

Fig. 4. TP-DN common target network. Note: The nodes size
indicates the degree of the target.

3.2 TP-DN Target Network

These common targets were imported into the
STRING database, and then the protein-protein interaction
relationship was transferred to Cytoscape software to gen-
erate the TP-DN target network map (Fig. 4). After ana-
lyzing the whole network, 113 nodes and 1618 edges were
found, with an average node degree of 28.637 and aver-
age local clustering coefficient of 0.648. The nodes in the
network were sorted according to the degree value (Ta-
ble 1), which represent the connection among the nodes in
the network (the larger the degree value, the more nodes
are associated). Among them, the top 10 targets (tumor
necrosis factor [TNF], albumin [ALB], AKT1, vascular en-
dothelial growth factor A [VEGFA], Jun proto-oncogene,
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Fig. 5. GOanalysis of biological processes. Note: the color scale
indicates the adjusted p-value, and the dot size represents the gene
count in each term.

Fig. 6. GO analysis of cell components. Note: the color scale
indicates the adjusted p-value, and the dot size represents the gene
count in each term.

AP-transcription factor subunit [JUN], tumor protein p53
[TP53], signal transducer and activator of transcription 3
(STAT3), matrix metalloproteinase 9 [MMP9], epidermal
growth factor receptor [EGFR], caspase 3 [CASP3]) were
selected for further molecular docking analysis by degree
value.

3.3 Enrichment Analysis of the TP-DN Target Network

The common targets of TP and DN were imported
into Metascape for GO and KEGG analyses, and the re-
sults were input into a bioinformatics online tool to obtain
the enrichment bubble diagram. The results were sorted ac-
cording to the p-value. In GO analysis, the biological pro-
cesses were found to be associated with the positive regula-
tion of cell migration, response to hormone, positive regula-
tion of cell motility, positive regulation of cell component

Fig. 7. GO analysis of molecular functions. Note: the color
scale indicates the adjusted p-value, and the dot size represents
the gene count in each term.

movement, and positive regulation of locomotion, among
others (Fig. 5). The cell components were associated with
vesicle lumen, secretory granule lumen, cytoplasmic vesi-
cle lumen, membrane raft, membrane microdomain, among
others (Fig. 6). Molecular functions were correlated with
ligand activated transcription factor activity, nuclear re-
ceptor activity, phosphatase binding, protein kinase activ-
ity, and cytokine receptor binding, among others (Fig. 7).
In KEGG analysis (Fig. 8), the top pathways related to
DN were selected for further analysis and included ad-
vanced glycation end product-receptor for advanced glyca-
tion end product (AGE-RAGE), mitogen-activated protein
kinase (MAPK), phosphoinositide 3-kinase-AKT (PI3K-
AKT), relaxin, forkhead boxO (FOXO), and TNF signaling
pathways.

Fig. 8. KEGG pathway analysis. Note: the color scale indicates
the adjusted p-value, and the dot size represents the gene count in
each term.
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Table 1. Topological analysis of common target network.
Target name Abbreviation ASPL BC CC Clustering coefficient Degree

Tumor necrosis factor TNF 1.170 0.124 0.855 0.304 93
Albumin ALB 1.179 0.106 0.848 0.311 92
AKT Serine/Threonine Kinase 1 AKT1 1.250 0.062 0.800 0.355 84
Vascular endothelial growth factor A VEGFA 1.313 0.035 0.762 0.415 77
Transcription factor AP-1 JUN 1.348 0.033 0.742 0.434 73
Cellular tumor antigen p53 TP53 1.357 0.031 0.737 0.435 72
Signal transducer and activator of transcription 3 STAT3 1.384 0.022 0.723 0.473 70
Matrix metalloproteinase-9 MMP9 1.402 0.025 0.713 0.448 68
Epidermal growth factor receptor EGFR 1.411 0.020 0.709 0.463 67
Caspase-3 CASP3 1.429 0.020 0.700 0.485 64
Estrogen receptor alpha ESR1 1.509 0.020 0.663 0.491 57
Prostaglandin-endoperoxidase synthase 2 PTGS2 1.500 0.015 0.667 0.534 56
Peroxisome proliferator-activated receptor gamma PPARG 1.527 0.017 0.655 0.497 54
Transforming protein RhoA RHOA 1.589 0.010 0.629 0.569 50
Chemokine receptor 4 CXCR4 1.598 0.007 0.626 0.595 49
Mitogen-activated protein kinase 1 MAPK1 1.598 0.005 0.626 0.629 48
type IV collagenase MMP2 1.607 0.006 0.622 0.598 48
Transforming growth factor beta-1 TGFB1 1.589 0.007 0.629 0.603 48
Cellular oncogene fos FOS 1.598 0.006 0.626 0.603 47
Interferon gamma IFNG 1.598 0.004 0.626 0.662 47
Mitogen-activated protein kinase 14 MAPK14 1.607 0.005 0.622 0.635 46
Interleukin-2 IL2 1.616 0.005 0.619 0.630 45
Signal transducer and activator of transcription 1 STAT1 1.634 0.022 0.612 0.629 44
Vascular endothelial growth factor receptor 2 variant KDR 1.634 0.009 0.612 0.591 43
Nitric oxide synthase 3 NOS3 1.652 0.004 0.605 0.657 43
C-C motif chemokine 5 CCL5 1.643 0.004 0.609 0.635 42
Mitogen-activated protein kinase 8 MAPK8 1.643 0.013 0.609 0.551 42
Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 3 RELA 1.652 0.005 0.605 0.657 41
Janus kinase 2 JAK2 1.661 0.004 0.602 0.670 41
Peroxisome proliferator-activated receptor alpha PPARA 1.661 0.015 0.602 0.501 39
Phosphatidylinositol 3-kinase regulatory subunit alpha PIK3R1 1.732 0.004 0.577 0.610 39
Cell division control protein 42 homolog CDC42 1.696 0.002 0.589 0.722 37
Insulin-like growth factor 1 receptor IGF1R 1.714 0.004 0.583 0.659 37
Heme oxygenase 1 HMOX1 1.696 0.004 0.589 0.669 35
Glycogen synthase kinase-3 beta GSK3B 1.705 0.002 0.586 0.708 35
Renin REN 1.705 0.009 0.586 0.503 34
E3 ubiquitin-protein ligase Mdm2 MDM2 1.732 0.002 0.577 0.709 34
Hepatocyte Growth Factor Receptor MET 1.732 0.002 0.577 0.727 34
Protein tyrosine phosphatase non-receptor type 11 PTPN11 1.732 0.003 0.577 0.693 34
Matrix metalloproteinase 3 MMP3 1.732 0.007 0.577 0.702 32
Nitric oxide synthase 2 NOS2 1.759 0.002 0.569 0.738 32
Matrix metalloproteinase 1 MMP1 1.768 0.001 0.566 0.772 31
Tumor necrosis factor receptor superfamily member 5 CD40 1.750 0.003 0.571 0.718 31
Tyrosine-protein kinase Lck LCK 1.768 0.001 0.566 0.777 30
Androgen Receptor AR 1.768 0.019 0.566 0.655 30
RAC-beta serine/threonine-protein kinase AKT2 1.768 0.002 0.566 0.715 30
Tyrosine-protein phosphatase non-receptor type 1 PTPN1 1.768 0.002 0.566 0.714 29
E-selectin SELE 1.786 0.001 0.560 0.775 28
Bone morphogenetic protein 2 BMP2 1.804 0.001 0.554 0.752 27
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Table 1. Continued.
Target name Abbreviation ASPL BC CC Clustering coefficient Degree

Prepro-Coagulation Factor II F2 1.804 0.001 0.554 0.775 27
Matrix metalloproteinase 7 MMP7 1.795 0.006 0.557 0.453 27
Urokinase-type plasminogen activator PLAU 1.795 0.001 0.557 0.761 27
Protein mono-ADP-ribosyltransferase 1 PARP1 1.786 0.002 0.560 0.683 26
Superoxide dismutase 2 SOD2 1.804 0.002 0.554 0.711 26
Spleen tyrosine kinase SYK 1.813 0.002 0.552 0.743 25
Cyclin-dependent kinase 2 CDK2 1.830 0.000 0.546 0.848 24
Transforming growth factor beta-2 TGFB2 1.813 0.001 0.552 0.804 24
Neutrophil gelatinase-associated lipocalin LCN2 1.830 0.002 0.546 0.640 23
CD80 Molecule CD80 1.821 0.001 0.549 0.775 23
Fibroblast growth factor receptor 1 FGFR1 1.866 0.001 0.536 0.823 22
Janus Kinase 3 JAK3 1.875 0.000 0.533 0.810 22
Cathepsin B CTSB 1.857 0.001 0.538 0.657 21
Insulin receptor INSR 1.920 0.002 0.521 0.533 21
Placental growth factor PGF 1.857 0.002 0.538 0.619 21
Dipeptidyl peptidase 4 DPP4 1.866 0.003 0.536 0.542 20
Glutathione reductase GSR 1.955 0.000 0.511 0.795 20
Rac Family Small GTPase 1 RAC1 1.839 0.019 0.544 0.516 20
Alpha-1-antitrypsin SERPINA1 1.946 0.000 0.514 0.789 20
Erb-B2 Receptor Tyrosine Kinase 4 ERBB4 1.848 0.001 0.541 0.721 20
TGF-beta receptor type-1 TGFBR1 1.875 0.000 0.533 0.877 19
Aldo-keto reductase family 1 member B1 AKR1B1 1.848 0.010 0.541 0.725 19
Complement C3 C3 1.875 0.001 0.533 0.752 18
Vitamin D receptor VDR 1.902 0.002 0.526 0.536 18
Apoptotic protease-activating factor 1 APAF1 1.884 0.001 0.531 0.669 17
Glutathione S-transferase Pi 1 GSTP1 1.893 0.000 0.528 0.853 17
Caspase-7 CASP7 1.902 0.000 0.526 0.775 16
Neutrophil collagenase MMP8 1.893 0.000 0.528 0.900 16
Disintegrin and metalloproteinase domain-containing protein 17 ADAM17 1.902 0.002 0.526 0.438 15
Hypoxanthine-guanine phosphoribosyltransferase 1 HPRT1 1.902 0.008 0.526 0.695 15
Bile acid receptor NR1H4 1.911 0.000 0.523 0.771 15
Fatty acid-binding protein 4 FABP4 1.964 0.002 0.509 0.549 14
Apoptosis regulator Bcl-2 BCL2 1.911 0.003 0.523 0.484 14
Cytochrome P450 family 2 subfamily C polypeptide 9 CYP2C9 1.964 0.003 0.509 0.341 14
Retinol-binding protein 4 RBP4 2.009 0.000 0.498 0.725 14
Macrophage migration inhibitory factor MIF 1.929 0.000 0.519 0.910 13
Group-specific component GC 1.991 0.002 0.502 0.397 13
Angiogenin ANG 1.938 0.001 0.516 0.697 12
Atriopeptidase MME 1.955 0.001 0.511 0.576 12
Hydroxymethylglutaryl-CoA reductase HMGCR 1.991 0.001 0.502 0.636 11
Macrophage metalloelastase MMP12 1.955 0.000 0.511 0.836 11
Transthyretin TTR 1.938 0.001 0.516 0.636 11
Glutathione S-transferase Mu 1 GSTM1 1.946 0.000 0.514 0.756 10
Glutathione S-transferase Mu 2 GSTM2 1.973 0.000 0.507 0.622 10
Oxysterols receptor LXR-alpha NR1H3 1.946 0.001 0.514 0.578 10
Pregnane X nuclear receptor NR1I2 1.964 0.000 0.509 0.711 10
Peptidyl-prolyl cis-trans isomerase A PPIA 1.982 0.001 0.505 0.556 10
Phosphoenolpyruvate carboxykinase 1 PCK1 1.946 0.000 0.514 0.733 10
Peroxisome proliferator-activated receptor delta PPARD 2.063 0.003 0.485 0.694 9
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Table 1. Continued.
Target name Abbreviation ASPL BC CC Clustering coefficient Degree

Histone-lysine N-methyltransferase SETD7 SETD7 1.964 0.000 0.509 0.750 9
cGMP-specific 3’,5’-cyclic phosphodiesterase PDE5A 2.036 0.003 0.491 0.611 9
1,4-beta-N-acetylmuramidase C LYZ 1.973 0.001 0.507 0.607 8
Complement factor D CFD 2.009 0.001 0.498 0.607 8
Sex hormone-binding globulin SHBG 2.018 0.000 0.496 0.821 8
Coagulation factor X F10 2.054 0.000 0.487 0.800 6
Bifunctional epoxide hydrolase 2 EPHX2 2.089 0.000 0.479 0.600 5
Nuclear receptor subfamily 3 group C member 2 NR3C2 2.411 0.000 0.415 0.400 5
Triggering receptor expressed on myeloid cells 1 TREM1 2.107 0.000 0.475 0.833 4
Adenine phosphoribosyltransferase APRT 2.134 0.000 0.469 1.000 3
Ribonuclease, RNase A family, 2 RNASE2 2.705 0.000 0.370 0.333 3
Chitotriosidase-1 CHIT1 2.741 0.000 0.365 1.000 2
Histamine N-methyltransferase HNMT 2.777 0.000 0.360 1.000 2
Lactoylglutathione lyase GLO1 2.152 0.000 0.465 1.000 2
Tryptophan-tRNA ligase WARS 2.625 0.000 0.381 0.000 1
Note: ASPL, Average Shortest Path Length; BC, Betweenness Centrality; CC, Closeness Centrality.

3.4 Molecular Docking

The binding ability of TP to the proteins in the TP-DN
target network was evaluated by molecular docking. These
target proteins included AKT1 (3OCB), ALB (1E7A),
CASP3 (1CP3), EGFR (1M17), JUN (1JNM), MMP9
(1GKC), STAT3 (6NJS), TNF (2AZ5), TP53 (6GGA), and
VEGFA (4ZFF). Generally, binding energies less than - 5
kcal/mol are considered good binding ability. According
to the docking results (Fig. 9), TP had a stronger binding
ability with AKT1, EGFR, CASP3, ALB, STAT3, TNF,
and TP53. Moreover, TP formed a hydrogen bond with
ALA-230 (1.9Å) at the active site of AKT1, TYR-401
(2.1Å), LYS-402 (3.3Å), ASP-549 (2.0Å) of EGFR, GLY-
122 (3.5Å), ALA-992 (1.7Å) of CASP3; LYS-721 (1.9Å)
and CYS-773 (1.9Å) of ALB; GLN-644 (1.7Å, 2.4Å),
GLY-656 (3.4Å), and LYS-658 (1.9Å) of STAT3; GLY-121
(1.9Å) of TNF; and SER-227 (2.2Å) and THR-231 (1.8Å,
2.7Å) of TP53. The detailed binding energies and inhibition
constants for the molecular docking of TP are presented in
Table 2.

4. Discussion
DN is a chronic kidney disease and the leading cause

of end-stage renal disease in most developed countries [5].
The causes of DN are complex, but inflammation and ox-
idative stress are known to be involved in its progression
[5,33]. As a new approach, network pharmacology can well
analyze the overall relationship between drugs and diseases,
including how to participate in the therapeutic process [34].
TP markedly attenuates albuminuria and podocyte injury,
regulating the T helper cell balance and macrophage infil-
tration in an animal model of DN [35,36]. To elucidate
the possible mechanism and potential targets of TP in the

Table 2. The free energies, and theoretical inhibition
constants (Ki) of TP binding to targets (at T = 298.15 K).
Class ΔG (kcal/mol) Ki (µM)

AKT1 –6.97 7.83
EGFR –6.85 9.56
CASP3 –6.29 24.49
MMP9 –4.41 584.42
ALB –6.37 21.58
JUN –4.98 222.07
STAT3 –7.46 3.4
TNF –7.27 4.67
TP53 –6.06 36.14
VEGFA –4.64 399.32
The inhibition constants were obtained from Autodock
(version 2.5, Scripps Research, San Diego, California,
USA).

treatment of DN, we constructed and analyzed the targets
through network pharmacology and molecular docking.

Among the 113 TP- and DN-related targets, 7 targets
were found to play an essential role through network anal-
ysis including ALB, AKT1, CASP3, EGFR, STAT3, TNF,
and TP53. Individually, ALB functions as an intravascu-
lar transporter, which not only binds a variety of ions, hor-
mones, and drugs but also stabilizes osmotic pressure, anti-
inflammation, and antioxidation [37]. When the concen-
tration of glucose is too high, glycosylation of ALB oc-
curs [38]. After additional events, glycosylated ALB fur-
ther forms AGEs and stimulates cells to produce oxidative
stress, thus damaging cells [39]. CASP3 belongs to the fam-
ily of cysteine proteases and is an essential factor in reg-
ulating apoptosis [40]. High glucose can stimulate mito-
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Fig. 9. Molecular docking of TPwith potential target proteins A (AKT1), B (ALB), C (CASP3), D (EGFR), E (JUN), F (MMP9), G
(STAT3), H (TNF), I (TP53), J (VEGFA). Note: The yellow dotted lines indicate the hydrogen bonds and the numbers above represent
their distance. The green structure represents triptolide, and the blue structure indicates the amino acid residues in the binding site of the
protein.

chondria, release cytochrome C, and increase the expres-
sion of CASP9 and CASP3 [41]. At the same time, acti-
vation of CASP12 and CASP3 through endoplasmic reticu-
lum stress can also be independent of mitochondria, result-
ing in apoptosis [42]. EGFR is an important receptor tyro-
sine kinase, which is closely related to the development of
DN and is widely distributed in glomeruli and renal tubules
[43]. EGFR can be activated by high glucose and Src ki-
nase, mediating the phosphorylation of Akt, stimulating a
large number of reactive oxygen species (ROS), and induc-
ing the MAPK signal pathway all of which leads to the re-
lease of inflammatory factors and reduces insulin secretion
in islet cells, resulting in insulin resistance [44]. The Janus
kinase/STAT pathway can be activated by high glucose and
ROS, and is involved in the pathogenesis of DN [45]. After
being phosphorylated, STAT3 enters the nucleus to stimu-

late the transcription of target genes, increasing the expres-
sion of inflammatory and fibrosis factors [46]. Inhibiting
the activity of STAT3 can decrease TNF-α and interleukin
beta 1 (IL-b1) levels, ameliorating renal fibrosis [47]. In
diabetic patients, the levels of inflammatory factors are sig-
nificantly elevated [48]. As an inflammatory factor, TNF
can greatly promote the development of DN and damage
the glomerular filtration barrier [49]. Moreover, it can bind
to insulin-like growth factor binding protein-3 to induce the
apoptosis of mesangial cells [50]. TP53 is a tumor suppres-
sor, which regulates the apoptosis of podocytes [51]. Af-
ter phosphorylation, AKT1 activates the MAPK signaling
pathway, releasing a large number of inflammatory factors
and causing renal fibrosis [52].
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Fig. 10. Schematic diagram of the underlying mechanism of TP in the treatment of DN.High glucose stimulates the EGFR receptor,
which activates the PI3K / Akt signaling pathway, which in turn mediates the transcription of genes via the MAPK pathway, leading
to TGF-β, Collagen IV, fibronectin as well as TNF-α, IL-1β of the levels rise. The inflammatory factors will trigger ECM and EMT,
causing nephritis, renal fibrosis, proteinuria, meanwhile, inflammatory factors will also bind to the corresponding receptors to stimulate
cells to release more inflammatory factors. All events ultimately initiate DN.

5. Conclusions

A total of 113 common targets of TP and DN were
identified by using network pharmacology, and the bind-
ing ability of TP to these targets was verified by molecu-
lar docking experiments. After KEGG enrichment analy-
sis, six pathways were found to play a key role in the thera-
peutic effect of TP on DN (Fig. 10). The MAPK signaling
pathway is a classic inflammatory pathway, which is com-
posed of p38-MAPK, c-Jun N-terminal kinase 1 (JNK1),
and extracellular signal-regulated kinase 2 (ERK2) [53].
When stimulated by ROS, p38-MAPK, JNK, and ERK re-
lease signaling factors such as ATF1/2 and c-Jun that me-

diate the transcription of transforming growth factor beta
(TGF-β), IL-1β, fibronectin, and type IV collagen, leading
to nephritis, renal fibrosis, podocyte apoptosis, and protein-
uria [54]. A high glucose environment can stimulate the
glycosylation of serum ALB and gradually transform it into
AGEs [38]. AGEs continuously accumulate and activate
RAGE, leading to oxidative stress, activation of the MAPK
pathway, chronic inflammation, and eventually renal injury
[55–57]. The PI3K/Akt pathway can activate the nuclear
factor kappa B (NF-κB) pathway, increasing the expres-
sion of IL-6 and leading to glomerular basement membrane
thickening and mesangial expansion [52]. Meanwhile, Akt

9

https://www.imrpress.com


can phosphorylate FOXO3a in the FOXO signaling path-
way, causing extracellular matrix hyperplasia [58]. Re-
laxin, a member of the insulin family, has vasodilatory and
antifibrotic effects. Activation of the relaxin pathway in-
hibits SMAD2 activation and TGF-β production, reducing
synthesis of the extracellular matrix (ECM) [59]. When
FOXO3a is phosphorylated by Akt, the expression of bisin-
dolylmaleimide and manganese superoxide dismutase de-
creases, resulting in ECM accumulation and accelerating
the occurrence of DN [60]. Meanwhile, activation of the
TNF pathway will elevate the expression of ROS, leading
to the altered permeability of the capillary wall and trigger-
ing proteinuria [61]. Generally, the results showed that TP
could improve DN via its anti-inflammatory, anti-renal fi-
brosis, anti-oxidant, and podocyte-protective effects.
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