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Abstract

Background: With the development of high-throughput genome sequencing and phenotype screening techniques, there is a possibility of
leveraging multi-omics to speed up the breeding process. However, the heterogeneity of big data handicaps the progress and the lack of a
comprehensive database supporting end-to-end association analysis impedes the efficient use of these data. Methods: In response to this
problem, a scalable entity-relationship model and a database architecture are firstly proposed in this paper to manage the cross-platform
data sets and explore the relationship among multi-omics, and finally accelerate our breeding efficiency. First, the targeted omics data
of crops should be normalized before being stored in the database. A typical breeding data content and structure is demonstrated with
the case study of rice (Oryza sativa L). Second, the structure, patterns and hierarchy of multi-omics data are described with the entity-
relationship modeling technique. Third, some statistical tools used frequently in the agricultural analysis have been embedded into the
database to help breeding. Results: As a result, a general-purpose scalable database, called GpemDB integrating genomics, phenomics,
enviromics and management, is developed. It is the first database designed to manage all these four omics data together. The GpemDB
involving Gpem metadata-level layer and informative-level layer provides a visualized scheme to display the content of the database and
facilitates users to manage, analyze and share breeding data. Conclusions: GpemDB has been successfully applied to a rice population,
which demonstrates this database architecture and model are promising to serve as a powerful tool to utilize the big data for high precise
and efficient research and breeding of crops.

Keywords: database; multi-omics; phenomics; metadata-level; informative-level; visualization platform; big data; crop; precise breed-
ing; rice

1. Introduction
There lies a continuing demand for agriculture to rein-

vent itself, striving for better agronomic performances such
as enhanced productivity, cost-efficiency, and crop quality.
Varieties need to combine a lot of excellent traits that help to
against a multitude of stresses, ensure crop uniformity and
storability. Traditional breeders attempt to combine these
traits by methods which rely on random genome modifica-
tions such as biparental cross, chemical mutagenesis, and γ-
radiationmutagenesis and so on. However, these traditional
breeding methods are usually time-consuming and labour-
intensive, because their screening often relies on manual
measurement of a single trait. When we perform genomic
selection, we need more detailed information on the crops,
not only one trait but also many other phenotypes at the
same time. Phenomics is a good way to solve this problem,
by phenotyping a large number of individuals for a great
number of traits throughout the development of the plants,
in a non-destructive manner and with good accuracy.

Nowadays, plant phenomics has produced massive
data involving millions of images and other information
from different sensors and scales performed in the field and
in controlled conditions, concerning hundreds of genotypes
at different phenological stages and management methods
[1]. Therefore, they often also involve multi-omics data as-
sociated with genomic, enviromics and management infor-
mation. For most researchers, this huge data is extremely
expensive and difficult to analyze and manage. Hence,
there is an increasing need tomake them available to a range
of users openly, allowing re-analyses and upload or down-
load our data freely. A database containing multi-omics
data and statistic tools is a good way to solve this problem.

Database architecture have proved to be effective in
the studies of genomics and phenomics.For example, in the
filed of human disease research, FBN1 genetic testing is
key to establishing a clinical diagnosis ofMarfan syndrome,
and FBN1 databases (http://www.umd.be/FBN1/) are often
used to evaluate variant causality. Kristian et al. [2] eval-
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uated the current databases regarding FBN1 variants, val-
idated the associated phenotype records with a new Mar-
fan syndrome geno-phenotyping tool, and quantified the as-
sociation of FBN1 variants with Marfan syndrome pheno-
types. Likewise, gene-phenotype association databases can
also be used in plants. Experiment-driven database analy-
sis is employed in forward genetics to predict the function
of genes associated with a mutant phenotype [3]. Trop-
GeneDB (http://tropgenedb.cirad.fr) is a web database that
manages genomic, genetic, and phenotypic information on
tropical crops [4]. Another database for the management
of phenotype information called J-phenome was also de-
veloped [5]. The OsGDB is being developed as a part of
the NSF-funded project, supporting cyberinfrastructure for
plant genome research [6]. Therefore, we hope to use the
gene-phenotype association database for crop breeding.

Furthermore, using deep learning techniques to pre-
dict phenotype from gene expression data has become
a reality in big data [7]. Deep learning algorithms of-
ten rely on a large amount of data, so it is necessary to
build a database. EURISCO (http://eurisco.ecpgr.org) col-
lects data on crops preserved by nearly 400 institutes in
Europe and outside Europe, protecting the world’s agri-
cultural biodiversity [8]. However, it is currently lim-
ited to collecting data in a non-native environment and
saving it into the database and cannot import heteroge-
neous big data. GnpIS (http://urgi.versailles.inra.fr/gnpis)
is an information system integrating genetic and genomic
data of plants and fungi [9]. As a plant database, it
integrates genetic information and genomic data. But
it’s not very scalable. Optimas-DW (http://www.optimas-
bioenergy.org/optimas_dw) is a comprehensive database
of maize transcriptomics, metabolomics, ionomics, pro-
teomics and phenomics [10]. The database contains a richer
variety of data to analyze the impact of specific environ-
mental conditions or developmental stages on maize. But it
doesn’t have any plugin. MBKbase (www.mbkbase.org) is
an integrated omics knowledge base for rice breeding [11].
It integrates rice germplasm resource information, multiple
reference genomes, unified gene loci, typical data, known
alleles and expression data, and can visually display the re-
lationship between genotype and phenotype. However, we
hope to integrate more kinds of plant information (such as
the Environmental and Management factors in GpemDB)
into the database to help breeding.

However, there are still some defects in the previous
databases. Some Genome databases have the function of
automatic gene screening, however usually lack the ability
of statistical analysis like variance and correlation analysis
[12]. Some databases for phenomics didn’t support com-
plex analysis involved in precise breeding [13]. Although
some scholars have integrated some phenotypic data, such
as PHIS (Phenotyping Hybrid Information System) [1],
Planteome [14] and AtMAD (Arabidopsis thaliana multi-
omics association database) [15], they didn’t take into ac-

count sufficient factors which are necessary for crop breed-
ing. Furthermore, understanding intrinsic interactions of
phenotype, genotype, environment, and management is vi-
tal for breeding new cultivars and farming systems [16], un-
fortunately, there are rare crop databases containing and as-
sociating all those four types of big data.

As rice is the staple food of more than half of the
world’s population [17], this article selected rice as the ob-
ject of the case study. Traditional research on rice breed-
ing focused on conventional phenotypic traits and could not
keep up with global climate change and rapid development
of genomic technology together with agricultural manage-
ment technology. A more complete database involving ge-
nomic, environmental, phenotypic and managerial factors
needs to be established for further improving rice breeding
and building a breeding platform with high precision, au-
tomation and throughput [18].

The paper is organized as follows. Section 2 demon-
strates the crop factors for breeding. Four types of data
structure (genomics, phenomics, enviromics, management)
are designed, and the heterogeneous data involved in four
dimensions was integrated. Section 3 builds an entity-
relationship model for describing the breeding traits and
their linkages. In Section 4, some frequently-used statistic
tools are added to the database to facilitate crop research.
In Section 5, we establish a metadata-level layer to store
the raw multi-omics data and an informative-level layer to
store the processed data for end-to-end queries in different
applications. Then a visualization platform is developed to
display the content of the database in Section 6. Finally, a
case study using some old data has proved this database is
useful and efficient for crop research and breeding.

2. Materials and Methods
2.1 Crop Factors

It is very common to use multi-omics data to partic-
ipate in breeding, but there is no database that integrates
all four omics information of gene, phenotype, environ-
ment, and management into one platform. Here, we pre-
sented some traits that matter greatly in traditional rice
breeding. To get these traits, we should design some com-
plex experiments, like choosing appropriate materials and
cultural environments, giving good treatment and manage-
ment. Therefore, any trait actually contains much other
information that has been rarely used in traditional crop
breeding. In this study, we hope to make full use of all the
factors that may influence these traits.

In traditional breeding, we are usually concerned with
the relationship between only one factor with the target trait,
like genotype with the trait, or treatment with the trait. In
this study, we try to improve the compatibility of heteroge-
neous data and integrate all the factors together, and then
make a comprehensive analysis and use of all these data,
and finally enhance our research and breeding.
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Table 1. Genomic factors.
Entity Database parameters

Genome Gene Sequence SNP Chromosome Location
Transcriptome Gene Sequence Expression Tissue and organ Treat
Proteome Gene Sequence Expression Tissue and organ Modification
Metabolome Gene Expression Tissue and organ Treat

2.1.1 Genomic
Genotype has important effects on phenotype [19].

Through QTL mapping and GWAS analysis, it’s easy
to quantify the effect of genotype on phenotype in crop
breeding. In recent years, with the development of high-
throughput DNA sequencing technology, the accuracy and
efficiency of genotyping have been greatly improved and
the cost of sequencing has been dramatically reduced. In
addition, linkage analysis is one of the most powerful meth-
ods to find the type and location of genes that significantly
influence phenotypic traits. As a result, using such linkage
analysis to explore important agricultural genes has been
widely used in almost all plant species. For instance, a lot
of studies on genes that may affect yield, resistance to bi-
otic/abiotic stress, grain quality and so on have been con-
ducted in the past years [20]. The genetic sequence data are
indispensable for modern crop improvement.

Besides the genotype, the information of gene expres-
sion, even the quantity and type of proteins and metabolites
all greatly influence a plant’s phenotype. Because geno-
type, gene expression, protein, and metabolites are all re-
fer to the intrinsic and autogenous factors of the plants, we
put these four type omics data together in the name of ge-
nomics. Furthermore, there have been a lot of good online
databases serving for genes, mRNAs, proteins, andmetabo-
lites searching and downloading. In our database, we set
several linkages with some existing databases that are often
used in crop research. All this information could be linked
to each other by the name of varieties and genes, finally,
we set a general template, including the four major entities
of genomics and the database parameters corresponding to
each entity, as shown in Table 1.

2.1.2 Phenomic
Phenotype is the most direct indicator of crops’ breed-

ing potential and characters. According to the data format,
it is divided into two categories, one is non-image trait that
most of the traditional traits belong to this type like plant
height and weight, and the other is image trait usually called
i-trait from all kinds of images from short wave to long
wave. Then according to different spatial scales, phenomics
encompasses many categories. In individual plants, there
are different organs including root, stem, leaf, grain, spike
phenotypes. For example, grain size [21], leaf size [22],
stem diameter [23] and other important agronomic traits. In
a whole plant, plant height, tillers number and heading date
are always concerned mostly. In the plot of plants, the phe-

notypes of the canopy like canopy color, size and tempera-
ture are often concerned. Table 2 includes common entities
of plant phenotyping and database parameters correspond-
ing to each entity.

Table 2. Phenotyping factors.
Entity Database parameters

Root RL RN EA RA RT
Stem SD SL SLA
Leaf FLA FLS LCC
Grain GN AGL AGL 1000GW GAR
Spike SIN SL SIL PT PC
Plant TN PH HD
Canopy CG CF CS

With the fast development of phenomics, millions
of raw images from different sources (like RGB, hyper-
spectrum, infrared and radar) have been produced. They
can be transferred into traditional digital traits through pro-
fessional analysis. But for most of biologists and breeders,
it is hard to develop a specific software to deal with such
huge raw image data by themselves. So, we set an entity
for different raw images input as shown in Table 2. Users
can upload their own raw images into this database freely,
which not only helps users to manage their data but also will
help them to analyze these huge data. In the future, we plan
to develop some tool kits to deal with some specific raw
image data automatically in this database. We elaborate on
this in Section 2.3 of this paper.

2.1.3 Enviromic
With the change of global climate, the influence of the

environment on crops is more and more evident, usually
causing serious yield loss [24–26]. In order to increase rice
yield, the effects of environmental factors on rice breed-
ing need to be quantitatively analyzed. Table 3 includes the
common natural environment factor entities (such as water,
soil, light, air, and geolocation) related to plant growth in
the database and the database parameters corresponding to
each entity.

2.1.4 Management
Management could also affect rice yield seriously

[27], therefore it’s necessary to be included in the database
as an essential part. Management factors include fertiliza-
tion, irrigation, and planting methods, like fertilizer types,

3

https://www.imrpress.com


Table 3. Environmental factors.
Entity Database parameters

Light LI IT
Soil ST STe SF SpH SSa SH
Air AT AH AP CO2 O2 N2 SO2
Water WT Pr WpH
Geolocation GPS

amounts, time and intervals, irrigation amounts and time,
hot or drought treatment, and the information of the appa-
ratus used to obtain images (Table 4).

Table 4. Managing factors.
Entity Database parameters

Apparatus AN AM AS AP
Fertilization FTs FT FA FI
Irrigation IT IA II
Planting method T PD In He Di

2.1.5 Heterogeneous Data Integration
Each data we get in experiments may contain 4 types

of information, including its phenotype, genotype, environ-
mental condition, and the way of management. The data
are heterogeneous because of different sources and differ-
ent data structures. For example, genomic data include gene
sequences, SNP format, etc., phenotypic data include image
format, infrared spectra, manually recorded data, etc., envi-
ronmental data include arrays obtained from sensors, point
cloud data, etc., and management data include csv format.

Therefore, the ability of the database to be compatible
with heterogeneous data is very important. We integrated
these heterogeneous data by their relationships like some
common items. For example, the plant number may oc-
cur in all four categories’ data, so we use the multi-features
joint primary key (e.g., test batch-growing area number-
plant number) to combine all these data together. “Entity” is
a name of the data table, and hundreds of such tables make
up the database. “parameters” is the content of the entity
table, and one entity table can have many parameters. And
some parameters may have secondary parameters, like ge-
nomic (Table 1) that has a lot of secondary parameters like
genes name, position, length, function and so on. Users can
retrieve the parameters to get the information they are in-
terested in.

2.2 Entity-Relationship Models of Multi-omics Data
2.2.1 Introduction to ERM

The Entity-relationship model, put forward by
P.P.Chen in 1976 [28], was an efficient method used
to design database schema in different subjects, such
as internal control construction of a transaction system
[29], data storage service for web-based, data-oriented

collaboration [30] and a system of adult extended education
[31]. Although improved entity-relationship models have
been put forward [32–35], it is more convenient to directly
modify the rules of the basic entity-relationship model in
this article. In the entity-relationship model, study subjects
can be divided into two classifications containing entities
and relationships. An entity is a real-world object with
some attributes. Plant breeding traits are defined as entities
within our methodology. A relationship is an association
among entities, which can be used to link the four omics
according to the entities. A relationship is a mathematical
relation among n entities and each taken from an entity set.

{[e1, e2, · · · , en] | e1 ∈ E1, e2 ∈ E2, · · · , en ∈ En} (1)

Each tuple of entities, [e1, e2, …, en], is a relationship.
Every entity can be transformed into a table in the

database, and each parameter of the entity becomes a field
in the corresponding table. ERM can automatically gener-
ate entity-relationship diagrams [36] and simplify the struc-
ture of the database for breeding.

However, traditionally an ERM only possesses the re-
lationship of 1:1 and 1:M, which could not distinguish the
relationship between two entities with multi-omics data.
Hence we propose a mapping process to realize the M:N
association among entities, as explained in Section 5.4 in
detail. In this way, the database is more scalable.

2.2.2 ERMs of Multi-Omics Data
As the ERMs are numerous, one example of an image-

related entity-relationship model is shown below in Fig. 1.
Analysis of images is an effective and important way to pre-
cisely describe most phenotypes [36–42]. Thus, it is neces-
sary to illustrate the relationship between images and com-
mon entities.

Images have many attributes such as resolution and
content. Therefore, fields named “resolution” and “con-
tent” will be added to the table named “Image”. Similarly,
in the corresponding tables, the name of the field will be
called, for example, attributes of root, stem and other or-
gans. Every organ corresponds to a variety of images so
that the relationship between images and organs is N:1.

2.3 GPEMDB Analysis Plug-in
Traditional feature engineering is based on a few ex-

plicit features (such as plant height, leaf length, etc.), us-
ing variance analysis, information entropy increase, etc. for
analysis. In combination with big data, many implicit fea-
tures can be used, such as using deep learning technology to
extract convolution kernel features. Here, we insert some
statistic tools into the database, so users could analyze data
in the database directly, like anova, sorting, correlation,
and parametric test. Users can also use some deep learning
tools, such as powdery mildew recognition model [43] and
rice point cloud segmentation model [44], etc. The toolkit
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Fig. 1. Image-related entity-relationship model.

Fig. 2. Dataflow of rice breeding.

accesses the database through theAPI. The statistics are cal-
culated and displayed after the tool is called. Therefore,
GPEMDB is not only a storage of big data of agriculture,
but also a useful tool to analyze data, which enhances the
power and utility of the database.

Additionally, it is also friendly for raw image data.
The user first needs to manually configure the the image-
acquiring settings, which will be saved to the database. Be-
fore the image is stored in the database, the database will
automatically standardize the image (scaling, rotation, seg-
mentation, etc.) according to the configured parameters.

2.4 GpemDB Database Construction

2.4.1 Overall Dataflow of Rice Breeding Information
Processing

The GPEM database was designed to support the ap-
plication of crop research and breeding. It includes two
layers: the metadata-level layer and the informative-level
layer. The metadata-level layer is constructed based on the
entity-relationship model and contains original data. The
informative-level layer is based on the metadata-level layer
and is designed to support end-to-end queries. Different
applications have the same metadata-level layer, but the

5
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informative-level layers are customized differently. No ap-
plication uses the data of the metadata-level layer. Even if
the application intends to obtain the original data when ac-
quiring the data, it still needs to pass the informative-level
layer to implement the same calling rules. The dataflow
is shown in Fig. 2. The collected raw data is stored in the
metadata layer after classification and association, and the
data in the metadata-level layer reaches the informative-
level layer after data processing or batch processing. The
difference between data processing and batch processing is
that data processing is a call-time operation, while batch
processing is applicable to the access of hot data, i.e., the
results are stored in advance batch processing for quick ac-
cess. Finally, the user gets the desired plant data in the
informative-level layer.

The raw data is either entered manually or read au-
tomatically by the instrument, and our proposed database
architecture supports both data sources. We provide an in-
terface for the database through ODC (Open Database Con-
nectivity). Data is stored in the metadata-level layer of the
GPEM database through a specific interface. The original
data can be processed and then stored in the informative-
level layer which will be directly accessed by applications.
The functions and usage flow of the database we envision
are shown in the Supplementary Fig. 1 and Supplemen-
tary Fig. 2.

2.4.2 Metadata-level Layer Based on the
Entity-relationship Model

Table 5 and Table 6 are converted from the ERM dis-
played in Fig. 1. Table 5 shows the entities included in the
plant phenomics database and the parameters correspond-
ing to each entity. In the database we establish relation-
ships between different tables through a relationship table
(Table 6). All the tables and fields in the database can be
generated in this way.

Table 5. Entities to tables.
Table name Fields

Root ID RL RN EA RA RT
Stem ID SD SL SLA
Leaf ID FLA FLS LCC
Grain ID AGL AGW 1000GW GN GAR
Spike ID SIN SL SIL PT PC
Plant ID PS PH
Image ID IR IC IDIM IF IT

2.4.3 Informative-level Layer
The informative-level layer exists in the same

database as the metadata-level layer. This layer seems to
be redundant, as users can extract data directly from the
metadata-level layer and then conduct calculations. How-
ever, directly extracting data from the underlying layer re-

Table 6. Relationships to tables.
Table Name Fields

Image_root Image ID Root ID
Image_stem Image ID Stem ID
Image_leaf Image ID Leaf ID
Image_grain Image ID Grain ID
Image_spike Image ID Spike ID
Image_plant Image ID Plant ID

quires complicated operations. The informative-level layer
helps to reduce the frequency and complexity of data ac-
quisition from the underlying layer. Users can also define
customized informative tables which ensure them to acquire
data directly instead of through complicated relationships.

Table 7 shows the new table format required in a spike
analysis example. Some analyses of traits need image pro-
cessing, especially in the field of machine learning [45], so
the following three tables will be necessary.

Table 7. Tables related to the analysis of spike.
Table name Fields

Spike ID SIN SL IL PT PC
Image ID IC IDIM IT IR IF
Image_spike Image ID Spike ID

Analysis of the spike needs image data in the “image”
table. Image ID needs to bematchedwith the corresponding
Spike ID. Then image data can be acquired according to Im-
age ID. However, this process involves at least three tables,
and if a type of spike is to be analyzed, more data tables will
be necessary. Therefore, a table named “spike_analysis”
can be added to the database as shown in Table 8, so that
only one table is needed. QLmeans quality level. TI means
typical image. AGS means the average number of grains
within spikes of this type.

Table 8. “spike_analysis” table.
Table name Fields

Spike Analysis Spike type ID QL TI AGS

2.4.4 Scalability of GpemDB

Scalability mainly refers to the supplement of the
database’s structure without disrupting the structures of ex-
isting data tables.

(1) Add new Entities. Take “ideotype” [46] as an ex-
ample.

Firstly, add a table named “ideotype” and assign it to
the “Phenotyping” class. Secondly, find all the existed re-
lated entities of ideotype such as virtual colony. Thirdly,
add a table named “virtual_colony_ideotype”, with fields
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Fig. 3. visualization platform. (A) Metadata-level user interface. (B) Informative-level user interface. (C) Metadata-level operation.
(D) Informative-level operation.

named “virtual_colony id” and “ideotype id”, and assign it
to the “Relationship” class. The format of the new entity
table is shown in Table 9. In this way, it is not necessary to
modify the existing data tables.

Table 9. Ideotype-related tables.
Table name Fields

Ideotype Ideotype ID IPH ILA ITN
Virtual_colony_ideotype Virtual_colony ID Ideotype ID

(2) Add new attributes. Take “plant” as an example.
Table 10 shows a comparison of newly created at-

tributes in a table. The original attributes of the plant are site
(of growth) and plant height as shown in the second row of
Table 10. If new attributes, lodging resistance (PLR) and
growth cycle (PGC), are added to the existing entity, the
table will be as shown in the third row of Table 10. Mean-
while, other tables are related to this table by the means of
the key. Therefore, the new attributes are also accessible in
other related data tables.

Table 10. Add new attributes.
Table name Fields

Plant (before) ID PS PH
Plant (after) ID PS PH PLR PGC

2.4.5 Visualization Platform

There are many visualization platforms for managing
databases. However, the platforms are either charged, such
as Navicat forMySQL, or too complicated, such asMySQL
Workbench. Therefore, many specific software platforms
are designed for the study of plants [47–49]. In this paper,
to simplify the management of the GPEM database, a spe-
cific visualization platform was developed (Fig. 3). This
software consists of two parts, the metadata-level part and
the informative-level part.

The main interface displays the list of names of data
tables in the database according to their classifications.
The metadata-level part includes five subparts that are
Genotyping, Envirotyping, Phenotyping, Management and
Relationship, constructed based on the entity-relationship
model. The informative-level part includes two subparts,
which are the regular analysis part for users to add cus-
tomized tables, and the image process part for users that
focus on machine learning.

The “operation” button can be clicked to enter the cor-
responding sub-interfaces. In the metadata-level part, users
can add and delete fields in existed tables as well as add
new tables in the database. However, original data is not
accessible here because the amount of data is too large. In
the informative-level part, users can also modify fields in
existing tables as well as add new tables.
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Fig. 4. High throughput phenotyping platform. (A) Side view. (B) Front view.

Table 11. The information list of rice traits used for the case study.
Genotype Phenotype Environment Management Reference

3038555 SNPs

Images Quantitive traits Location Time

RGB LA Shanghai, lab 2019 Paper bag unpublished

PH Hainan, filed 2013 Basket method Lou et al., 20151 [50]
TN Hainan, filed 2013 Basket method Lou et al., 20151 [50]
DR Hainan, filed 2013 Basket method Lou et al., 20151 [50]
SR Hainan, filed 2013 Basket method Lou et al., 20151 [50]
TR Hainan, filed 2013 Basket method Lou et al., 20151 [50]
RDR Hainan, filed 2013 Basket method Lou et al., 20151 [50]
R/T Hainan, filed 2013 Basket method Lou et al., 20151 [50]
GSR Shanghai, lab 2018 0.8% Agrose plate Lou et al., 20212 [51]
GRSS Shanghai, lab 2018 0.8% Agrose plate Lou et al., 20212 [51]

ML Shanghai, lab 2013
MLw Wu et al., 20153 [52]
MLs Wu et al., 20153 [52]

2.5 Case Study

A natural population comprising 4 Aus, 154 Indica
and 107 Japonica rice accessions from the mini-core col-
lection of Chinese rice germplasm and a core drought-
resistance rice germplasm collection are used for the case
study (Table 11, Ref. [50–52]). There are four types of
information of this population including genotype, pheno-
type, environment, and management. First, this population
had been re-sequenced in the Illumina Sequencing Platform
in 2011, and 3038555 SNPs of the population were ex-
tracted for further analysis. Second, using this population, 4
different experiments were carried out in different environ-
ments and managements. Third, there are 2 types of pheno-
typing data: one is raw image data which can be acquired
from the high throughput phenotyping platform (Fig. 4) and
the other is traditional quantitative data. The images were
stored in the format of picture (jpg) in the raw image entity.
The digit data were measured manually and showed in dig-
ital numbers as the traditional agronomic traits. Totally, we
imported 12 digital traits including leaves area (LA), Plant
height (PH), Tiller number (TN), Deep roots number (DR),
Shallow roots number (SR), Total roots number (TR), Ratio
of deep roots (RDR), Roots per tiller (R/T), Growth speed of
seminal roots (GSR), Gravitropic response speed of semi-
nal roots (GRSS),Mesocotyl length of rice seedlings in dark

germination (MLw in water and MLs under 5 cm sand cul-
ture); and some RGB pictures of 16 rice accessions from the
big population. To get the details of the experiments could
refer to the related references in Table 11.

3. Results
3.1 Analysis of Variance

Using the database GpemDB can help us to manage
and analyze large amounts of data much more conveniently
and efficiently. For example, when we look at the variation
of TN (tiller number) in the population, it is surprised to find
the least ten accessions are all japonica rice, while most of
the top ten (80%) are indica rice. The TR (total roots num-
ber) also has the same trend as TN: 9/10 of the least TR
accessions are japonica rice, while 9/10 of the top ten are
indica rice. These results give us a hint that some agro-
nomic traits may have a great differential between the two
subspecies of japonica and indica. The indica and japonica
are two main subspecies of Asia cultivated rice, and they
evolved from different environments and evolved to dif-
ferent characters what are very important for research and
breeding.

Firstly, we calculated the average of all traits both in
Indica and Japonica groups by correlating them through the
relationship shown in Fig. 5. Secondly, we can use Eqn. 2

8

https://www.imrpress.com


Fig. 5. Relationship between traits in GpemDB.

to do t-test of the traits between Indica and Japonica.

t =
mA −mB√

s2A
nA

+
s2B
nB

(2)

mA represents the average value of A, mB represents
the average value of B, SA2 represents the variance of A,
SB2 represents the variance of B, nA represents the number
of A samples and nB represents the number of B samples.

Finally, we can get the difference of 11 traits between
the japonica group and the indica group (Table 12). Both
MLw and MLs are significantly different between the two
subspecies, and the japonica varieties usually have longer
mesocotyl length than the indica, especially under the cul-
ture of sand. In the 0.8% Agrose plate, indica varieties’
seminal root responds to gravity much more quickly than
japonica (GRSS), and they also with higher growth speed
compared with japonica. Using the method of basket, the
TN, SR, TR and RDR show a great difference between in-
dica and japonica, that indica varieties have larger TN, SR
and TR than japonica, while japonica has better RDR.

Table 12. The comparison result of 11 agronomic traits
between indica and japonica subspecies.

Subspecies Indica Japonica t-test

Amount 154 107
MLw (mm) 3.62 5.52 3.65E-02*
MLs (mm) 3.05 5.45 3.11E-06**
GRSS (°/h) 42.49 39.71 1.57E-03**
GSR (mm/h) 0.04 0.03 1.99E-03**
PH (cm) 88.29 90.83 0.153
TN 44.2 31.21 5.32E-21**
DR 98.37 90.59 0.152
SR 261.72 163.78 1.77E-20**
TR 449.61 316.1 6.13E-16**
RDR 0.22 0.29 2.65E-11**
R/T 10.45 10.91 0.332
Note: Mesocotyl length of rice seedlings in dark germina-
tion in water (MLw) and under 5 cm sand culture (MLs)PH;
GRSS, Gravitropic response speed of seminal roots; GSR,
Growth speed of seminal roots; Plant height; TN, Tiller
number; DR, Deep roots number; SR, Shallow roots num-
ber; TR, Total roots number; RDR, Ratio of deep roots; R/T,
Roots per tiller. * shows the difference is significant at p <

0.05, ** shows the difference is very significant at p< 0.01.
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Table 13. The correlation between the traits.
MLw MLs GRSS GSR PH TN DR SR TR RDR

MLs 0.78∗∗

GRSS 0.00 –0.10
GSR –0.23∗∗ –0.21∗∗ 0.22∗∗

PH 0.32∗∗ 0.45∗∗ 0.03 –0.05
TN –0.23∗∗ –0.36∗∗ 0.13∗ 0.20∗∗ –0.15∗

DR 0.06 0.03 0.15∗ –0.04 0.13∗ 0.07
SR –0.06 –0.17∗∗ 0.09 0.15∗ 0.01 0.50∗∗ 0.30∗∗

TR –0.03 –0.13∗ 0.13∗ 0.12 0.06 0.46∗∗ 0.57∗∗ 0.95∗∗

RDR 0.08 0.16∗ 0.05 –0.15∗ 0.09 –0.35∗∗ 0.61∗∗ –0.50∗∗ –0.24∗∗

R/T 0.22∗∗ 0.26∗∗ 0.01 –0.09 0.21∗∗ –0.47∗∗ 0.52∗∗ 0.43∗∗ 0.53∗∗ 0.13∗

Note: Mesocotyl length of rice seedlings in dark germination in water (MLw) and under 5 cm sand culture (MLs)PH;
GRSS, Gravitropic response speed of seminal roots; GSR, Growth speed of seminal roots; Plant height; TN, Tiller number;
DR, Deep roots number; SR, Shallow roots number; TR, Total roots number; RDR, Ratio of deep roots; R/T, Roots per
tiller. * shows the difference is significant at p < 0.05, ** shows the difference is very significant at p < 0.01.

3.2 Analysis of Correlation
Furthermore, in this database we can use Eqns. 3,4,5

to analyse the correlation among these traits since some of
them always shows the same trends.

r(X,Y ) =
Cov(X,Y )√
V ar[X]V ar[Y ]

(3)

Cov(X,Y ) =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
n− 1

(4)

V ar(X) =

∑n
i=1

(
Xi − X̄

)2
n− 1

(5)

r(X,Y) represents the correlation coefficient of X and
Y, Cov(X,Y) represents the covariance of X and Y, Var[X]
represents the sample variance of X.

Not surprisingly, a lot of traits correlate closely with
each other (Table 13). For example, MLw and MLs have
a good positive relationship with a large correlation index
at 0.78, which suggested the mesocotyl length of rice may
have high heritability and it may be mainly decided by the
genetic factor but not the environment. This trait also corre-
lates with PH and R/T positively, but negatively with GSR
and TN. These results had never been reported in other pa-
pers. From these results, we can get some enlightenment for
researchers and breeders. To breed a new variety with long
mesocotyl length for direct seeding on dry land, we’d better
choose the materials having higher height, fewer tillers and
slower growth of the seminal root.

3.3 Analysis of Genetic Information
Using this database of GpemDB, we can also eas-

ily find genetic information of the accessions in which we
are interested. Dro1 is the first deep rooting gene that

had been cloned in rice and proved to affect the root ar-
chitecture significantly [53]. Its ORF has a single 1-bp
deletion within exon 4 in IR64 compared with KP acces-
sions, which will result in the introduction of a premature
stop codon. We are interested in the varieties with ex-
treme RDR in this population that would contain this func-
tional SNP. Therefore, we extracted all the SNPs of the gene
Dro1(Os09g043980040/LOC_Os09g26840.1) in 20 acces-
sions with the highest and least RDR. The 10 top RDR va-
rieties are named as H group with an average of RDR up
to 48%, and the 10 least RDR varieties named as L group
with the average of RDR at 11% (Table 14). This gene has
5 CDSs, but no SNP has been found on the CDS region
in this population. In the other parts of the gene including
promoter, 3UTR, introns and 5UTR, there are 23 SNPs with
different types of alleles. The SNP difference of the alleles
in Intron2 is notable.

4. Discussion
First, this paper only proposes the architecture of a

plant database, which has the characteristics of multi-omics
and entity-relationship model. However, no entity database
has been built, and the construction of the database will be
further improved in the future. Second, the scale and in-
terface of the computing plug-ins used in the database have
not been specified. We envision that in the future a variety
of computational plug-ins will be built into the database,
including common biological and statistical toolkits, to fa-
cilitate user analysis of data in the database. At the same
time, we will also open the underlying interface to facili-
tate users to develop their own dedicated computing tools.
Third, GpemDB is a highly scalable database and supports
heterogeneous big data. How to enhance its scalability and
better support heterogeneous big data will be further engi-
neered and instantiated in future work.
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Table 14. SNP polymorphism in the gene DRO1 and comparison between deep rooting and shallow rooting cultivars.
Gene elements Position SNP name Alleles in H groupa Alleles in L groupb

Three prime UTR2 16307780—16308009 NA
Three prime UTR1 16308120—16308152 NA
CDS5 16308153—16308172 NA
CDS4 16308269—16308440 NA
CDS3 16308532—16309010 NA

Intron2 16309011—16310370

916309309 10G 10G
916309349 10C 10C
916309459 10C 7C/3T
916309742 10G 7G/3A
916310217 8C/2T 6T/4C

CDS2 16310374—16310452 NA
Intron1 16310453—16310568 916310551 8G/2A 10G
CDS1 16310569—16310574 NA
Five prime UTR 16310575—16310837 916310688 5A/5G 6A/4G

Promoter 1631087+2Kb

916310954 9G/1T 7G/2T
916311266 10T 10T
916311280 8C/2A 10C
916311303 9C/1T 7C/3T
916311313 10C 10C
916311348 10A 10A
916311387 10C 10C
916311467 10T 10T
916311512 10C 10C
916311633 5G/5A 6G/4A
916312351 5G/5T 6G/4T
916312455 8G/2C 6G/3C
916312587 5A/5C 6C/4A
916312609 8C/2T 6C/3T
916312776 10C 10C
916312778 10G 10G

Note: (a) the top 10 cultivars with the highest ratio of deep rooting (RDR) are named as H group; (b) the
top 10 cultivars with the least ratio of deep rooting (RDR) are named as L group. The SNPs with a notable
difference between H and L groups were marked by red.

5. Conclusions
The heterogeneous data involved in rice breeding has

been divided into four main aspects: genomics, phenomics,
enviromics, and management (GPEM), which covers the
commonly researched factors of plant breeding. Original
data has been transformed into relational patterns in the
database based on a slightly modified version of the entity-
relationship model, which ensures the database is easier to
expand. The concept of the informative-level layer has been
put forward to support end-to-end queries. A visualization
platform has been developed to ensure users can easily ac-
cess and manage the database.

In this paper, the structure, patterns and hierarchy of
phenomics-centered GPEM data are described with entity-
relationship modeling technique. The GPEM database can
help us to manage, integrate and analyze big heterogeneous
data obtained in all experiments. It has been proved to
be useful to improve the efficiency of data integration and

analysis in rice breeding research and further lays a founda-
tion for crops precise breeding. In a word, the GpemDB is
a powerful and useful tool to store and manage our big data
in the time of multi-omics research.
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