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Abstract

The mitogen-activated protein kinase (MAPK) pathways are ubiquitous in cellular signaling and are essential for proper biological
functions. Disruptions in this signaling axis can lead to diseases such as the development of cancer. In this review, we discuss members
of the MAP3K family and correlate their mRNA expression levels to patient survival outcomes in different cancers. Furthermore, we
highlight the importance of studying the MAP3K family due to their important roles in the larger, overall MAPK pathway, relationships
with cancer progression, and the understudied status of these kinases.
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1. Introduction
Mitogen-activated protein kinase (MAPK) pathways

are crucial signaling networks that link extracellular sig-
nals to machinery that controls cellular processes such
as growth, proliferation, differentiation, migration, and
apoptosis. Once activated by a stimulus, MAPK path-
ways are characterized by three sequential phosphoryla-
tion of MAPK kinase kinases (MAP3K, MEK kinases, or
MKKKs) to MAPK kinases (MAP2K, MEK, or MKKs) to
MAPKs. The 4 well-known and conventional MAPK sub-
families are extracellular signal-regulated kinases 1 and 2
(ERK1/2), c- Jun amino-terminal kinases 1 to 3 (JNK1 to
3), p38 (α, β, γ, and δ), and ERK5 families [1].

MAP3Ks are serine/threonine kinases that act up-
stream of MAP2Ks and MAPKs. There are 24 character-
ized MAP3Ks, named from MAP3K1 to MAP3K21 plus
B-Raf, C-Raf, and A-Raf [2].

Supplementary Table 1 contains the Uniprot number,
synonyms, chromosome location, and HGNC ID for each
MAP3K isoform. It has been well-described that MAPK
signaling pathways can be dysregulated and someMAP3Ks
becomemutated in cancers [3]. Among the aforementioned
MAP3Ks, the role of B-Raf in cancers is the most thor-
oughly characterized. Activating mutations in the BRAF
oncogenes resulting in constitutive activation of MEK1/2

and subsequent activation of ERK1/2 are seen in some 70%
of melanomas, some 10% of colorectal cancers, and some
30–70% of papillary thyroid carcinomas [4–7]. Supple-
mentary Table 2 contains a compilation of MAPK com-
pound inhibitors and their investigations in different dis-
eases, mechanisms of action, and stage of study [8]. How-
ever, except for B-Raf, the role of otherMAP3Ks in cancers
has not been fully investigated.

This review seeks to address the gap in knowledge of
MAP3K familymembers and establish a foundation for elu-
cidating functions of novel MAP3Ks. We approach this by
discussing existing literature and by determining the cor-
relations between the mRNA expression of 21 MAP3K
isoforms and patient survival across 21 cancer types us-
ing Kaplan-Meier online plotter. Additionally, we also use
the Pharos user interface to the Knowledge Management
Center’s (KMC) Illuminating theDruggableGenome (IDG)
program funded by the National Institutes of Health (NIH)
Common Fund to quantify the novelty of each MAP3K
family member by assigning them each a PubMed and Nov-
elty score. Lastly, we reference the NIH FOA RFA-RM-
21-012, titled Pilot Projects Investigating Understudied G
Protein-Coupled Receptors, Ion Channels, and Protein Ki-
nases, to emphasize the importance and opportunities asso-
ciated with studying these kinase family members. IDG-
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eligible kinases are prioritized by this funding opportunity
to support the generation of data and tools to study under-
studied kinases.

2. Method
2.1 The KM Plotter Online Tool was Used to Determine
the mRNA Expression of MAP3Ks and Patient Survival

The KM plotter online tool was used to investigate
the mRNA expression of 21 MAP3K isoforms and patient
survival across 21 cancer types: bladder carcinoma, breast
cancer, cervical squamous cell carcinoma, esophageal ade-
nocarcinoma, esophageal squamous cell carcinoma, head-
neck squamous cell carcinoma, kidney renal clear cell carci-
noma, kidney renal papillary cell carcinoma, liver hepato-
cellular carcinoma, lung adenocarcinoma, lung squamous
cell carcinoma, ovarian cancer, pancreatic ductal adeno-
carcinoma, pheochromocytoma and paraganglioma, rectum
adenocarcinoma, sarcoma, stomach adenocarcinoma, tes-
ticular germ cell tumor, thymoma, thyroid carcinoma, and
uterine corpus endometrial carcinoma [9,10]. Parameters
for cutoffs were p < 0.05 and Hazard Ratios excluding a
value equal to 1.0. The results section of this manuscript
and primary tables only discusses and displays data that are
statistically significant. For complete analysis, including
results with insignificant p-values, refer to Supplementary
Table 3.

2.2 PubMed and Novelty Score Analysis

PubMed and Novelty scores were generated through
Pharos (Pharos.NIH.gov), a user interface for the Knowl-
edge Management Center (KMC) for the Illuminating the
Druggable Genome (IDG) program funded by the National
Institutes of Health (NIH) Common Fund. The PubMed
score is described as: “Jensen Lab generated fractional
counting score for the prevalence of this target in PubMed
articles”. The Novelty score is described as: “Tin-X met-
ric for the relative scarcity of specific publications for
this target”. To summarize score interpretations, higher
PubMed scores represent higher availability of publica-
tions and lower log Novelty scores (more negative) rep-
resent lower novelty for the kinase of interest based on
the number of PubMed articles. MAPK1 (ERK1/2) is
provided as an exemplar of a well-characterized kinase.
Additionally, MAP3K members (MAP3K10, MAP3K14,
MAP3K15, MAP3K16, MAP3K17, and MAP3K21) de-
scribed as “2021 NIH designated understudied kinase(s)”
are based on the funding announcement RFA- RM-21-012,
titled Pilot Projects Investigating Understudied G Protein-
Coupled Receptors, Ion Channels, and Protein Kinases.

3. Result
3.1 MAP3K1A

MAP3K1 is one of the most-studied MAP3K fam-
ily members with a PubMed Score of 217.17 and a Nov-

elty Score of –5.49 (Table 1). Unique among MAP3Ks,
only MAP3K1 contains both a kinase domain and a plant
homeodomain (PHD) motif, allowing it to regulate down-
stream protein phosphorylation as well as exhibit E3 ubiq-
uitin ligase activity [11,12]. MAP3K1 also has a cleavage
site that generates a kinase-domain fragment when cleaved
by caspase 3, increasing apoptotic response [13]. There-
fore, MAP3K1 promotes cell survival or induces apoptosis
via an ERK/NF-κB or caspase 3 mechanism, respectively
[14,15]. Consequently, mutations in both pro- survival and
pro-apoptotic pathways of MAP3K1 have been identified
in cancer [12].

Table 1. PubMed and Novelty scores of MAP3K isoforms.
MAP3K isoforms PubMed score Novelty score (log)

MAPK1 1463.91 –7.4
MAP3K1 217.17 –5.49
MAP3K2 83.41 –4.42
MAP3K3 74.03 –4.13
MAP3K4 43.58 –3.82
MAP3K5 812.85 –6.54
MAP3K6 27.05 –3.29
MAP3K7 209.21 –5.22
MAP3K8 220.14 –5.15
MAP3K9 43.94 –3.72
MAP3K10 25.78 –3.34
MAP3K11 117.01 –4.5
MAP3K12 157.61 –5.07
MAP3K13 200.04 –5.38
MAP3K14 29.23 –3.35
MAP3K15 10.11 –2.11
MAP3K16 57.97 –4.07
MAP3K17 46.59 –3.76
MAP3K18 50.8 –3.88
MAP3K19 4.83 –1.31
MAP3K20 16.1 –2.79
MAP3K21 11.8 –1.96
MAP3K isoforms that are IDG-eligible kinases are in bold
italic. MAPK1 is included as an example of a well-
characterized kinase.

Mutations in MAP3K1 have been implicated in can-
cers of breast, prostate, stomach, and diffuse large B cell
lymphoma [14]. Among these cancer types, MAP3K1 mu-
tations in breast cancers are most well-studied. Genomic
studies revealed MAP3K1 as the second most frequently
mutated gene with inactivating mutations in MAP3K1 and
MAP2K4 as well in upstream kinases of c-Jun N-terminal
kinase (JNK) in the apoptotic pathway identified in lu-
minal A subtype tumors [15,16]. Moreover, MAP3K1
has been suggested to have a tumor suppressor role in
the crosstalk between PI3Kα and MAP3K1 pathways in
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PIK3CA-mutated luminal/ER+ breast cancers [15]. In
glioblastoma, an increase in MAP3K1 was associated with
survival of glioma, therapeutic resistance to temozolo-
mide chemotherapy, and radiotherapy [17]. Suppression
of MAP3K1- mediated androgen receptor (AR)-dependent
apoptosis could lead to chemotherapy resistance in AR+
prostate cancer [18].

The mRNA expression of MAP3K1 was associated
with increased survival in cervical squamous cell carci-
noma, esophageal squamous cell carcinoma, head-neck
squamous cell carcinoma, kidney renal clear cell carci-
noma, lung adenocarcinoma, stomach adenocarcinoma,
and thyroid carcinoma. MAP3K1 expression was nega-
tively associated with patient survival in kidney renal pap-
illary cell carcinoma, liver hepatocellular carcinoma, and
pancreatic ductal adenocarcinoma (Table 2). MAP3K1
mRNA expression in other cancer types did not make the
statistical cutoff.

3.2 MAP3K2

MAP3K2 is a moderately studied kinase with a
PubMed score of 83.41 and a Novelty Score of –4.42 (Ta-
ble 1). Overexpression of MAP3K2 has been identified
in non-small cell lung cancer, hepatocellular carcinoma,
prostate cancer, gastric cancer, and triple-negative breast
cancer (TNBC) [19–23]. Previous studies demonstrated
Forkhead box F1 (FOXF1), the transcriptional regulator of
epithelial-mesenchymal transition (EMT), promoted tumor
growth and invasion by upregulating MAP3K2 [24,25].
Additionally, the knockdown ofMAP3K2 inhibited cell mi-
gration and metastasis in several cancer types, suggesting
the involvement of MAP3K2 in regulating tumor invasion
and metastasis via MAP3K2-ERK5 signaling pathways
[20–22]. MAP3K2 was also identified as a non-histone
substrate of SET and MYND domain-containing protein 3
(SMYD3), a chromatin modifier. SMYD3-mediated lysine
methylation of MAP3K2 increased the activation of MAP
kinase signaling pathways and promoted Ras-driven carci-
nomas [26,27]. The mRNA expression of MAP3K2 was
positively associated with survival in kidney renal clear cell
carcinoma and sarcoma. MAP3K2 expression was corre-
lated with decreased survival in breast cancer and kidney
renal papillary cell carcinoma (Table 2). MAP3K2 mRNA
expression in other cancer types did not make the statistical
cutoff.

3.3 MAP3K3

Similar to MAP3K2, MAP3K3 is a moderately stud-
ied member of the MAP3K family, with a PubMed score
of 74.03 and a Novelty score of –4.13 (Table 1). MAP3K3
is involved in the development of early embryonic cardio-
vascular systems, endothelial cell proliferation, apoptosis,
as well as inflammatory and immune responses [28,29].
Dysregulated expression of MAP3K3 has been implicated
in several cancer types, including ovarian cancer, breast

cancer, kidney cancer, NSCC, and esophageal cancer [29–
34]. MAP3K3 overexpression increased activation of NF-
κB signaling pathway and promoted EMT and tumor cell
proliferation in ovarian cancer and breast cancer [29,34].
Santoro et al. [31] identified MAP3K3 as a contribu-
tor to EMT and stemness in pancreatic cancer by posi-
tively regulating the oncogenic activity of yes-associated
protein (YAP) and transcriptional coactivator with PDZ-
binding motif (TAZ). This mechanism is independent of
NF-κB pathway. Interestingly, He et al. [35] reported that
MAP3K3 overexpression correlated with an active immune
response in primary lung adenocarcinomas associated with
improved patient survival [35]. In cerebral cavernous mal-
formations, increased activity of MAP3K3 and its target
genes KLF2/4 in endothelial cells were identified as causal
events [28,36]. Expression of MAP3K3 mRNA was as-
sociated with increased survival of esophageal adenocar-
cinoma, esophageal squamous cell carcinoma, head-neck
squamous cell carcinoma, lung adenocarcinoma, pancreatic
ductal adenocarcinoma, and thymoma. MAP3K3 expres-
sion was negatively associated with survival in bladder car-
cinoma, breast cancer, liver hepatocellular carcinoma, lung
squamous cell carcinoma, pheochromocytoma and para-
ganglioma, sarcoma, testicular germ cell tumor, and uterine
corpus endometrial carcinoma (Table 2). MAP3K3 mRNA
expression in other cancer types did not make the statistical
cutoff.

3.4 MAP3K4

MAP3K4 has a PubMed score of 43.58 and Novelty
score of –3.82 (Table 1). Despite its relative novelty being
comparable to similarly scored MAP3K16 and MAP3K17,
MAP3K4 is not an IDG- eligible kinase. Previous stud-
ies reported the involvement of MAP3K4 in EMT and lac-
tate secretion of breast cancer cells via HER2/HER3 sig-
naling pathways [37,38]. The role of MAP3K4 in EMT
regulation via histone acetylation in trophoblast stem cells
has also been demonstrated [39,40]. MAP3K4 functions
as a mediator of the stress-activated p38 MAPK path-
way, whose mutation has relevance for endometrial can-
cer and EBV+ gastric cancer [41,42]. MAP3K4 also
contributed to proliferation and invasion of cervical can-
cer cells by interacting with Erb-b2 receptor tyrosine
kinase 3 (ERBB3) [43]. Zhang et al. [44] identi-
fied MAP3K4 (MEKK4) to be tumor-suppressive via the
MEKK4-MKK4-p38-p21signaling pathway in pancreatic
cancer. While MAP3K4 was downregulated in parathy-
roid adenoma, it was constitutively active in urothelial car-
cinoma cells [45,46]. MAP3K4 also played an important
role in neuroepithelial development and loss of MAP3K4
could result in neural tube defects [47].

ThemRNA expression ofMAP3K4was positively as-
sociated with survival in kidney renal clear cell carcinoma,
lung squamous cell carcinoma, pancreatic ductal adenocar-
cinoma, and rectum adenocarcinoma. MAP3K4 expres-
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Table 2. Hazard Ratios (HR) correlating patient survival and mRNA expression of MAP3K isoforms using Kaplan-Meier
plotter.

MAP3K isoforms Cancer type HR p value

MAP3K1 Cervical squamous cell carcinoma 0.57 (0.36–0.91) 0.017
Esophageal Squamous Cell Carcinoma 0.34 (0.15–0.78) 0.008
Head-neck squamous cell carcinoma 0.62 (0.44–0.87) 0.0055
Kidney renal clear cell carcinoma 0.54 (0.4–0.73) 0.000042
Lung adenocarcinoma 0.55 (0.38–0.81) 0.0019
Stomach adenocarcinoma 0.68 (0.48–0.97) 0.03
Thyroid carcinoma 0.18 (0.04–0.78) 0.01
Kidney renal papillary cell carcinoma 2.23 (0.99–5.02) 0.045
Liver hepatocellular carcinoma 1.7 (1.17–2.48) 0.0052
Pancreatic ductal adenocarcinoma 1.9 (1.13–3.19) 0.014

MAP3K2 Kidney renal clear cell carcinoma 0.66 (0.49–0.89) 0.0059
Sarcoma 0.62 (0.41–0.93) 0.021
Breast cancer 1.44 (1.02–2.03) 0.037
Kidney renal papillary cell carcinoma 2.16 (1.18–3.95) 0.011

MAP3K3 Esophageal Adenocarcinoma 0.34 (0.16–0.73) 0.0036
Esophageal Squamous Cell Carcinoma 0.42 (0.18–0.97) 0.035
Head-neck squamous cell carcinoma 0.75 (0.57–0.99) 0.041
Lung adenocarcinoma 0.67 (0.5–0.91) 0.011
Pancreatic ductal adenocarcinoma 0.52 (0.34–0.78) 0.0015
Thymoma 0.29 (0.08–1.06) 0.046
Bladder carcinoma 1.39 (1.04–1.87) 0.027
Breast cancer 1.59 (1.1–2.3) 0.013
Liver hepatocellular carcinoma 1.65 (1.12–2.44) 0.01
Lung squamous cell carcinoma 1.38 (1.04–1.83) 0.024
Pheochromocytoma and Paraganglioma 5.43 (0.98–29.97) 0.03
Sarcoma 1.51 (1.01–2.26) 0.041
Testicular Germ Cell tumor 7.17 (0.74–69.24) 0.047
Uterine corpus endometrial carcinoma 2.09 (1.38–3.18) 0.00041

MAP3K4 Kidney renal clear cell carcinoma 0.64 (0.44–0.93) 0.017
Lung squamous cell carcinoma 0.69 (0.5–0.96) 0.026
Pancreatic ductal adenocarcinoma 0.61 (0.4–0.92) 0.018
Rectum adenocarcinoma 0.28 (0.1–0.84) 0.015
Breast cancer 1.64 (1.18–2.26) 0.0025
Cervical squamous cell carcinoma 1.69 (1.06 -2.71) 0.026
Esophageal Adenocarcinoma 2.11 (1.11–4) 0.02
Kidney renal papillary cell carcinoma 2.07 (1.12–3.81) 0.018
Liver hepatocellular carcinoma 1.83 (1.25–2.68) 0.0015
Ovarian cancer 1.49 (1.13–1.96) 0.0041
Stomach adenocarcinoma 1.39 (1 –1.94) 0.049

MAP3K5 Bladder carcinoma 0.66 (0.49–0.9) 0.0073
Head-neck squamous cell carcinoma 0.61 (0.46–0.82) 0.00074
Kidney renal clear cell carcinoma 0.57 (0.42–0.77) 0.00023
Lung squamous cell carcinoma 0.67 (0.47–0.94) 0.02
Rectum adenocarcinoma 0.25 (0.09–0.72) 0.0055
Sarcoma 0.59 (0.39–0.91) 0.015
Thyroid carcinoma 0.3 (0.1–0.93) 0.027
Cervical squamous cell carcinoma 1.7 (1.04–2.78) 0.032
Ovarian cancer 1.34 (1.02–1.76) 0.034
Pancreatic ductal adenocarcinoma 2.51 (1.48–4.25) 0.0004
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Table 2. Continued.
MAP3K isoforms Cancer type HR p value

MAP3K6 Breast cancer 0.64 (0.46–0.89) 0.0076
Cervical squamous cell carcinoma 0.49 (0.31–0.79) 0.0028
Esophageal Adenocarcinoma 0.45 (0.22–0.9) 0.02
Head-neck squamous cell carcinoma 0.63 (0.48–0.83) 0.00073
Lung adenocarcinoma 0.67 (0.48–0.93) 0.016
Stomach adenocarcinoma 0.7 (0.49 -1) 0.047
Thyroid carcinoma 0.28 (0.11–0.76) 0.0076
Uterine corpus endometrial carcinoma 0.61 (0.41–0.93) 0.02
Liver hepatocellular carcinoma 1.65 (1.14–2.39) 0.0077
Rectum adenocarcinoma 2.96 (1.29–6.79) 0.0076
Thymoma 5.54 (1.41–21.7) 0.0064

MAP3K7 Esophageal Squamous Cell Carcinoma 0.23 (0.07–0.81) 0.014
Ovarian cancer 0.76 (0.58–0.98) 0.034
Rectum adenocarcinoma 0.43 (0.19–1.01) 0.047
Thymoma 0.18 (0.05–0.85) 0.005
Cervical squamous cell carcinoma 1.81 (1.04–3.15) 0.035
Esophageal Adenocarcinoma 2.66 (1.2–5.92) 0.013
Kidney renal clear cell carcinoma 1.44 (1.07–1.94) 0.017
Kidney renal papillary cell carcinoma 1.81 (1–3.29) 0.047
Liver hepatocellular carcinoma 1.91 (1.33–2.75) 0.00035
Sarcoma 2.23 (1.47–3.38) 0.00011

MAP3K8 Bladder carcinoma 0.69 (0.51–0.93) 0.013
Breast cancer 0.68 (0.49–0.94) 0.018
Esophageal Adenocarcinoma 0.33 (0.13–0.84) 0.015
Head-neck squamous cell carcinoma 0.71 (0.54–0.92) 0.01
Lung adenocarcinoma 0.63 (0.46–0.84) 0.0019
Ovarian cancer 0.7 (0.53–0.91) 0.0075
Sarcoma 0.47 (0.31–0.7) 0.00012
Esophageal Squamous Cell Carcinoma 3.02 (1.35–6.76) 0.0049
Kidney renal clear cell carcinoma 2.15 (1.58–2.91) 0.00000048
Thymoma 6.09 (1.44–25.85) 0.0054
Thyroid carcinoma 2.73 (1.01–7.36) 0.039

MAP3K9 Kidney renal papillary cell carcinoma 0.46 (0.24–0.89) 0.019
Pancreatic ductal adenocarcinoma 0.61 (0.4–0.93) 0.021
Stomach adenocarcinoma 0.57 (0.38–0.86) 0.0068
Kidney renal clear cell carcinoma 1.41 (1.02–1.96) 0.037
Liver hepatocellular carcinoma 2.16 (1.49–3.13) 0.000032
Ovarian cancer 1.31 (1.01–1.7) 0.044
Pheochromocytoma and Paraganglioma 12.16 (1.36–108.85) 0.0043
Thymoma 4.39 (0.91–21.19) 0.044
Uterine corpus endometrial carcinoma 1.68 (1.1–2.56) 0.014

MAP3K10 Bladder carcinoma 0.56 (0.41–0.76) 0.0002
Head-neck squamous cell carcinoma 0.64 (0.49–0.84) 0.0011
Pancreatic ductal adenocarcinoma 0.51 (0.34–0.78) 0.0013
Cervical squamous cell carcinoma 1.69 (1.01–2.81) 0.043
Kidney renal clear cell carcinoma 2.07 (1.53–2.8) 0.0000017
Liver hepatocellular carcinoma 1.53 (1.03–2.26) 0.032
Thyroid carcinoma 3.77 (1.37–10.39) 0.006
Uterine corpus endometrial carcinoma 1.63 (1.07–2.46) 0.02
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Table 2. Continued.
MAP3K isoforms Cancer type HR p value

MAP3K11 Bladder carcinoma 0.71 (0.53–0.95) 0.02
Cervical squamous cell carcinoma 0.55 (0.35–0.88) 0.012
Kidney renal clear cell carcinoma 0.71 (0.52–0.96) 0.027
Sarcoma 0.59 (0.37–0.93) 0.022
Stomach adenocarcinoma 0.65 (0.46–0.93) 0.018
Liver hepatocellular carcinoma 1.85 (1.17–2.93) 0.0076
Lung squamous cell carcinoma 1.38 (1–1.9) 0.05

MAP3K12 Lung adenocarcinoma 0.64 (0.48–0.85) 0.0023
Pancreatic ductal adenocarcinoma 0.44 (0.29–0.68) 0.00015
Sarcoma 0.46 (0.3–0.69) 0.00014
Thymoma 0.21 (0.04–1.02) 0.034
Kidney renal clear cell carcinoma 2.33 (1.7–3.19) 0.000000062
Kidney renal papillary cell carcinoma 1.83 (1–3.34) 0.046
Pheochromocytoma and Paraganglioma 9.65 (1.12–82.77) 0.011
Stomach adenocarcinoma 1.5 (1.09–2.08) 0.013
Uterine corpus endometrial carcinoma 1.7 (1.12–2.59) 0.011

MAP3K13 Bladder carcinoma 0.69 (0.5–0.95) 0.024
Cervical squamous cell carcinoma 0.53 (0.33–0.86) 0.0084
Esophageal Adenocarcinoma 0.46 (0.23–0.92) 0.024
Kidney renal clear cell carcinoma 0.54 (0.4–0.72) 0.000032
Lung squamous cell carcinoma 0.63 (0.48–0.83) 0.00093
Ovarian cancer 0.54 (0.39–0.75) 0.00017
Rectum adenocarcinoma 0.38 (0.15–0.95) 0.031
Stomach adenocarcinoma 0.69 (0.5–0.96) 0.026
Pancreatic ductal adenocarcinoma 2.24 (1.48–3.42) 0.00011
Pheochromocytoma and Paraganglioma 5.15 (0.93–28.25) 0.036
Sarcoma 1.79 (1.12–2.86) 0.014
Thymoma 18.89 (2.33–153.14) 0.00016
Uterine corpus endometrial carcinoma 2.38 (1.56–3.62) 0.0000320

MAP3K14 Breast cancer 0.64 (0.45–0.91) 0.011
Cervical squamous cell carcinoma 0.39 (0.25–0.63) 0.000053
Head-neck squamous cell carcinoma 0.62 (0.46–0.85) 0.0026
Pancreatic ductal adenocarcinoma 0.57 (0.37–0.88) 0.011
Rectum adenocarcinoma 0.41 (0.19–0.89) 0.02
Sarcoma 0.63 (0.42–0.93) 0.019
Thyroid carcinoma 0.27 (0.09–0.79) 0.01
Kidney renal papillary cell carcinoma 2.08 (1.15–3.79) 0.014
Liver hepatocellular carcinoma 1.44 (1.02–2.03) 0.038
Thymoma 17.42 (2.17–139.68) 0.00022

MAP3K15 Pancreatic ductal adenocarcinoma 0.58 (0.39–0.89) 0.011
Esophageal Adenocarcinoma 2.95 (1.56–5.6) 0.0005
Head-neck squamous cell carcinoma 1.44 (1.08–1.92) 0.013
Kidney renal clear cell carcinoma 1.92 (1.38–2.67) 0.000088
Kidney renal papillary cell carcinoma 4.28 (2.11–8.68) 0.000011
Liver hepatocellular carcinoma 1.59 (1.12–2.27) 0.0088
Sarcoma 2.05 (1.38–3.05) 0.00031
Thyroid carcinoma 2.92 (1.02–8.43) 0.037
Uterine corpus endometrial carcinoma 3.74 (2.33–6) 0.0000000044

6

https://www.imrpress.com


Table 2. Continued.
MAP3K isoforms Cancer type HR p value

MAP3K16 Kidney renal clear cell carcinoma 0.62 (0.46–0.83) 0.0013
Rectum adenocarcinoma 0.39 (0.16–0.98) 0.038
Cervical squamous cell carcinoma 2.24 (1.22–4.09) 0.0072
Liver hepatocellular carcinoma 1.57 (1.11–2.22) 0.011
Stomach adenocarcinoma 1.59 (1.14–2.2) 0.0051

MAP3K17 Head-neck squamous cell carcinoma 0.66 (0.51–0.87) 0.0025
Kidney renal clear cell carcinoma 0.73 (0.54–0.98) 0.038
Kidney renal papillary cell carcinoma 0.44 (0.24–0.8) 0.006
Lung adenocarcinoma 0.63 (0.47–0.85) 0.0025
Pancreatic ductal adenocarcinoma 0.42 (0.25–0.7) 0.00057
Stomach adenocarcinoma 0.65 (0.45–0.94) 0.02
Uterine corpus endometrial carcinoma 0.46 (0.3–0.7) 0.00019

MAP3K18 Kidney renal clear cell carcinoma 0.45 (0.33–0.61) 0.00000021
Rectum adenocarcinoma 0.27 (0.08–0.89) 0.02
Sarcoma 0.61 (0.38–0.99) 0.044
Stomach adenocarcinoma 0.69 (0.49–0.96) 0.026
Thymoma 0.1 (0.01–0.85) 0.011
Kidney renal papillary cell carcinoma 2.24 (1.12–4.46) 0.019
Lung squamous cell carcinoma 1.43 (1.09–1.88) 0.0094
Pheochromocytoma and Paraganglioma 4.89 (0.89–26.99) 0.044

MAP3K19 Bladder carcinoma 0.58 (0.43–0.79) 0.00039
Breast cancer 0.67 (0.47–0.96) 0.027
Cervical squamous cell carcinoma 0.47 (0.25–0.9) 0.019
Liver hepatocellular carcinoma 0.64 (0.45–0.9) 0.011
Lung adenocarcinoma 0.68 (0.48–0.95) 0.025
Pancreatic ductal adenocarcinoma 0.6 (0.37–0.97) 0.037
Rectum adenocarcinoma 0.28 (0.08–0.95) 0.029
Uterine corpus endometrial carcinoma 0.44 (0.24–0.79) 0.0048
Kidney renal clear cell carcinoma 1.83 (1.35–2.47) 0.000064
Kidney renal papillary cell carcinoma 2.38 (1.01–5.64) 0.042
Lung squamous cell carcinoma 1.47 (1.1–1.95) 0.008

MAP3K20 Esophageal Squamous Cell Carcinoma 0.38 (0.16–0.87) 0.018
Sarcoma 0.57 (0.35–0.93) 0.022
Cervical squamous cell carcinoma 1.76 (1.08–2.87) 0.021
Kidney renal papillary cell carcinoma 2.95 (1.56–5.58) 0.00047
Lung adenocarcinoma 1.41 (1.03–1.93) 0.029
Lung squamous cell carcinoma 1.38 (1.01–1.88) 0.042
Pancreatic ductal adenocarcinoma 1.53 (1.01–2.31) 0.041

MAP3K21 Esophageal Squamous Cell Carcinoma 0.32 (0.13–0.78) 0.0086
Rectum adenocarcinoma 0.42 (0.18–0.96) 0.032
Breast cancer 1.54 (1.03–2.31) 0.034
Kidney renal papillary cell carcinoma 2.72 (1.3–5.68) 0.0056
Liver hepatocellular carcinoma 1.53 (1.07–2.17) 0.018
Uterine corpus endometrial carcinoma 1.94 (1.25–3.01) 0.0025

Significant p (<0.05) and HR values that are positively correlated with patient survival are in bold, while
those italicized indicates a negative correlation. Some cancer types are not shown due to non-significant data
for that gene and can be found in Supplementary Table 3.
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sion was correlated with decreased survival in breast can-
cer, cervical squamous cell carcinoma, esophageal adeno-
carcinoma, kidney renal papillary cell carcinoma, liver hep-
atocellular carcinoma, ovarian cancer, stomach adenocarci-
noma (Table 2). MAP3K4 mRNA expression in other can-
cer types did not make the statistical cutoff.

3.5 MAP3K5

MAP3K5 is the most well-studied MAP3K family
memberwith a PubMed score of 812.85 and aNovelty score
of –6.54 (Table 1). MAP3K5, also known as ASK1, is a
member of the stress- induced apoptosis signal-regulating
kinase (ASK) family [48]. ASK1 activates both p38 and
JNK pathways responding to stressors such as cytokines,
reactive oxygen species (ROS), and endoplasmic reticulum
(ER) stress [49]. Thus, ASK1 plays a critical role in stress
response and its dysfunction is involved in various diseases,
including cancers, neurodegeneration, and cardiovascular
diseases. Existing studies identified ASK1 as an antionco-
gene by promoting ROS- induced and ER-mediated apop-
tosis [49,50]. Low expression or downregulated activity
of ASK1 has been demonstrated in several cancer types,
including HCC, breast cancer, and Ewing sarcoma [51–
53]. However, some studies also reported that overexpres-
sion of ASK1 and its upregulated activity promotes cancer
cell motility and proliferation in oral squamous cell carci-
noma and ovarian cancer, and pancreatic cancer [54–56].
Therefore, ASK1 can be a therapeutic target by either ac-
tivating ASK1-mediated apoptosis or inhibiting its activity
based on specific cancer types. Novel triazolothiadiazines
were identified as potent anticancer agents by triggering
oxidative stress-induced apoptosis through ASK1 activa-
tion in HCC [57]. Selonsertib (GS-4997), an ASK1 in-
hibitor, attenuates multidrug resistance in cancer cells over-
expressing ATP-binding cassette transporters ABCB1 and
2 [58,59]. The mRNA expression of MAP3K5 was asso-
ciated with increased survival in bladder carcinoma, head-
neck squamous cell carcinoma, kidney renal clear cell car-
cinoma, lung squamous cell carcinoma, rectum adenocar-
cinoma, sarcoma, and thyroid carcinoma. MAP3K5 was
expression negatively correlated with survival in cervical
squamous cell carcinoma, ovarian cancer, and pancreatic
ductal adenocarcinoma (Table 2). MAP3K5mRNA expres-
sion in other cancer types did not make the statistical cutoff.

3.6 MAP3K6

MAP3K6 is one of the less studied members of the
MAP3K family with a PubMed score of 27.05 and Novelty
score of –5.22 (Table 1). Despite having scores similar to
IDG-eligible kinases MAP3K10 and MAP3K14, MAP3K6
did not receive this designation. MAP3K6 is also a mem-
ber of the ASK family, known as ASK2 [48]. Existing lit-
erature demonstrate that MAP3K6 is inhibited by CDK5
to regulate melanin production in mice [60]. Furthermore,
MAP3K6 mutations are associated with cerebral small ves-

sel disease (cSVD) causing stroke, cognitive impairment,
and tremor, as well as the development of gastric cancer
[61,62]. Along with MAP3K5, MAP3K6 also known as
ASK2, is a member of ASK family [49]. ASK2 has been
reported to regulate tumor angiogenesis [63]. The mRNA
expression of MAP3K6 was positively associated with sur-
vival in breast cancer, cervical squamous cell carcinoma,
esophageal adenocarcinoma, head-neck squamous cell car-
cinoma, lung adenocarcinoma, stomach adenocarcinoma,
thyroid carcinoma, and uterine corpus endometrial carci-
noma. MAP3K6 expression was negatively associated with
survival in liver hepatocellular carcinoma, rectum adeno-
carcinoma, and thymoma (Table 2). MAP3K6 mRNA ex-
pression in other cancer types did not make the statistical
cutoff.

3.7 MAP3K7

MAP3K7 is one of the better studied members of
MAP3K family with a PubMed score of 209.21 and a Nov-
elty score of –5.22 (Table 1). MAP3K7, also known as
TGF-β-activated kinase 1 (TAK1), is a critical mediator
of NF-κB and JNK signaling pathways that regulate em-
bryonic development, immune responses, and cell survival
[64]. Because MAP3K7 downstream molecules NF-κB
and JNK are involved in cancer cell survival and apopto-
sis, MAP3K7 regulates tumor initiation, proliferation, and
metastasis as a cancer promoter or suppressor depending
on specific receptors and cell types [65]. While specific
deficiency MAP3K7 causes cell death, inflammation, fi-
brosis, and carcinogenesis of hepatocytes due to inhibi-
tion of NF-κB-dependent survival, higher co-expression of
MAP3K7 and mTOR was positively correlated with prolif-
eration of HCC [65,66]. Overexpression and hyperactiva-
tion of MAP3K7 have been implicated in multiple cancers,
including esophageal, thyroid, gastric, and ovarian [67–71].
As a critical mediator between receptors and transcription
factors, MAP3K7 was identified as a potential therapeutic
target for cancer therapy. Several chemical MAP3K7 in-
hibitors include the natural compound 5(Z)-7- oxozeaenol,
LYTAK1, AZ-TAK1, Takinib, and NG25 [72–76].

The mRNA expression of MAP3K7 was associ-
ated with increased survival in esophageal squamous cell
carcinoma, ovarian cancer, rectum adenocarcinoma, and
thymoma. MAP3K7 expression was negatively associ-
ated with survival in cervical squamous cell carcinoma,
esophageal adenocarcinoma, kidney renal clear cell car-
cinoma, kidney renal papillary cell carcinoma, liver hep-
atocellular carcinoma, and sarcoma (Table 2). MAP3K7
mRNA expression in other cancer types did not make the
statistical cutoff.

3.8 MAP3K8

MAP3K8 is the second most-studied kinase of the
MAP3K family with a PubMed score of 220.14 and a Nov-
elty score of –5.15 (Table 1). MAP3K8, also commonly
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known as tumor progression locus 2 (Tpl2), regulates both
innate and adaptive immunity, as well as inflammatory re-
sponses. Previous studies reported that overexpression of
Tpl2 activates the ERK, JNK, and p38MAPK pathways, as
well as the transcription factors NFAT and NF-κB, and ul-
timately regulates the production of various cytokines [77–
80]. MAPK8 has variable effects on tumors and its role
as both tumor suppressor and tumor promoter has been re-
ported. For example, MAP3K8 acts as a tumor suppres-
sor gene, and a low expression of MAP3K8 is associated
with reduced lung cancer patient survival and an increase
in metastasis biomarkers in skin cancer [81,82]. However,
MAP3K8 overexpression contributes to tumor prolifera-
tion, and metastasis in ovarian cancer, squamous cell car-
cinoma, colorectal cancer, prostate cancer, and breast can-
cer [83–87]. The mRNA expression of MAP3K8 was posi-
tively correlated with survival in bladder carcinoma, breast
cancer, esophageal adenocarcinoma, head-neck squamous
cell carcinoma, lung adenocarcinoma, ovarian cancer, and
sarcoma. MAP3K8 expression was associated with de-
creased survival in esophageal squamous cell carcinoma,
kidney renal clear cell carcinoma, thymoma, and thyroid
carcinoma (Table 2). MAP3K8 mRNA expression in other
cancer types did not make the statistical cutoff.

3.9 MAP3K9

MAP3K9 has a PubMed score of 43.94 and a Novelty
score of –3.72 (Table 1). Despite its relative novelty being
comparable to similarly scored MAP3K16 and MAP3K17,
MAP3K9 is not an IDG- eligible kinase. MAP3K9, also
known as mixed lineage kinase I (MLK1), belongs to the
MLK family, which are upstream activators of MEK/ERK
and JNK pathways [88]. While the role of MAP3K9 in can-
cer is not well-defined, previous studies reported that target-
ing MAP3K9 using microRNA suppressed tumor progres-
sion in pancreatic cancer, pharyngolaryngeal cancer, HCC,
and esophagus squamous cell carcinoma, suggesting its in-
volvement in cancer pathogenesis [89–91]. In lung can-
cer cells, gain-of-function mutation MAP3K9 leads to the
increased activation of downstream ERK pathway, which
potentially promotes tumor proliferation [92]. Marusiak
et al. [93] demonstrated MAP3K9 (MLK1) reactivates
MEK/ERK pathway independently of RAF, contributing
to the resistance of RAF inhibitors in melanoma. Ad-
ditionally, MAP3K9 has been identified as a gene that
is frequently mutated in metastatic melanoma [94]. The
mRNA expression of MAP3K9 was positively correlated
with survival in kidney renal papillary cell carcinoma, pan-
creatic ductal adenocarcinoma, and stomach adenocarci-
noma. MAP3K9 expression was negatively correlated with
survival in kidney renal clear cell carcinoma, liver hepa-
tocellular carcinoma, ovarian cancer, pheochromocytoma
and paraganglioma, thymoma, and uterine corpus endome-
trial carcinoma (Table 2). MAP3K9 mRNA expression in
other cancer types did not make the statistical cutoff.

3.10 MAP3K10

MAP3K10 is an IDG-eligible kinase with a PubMed
score of 25.78 and Novelty score of –3.34 (Table 1).
MAP3K is also a member of the MLK family, known
as MLK2 [88]. Existing literature identifies MAP3K10
as a mediator of TGFß activation with a role in regulat-
ing atherosclerotic inflammatory responses [95,96]. Fur-
thermore, MAP3K10 has been implicated to play a role
in pancreatic cancer, esophageal carcinoma, and osteosar-
coma [97]. Additionally, targeting MAP3K10 with mi-
croRNA MiR-146b-3p and MiR-155-5p has been demon-
strated to, respectively, abrogate pancreatic cancer stem-
cell proliferation and sensitize esophageal carcinoma cells
to radiation and chemotherapy [98,99]. The mRNA ex-
pression of MAP3K10 was associated with increased sur-
vival in bladder carcinoma, head-neck squamous cell carci-
noma, and pancreatic ductal adenocarcinoma. MAP3K10
expression was negatively associated with survival in cer-
vical squamous cell carcinoma, kidney renal clear cell
carcinoma, liver hepatocellular carcinoma, thyroid carci-
noma, and uterine corpus endometrial carcinoma (Table 2).
MAP3K10 mRNA expression in other cancer types did not
make the statistical cutoff.

3.11 MAP3K11

MAP3K11 is a moderately studied member of the
MAP3K family with a PubMed score of 117.01 and a Nov-
elty score of –4.5 (Table 1). MAP3K1, also known as
MLK3, has been shown to activate p38 pathway besides
MEK/ERK and JNK pathways [88]. The role of MLK3
(MAP3K11) in cancer cell migration has been demon-
strated in several cancer types, including breast and lung
cancers [100–102]. Chen et al. [102] reported a crucial
role of MLK3 (MAP3K11) in cell migration in breast can-
cer by activating JNK signaling to AP-1, which promotes
EMT and an invasive breast cancer phenotype [102]. An-
other proposed mechanism of MLK3 (MAP3K11) regulat-
ing cancer cell migration is through dysregulating media-
tors critical for cytoskeletal rearrangement and focal adhe-
sion dynamics, including Cdc42, Rac1, and RhoAGTPases
[100,101,103]. In prostate cancer MLK3 (MAP3K11) also
facilitates the collagen type I-induced EMT switch, lead-
ing to JNK- mediated increased expression of N-cadherin,
an EMT marker associated with promoting migratory and
invasive capacity [103,104]. Ma et al. [105] showed
that MLK3 expression is upregulated in cervical cancer
cells and MLK3 blocking suppresses cancer progression
via autophagy- dependent apoptosis. Additionally, target-
ing MAP3K11 using microRNA inhibited tumor prolifer-
ation in NSCLC and esophageal cancer [106,107]. Sim-
ilar to MAP3K9 (MLK1), MAP3K11 (MLK3) also pro-
motes resistance to RAF inhibitor vemurafenib by reactivat-
ing MEK/ERK pathway independently of RAF, contribut-
ing to cell survival and progression in melanoma [106].
MLK3 also plays a role in inflammation by regulating
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NF-κB/NLRP3 signaling pathway-mediated inflammation
and JNK/p53 signaling pathway-mediated oxidative stress,
which are associated with myocardial fibrosis [108]. The
mRNA expression of MAP3K11 was correlated with in-
creased survival in bladder carcinoma, cervical squamous
cell carcinoma, kidney renal clear cell carcinoma, sarcoma,
and stomach adenocarcinoma. MAP3K11 expression was
associated with decreased survival in liver hepatocellu-
lar carcinoma, lung squamous cell carcinoma (Table 2).
MAP3K11 mRNA expression in other cancer types did not
make the statistical cutoff.

3.12 MAP3K12

MAP3K12 is a moderately studied member of the
MAP3K family with a PubMed score of 157.61 and a Nov-
elty score of –5.07 (Table 1). MAP3K12, also known as
dual leucine zipper kinase (DLK), is a member of MLK
family [88]. It has been investigated in the pathogenesis of
neurodegenerative diseases and diabetes mellitus, its role
in cancer has not been as well-studied in cancer. Yu et
al. [109] demonstrated that targeting MAP3K12 using mi-
croRNA miR-150-5p suppresses cell proliferation and in-
vasion in prostate cancer cells. MAP3K12 is also upregu-
lated in T-cell acute lymphoblastic leukemia (T-ALL), sug-
gesting that MAP3K12 could be a marker of T-ALL for fu-
ture studies [110]. DLK (MAP3K12) regulates the stress-
induced JNK signaling in neurons and has been identified as
a central regulation of various neuronal degradation mod-
els [111–116]. In diabetes mellitus, MAP3K12-mediated
JNK signaling pathway can underlie endothelial dysfunc-
tion, suggesting MAP3K12 as a potential therapeutic target
[117]. The mRNA expression of MAP3K12 was positively
correlated with lung adenocarcinoma, pancreatic ductal
adenocarcinoma, sarcoma, and thymoma. MAP3K12 ex-
pression was negatively associated with survival in kidney
renal clear cell carcinoma, kidney renal papillary cell car-
cinoma, pheochromocytoma and paraganglioma, stomach
adenocarcinoma, and uterine corpus endometrial carcinoma
(Table 2). MAP3K12 mRNA expression in other cancer
types did not make the statistical cutoff.

3.13 MAP3K13

MAP3K13 is one of the better-studied members of the
MAP3K family with a PubMed score of 200.04 and a Nov-
elty score of –5.38 (Table 1). MAP3K13, also known as
leucine zipper-bearing kinase (LZK), belongs to the MLK
family and has a high sequence identity to DLK/MAPK312
[88]. LZK was shown to regulate NF-κB and JNK sig-
naling pathways, which could be cancer promoting [118,
119]. In breast cancer, MAP3K13 overexpression stabi-
lizes and enhances the transcriptional activity of Myc onco-
gene, contributing to poor patient survival [120]. Ampli-
fied MAP3K13 promotes cancer cell viability and prolif-
eration by maintaining expression of gain-of- function mu-
tant p53 [121]. Additionally, Fu et al. [122] reported that

long non-coding RNAs (lncRNA) LINC01287 activated
NF-κB signaling through regulatingMAP3K13, potentially
regulating migration, invasion, and EMT in colon cancer
[122]. More recently, LZK has been identified as a novel
positive regulator of axon growth [123]. The mRNA ex-
pression of MAP3K13 was positively associated with sur-
vival in bladder carcinoma, cervical squamous cell carci-
noma, esophageal adenocarcinoma, kidney renal clear cell
carcinoma, lung squamous cell carcinoma, ovarian can-
cer, rectum adenocarcinoma, and stomach adenocarcinoma.
MAP3K13 expression was associated with decreased sur-
vival in pancreatic ductal adenocarcinoma, pheochromo-
cytoma, and paraganglioma, sarcoma, thymoma, and uter-
ine corpus endometrial carcinoma (Table 2). MAP3K13
mRNA expression in other cancer types did not make the
statistical cutoff.

3.14 MAP3K14
MAP3K14 is an IDG-eligible kinase with a PubMed

score of 29.23 and Novelty score of –3.35 (Table 1). It has
been described, in mantle cell lymphoma (MCL), as a medi-
ator in the non-canonical NfκB pathway. Mutations in the
NFκB pathway leads to dependence of MAP3K14, both in
vitro and in vivo, suggesting that MAP3K14 is potentially a
therapeutic target in MCL [124]. Additionally, MAP3K14
has been identified to be a regulator of the innate and adap-
tive immune responses with mutations leading to atypical-
combined immunodeficiency [125,126]. The mRNA ex-
pression of MAP3K14 was associated with increased sur-
vival in breast cancer, cervical squamous cell carcinoma,
head-neck squamous cell carcinoma, pancreatic ductal ade-
nocarcinoma, rectum adenocarcinoma, sarcoma, and thy-
roid carcinoma. MAP3K14 expression was negatively as-
sociated with survival in kidney renal papillary cell carci-
noma, liver hepatocellular carcinoma, and thymoma (Ta-
ble 2). MAP3K14 mRNA expression in other cancer types
did not make the statistical cutoff.

3.15 MAP3K15
MAP3K15 is an IDG-eligible kinase with a PubMed

score of 10.11 and Novelty score of –2.11 (Table 1).
MAP3K15 is also known as ASK3, a member of the ASK
family [49]. It has been identified to play an important
role in immune-related activities against cancer with one
study demonstrating a correlation between MAP3K15 ex-
pression and immune infiltration in osteosarcoma [127].
Despite this report, other studies found that high levels
of MAP3K15 to be correlated with poor prognosis in Os-
teosarcoma and uterine cancer [127,128]. More broadly,
studies on MAP3K15 have shown that it has protective ef-
fects against osmotically driven hypertension, and a knock-
down phenotype of MAP3K19 results in an inherited form
of hypertension [129].
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The mRNA expression of MAP3K15 was posi-
tively associated with pancreatic ductal adenocarcinoma.
MAP3K15 expression was associated with decreased sur-
vival in esophageal adenocarcinoma, head-neck squamous
cell carcinoma, kidney renal clear cell carcinoma, kidney
renal papillary cell carcinoma, liver hepatocellular carci-
noma, sarcoma, thyroid carcinoma, and uterine corpus en-
dometrial carcinoma (Table 2). MAP3K15 mRNA expres-
sion in other cancer types did not make the statistical cutoff.

3.16 MAP3K16 (TAOK1)
Better known as TAOK1, MAP3K16 is the most char-

acterized IDG-eligible MAP3K member with a PubMed
score of 57.97 and Novelty score of –4.07 (Table 1). Ex-
isting literature identifies TAOK1 involvement in neurode-
velopment with dysregulation and de-novo variants leading
to neurodevelopmental disorders [130,131]. Furthermore,
MAP3K16 is a positive regulator of TLR4-induced inflam-
matory responses, activating macrophages through promo-
tion of ERK1/2 [132]. The mRNA expression of TAOK1
was associated with increased survival in kidney renal clear
cell carcinoma and rectum adenocarcinoma. TAOK1 ex-
pression was negatively associated with survival in cervical
squamous cell carcinoma, liver hepatocellular carcinoma,
and stomach adenocarcinoma (Table 2). TAOK1 mRNA
expression in other cancer types did not make the statistical
cutoff.

3.17 MAP3K17 (TAOK2)
Better known as TAOK2, MAP3K17 is one of the bet-

ter characterized IDG-eligible MAP3K members, second
to MAP3K16, with a PubMed score of 46.59 and Nov-
elty score of –3.76 (Table 1). Existing literature identifies
TAOK2 as an ER-localized kinase that acts to catalyze ER-
microtubule interactions [133]. Furthermore, TAOK2 has
been demonstrated to play a role in neurodevelopment and
cognition with studies showing control over behavioral re-
sponses to ethanol, in mice, and the development of autism
spectrum disorder through RhoA signaling [134,135]. The
mRNA expression of TAOK2 was positively associated
with survival in head-neck squamous cell carcinoma, kid-
ney renal clear cell carcinoma, kidney renal papillary cell
carcinoma, lung adenocarcinoma, pancreatic ductal adeno-
carcinoma, stomach adenocarcinoma, and uterine corpus
endometrial carcinoma. TAOK2 expression did not cor-
relate with decreased survival in any studied cancer types
(Table 2). TAOK2 mRNA expression in other cancer types
did not make the statistical cutoff.

3.18 MAP3K18 (TAOK3)
Better known as TAOK3, MAP3K18 has a PubMed

score of 50.8 and a Novelty score of –3.88 (Table 1).
Despite its relative novelty being comparable to similarly
scored MAP3K16 and MAP3K17, TAOK3 is not an IDG-
eligible kinase. Existing literature identifies TAOK3 as

a contributing regulator of osteoblast differentiation and
skeletal mineralization, lipid partitioning in the liver, and
t-cell receptor signaling [136–139]. Furthermore, TAOK3
has also been identified to regulate cancer stem-cells in pan-
creatic cancer and enhance microtubule-targeted drug resis-
tance in breast cancer through NF-κB signaling [140,141].
ThemRNA expression of TAOK3was positively correlated
with survival in kidney renal clear cell carcinoma, rectum
adenocarcinoma, sarcoma, stomach adenocarcinoma, and
thymoma. TAOK3 was negatively correlated with survival
in kidney renal papillary cell carcinoma, lung squamous
cell carcinoma, and pheochromocytoma and paraganglioma
(Table 2). TAOK3 mRNA expression in other cancer types
did not make the statistical cutoff.

3.19 MAP3K19

MAP3K19 is the least studied MAP3K family mem-
ber with a PubMed Score of 4.83 and Novelty Score of
–1.31 (Table 1). Despite having the lowest number of
publications available and the highest novelty, MAP3K19
was not among the list of IDG-eligible MAP3K members.
Existing literature identifies a role for MAP3K19 in lung
pathology. Boehme et al. [142,143] identified MAP3K19
as a novel TGFß regulator in pulmonary fibrosis and as a
central mediator of cigarette smoke induced pulmonary in-
flammation. Furthermore, Hoang et al. [144] and Jones
et al. [145] identified MAP3K19 as a mediator for idio-
pathic pulmonary fibrosis and KRAS-mutant lung cancer.
ThemRNA expression ofMAP3K19was positively associ-
ated with survival in bladder carcinoma, breast cancer, cer-
vical squamous cell carcinoma, liver hepatocellular carci-
noma, lung adenocarcinoma, pancreatic ductal adenocarci-
noma, rectum adenocarcinoma, and uterine corpus endome-
trial carcinoma. MAP3K19 expression was associated with
decreased survival in kidney renal clear cell carcinoma, kid-
ney renal papillary cell carcinoma, and lung squamous cell
carcinoma (Table 2). MAP3K19mRNAexpression in other
cancer types did not make the statistical cutoff.

3.10 MAP3K20

MAP3K20 is among the least characterized MAP3K
family of kinases with a PubMed score of 16.1 and Novelty
score of –2.79 (Table 1). Despite its relative novelty being
comparable to similarly scored MAP3K10 and MAP3K21,
MAP3K20 is not an IDG-eligible kinase. Existing liter-
ature identifies MAP3K20 as an ERK and JNK activa-
tor with multiple isoforms. Some isoforms of MAP3K20
have been identified to be positively correlated with gas-
tric and colorectal cancer development while others have
been demonstrated to have anti-tumor roles by promot-
ing apoptosis in osteosarcoma [146–149]. The mRNA ex-
pression of MAP3K20 was associated with increased sur-
vival in esophageal squamous cell carcinoma and sarcoma.
MAP3K20 expression was negatively associated with sur-
vival in cervical squamous cell carcinoma, kidney renal
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papillary cell carcinoma, lung adenocarcinoma, lung squa-
mous cell carcinoma, and pancreatic ductal adenocarci-
noma (Table 2). MAP3K20mRNA expression in other can-
cer types did not make the statistical cutoff.

3.21 MAP3K21
MAP3K21 is one of the least studied MAP3K family

members, second to MAP3K19, with a PubMed Score of
11.8 and Novelty Score of –1.96 (Table 1). Additionally,
MAP3K21 is an NIH designated IDG-eligible kinase. Ex-
isting reports identify a correlation between MAP3K21 and
pediatric obesity, E. coli induced diarrhea, and disease re-
sistance in African chickens [150–152].

Additionally, MAP3K21 has been found to be cancer
promoting in breast cancer, hepatocellular carcinoma, col-
orectal carcinoma, ovarian cancer, and gliomas [153–160].
The mRNA expression of MAP3K21 was positively asso-
ciated with survival in esophageal squamous cell carcinoma
and rectum adenocarcinoma. MAP3K21 expression was
negatively associated with survival in breast cancer, kidney
renal papillary cell carcinoma, liver hepatocellular carci-
noma, and uterine corpus endometrial carcinoma (Table 2).
MAP3K21 mRNA expression in other cancer types did not
make the statistical cutoff.

4. Discussion
While performing a chemical compound based kinase

screen, we identified MAP3K19 as a lead target in our cell
models and have published a review comparing MAP3K19
expression levels in different normal and cancerous tissue
types [161]. We then decided to take a broader look at
the MAPK family and the lesser known MAP3K mem-
bers. Mitogen-activated protein kinase (MAPK) pathways
are signaling networks that regulate crucial cellular pro-
cesses such as growth, proliferation, differentiation, mi-
gration, and apoptosis. MAP3Ks are upstream MAPK
serine/threonine kinases that directly activate MAP2Ks
through protein phosphorylation, leading to the activation
of downstream MAPKs and their associated effects. This
review evaluates the MAP3K family members (1 through
21) using PubMed and Novelty scores, current literature,
and a critical analysis of isoform expression level with pa-
tient survival outcomes across multiple cancer types. Fur-
thermore, this review develops a comparative characteriza-
tion for each MAP3K member and provides the scientific
community with a bioinformatic basis for further investiga-
tion of MAP3K signaling.

Kinase inhibitors are a major advancement in clinical
therapies and have transformed disease management. De-
spite enormous successes with kinase inhibitors and ded-
icated research effort into kinase signaling, the majority
of the kinome remains understudied [162,163]. To ad-
dress this gap, the NIH launched the “Illuminating the
Druggable Genome” (IDG) Program in 2014. This pro-
gram’s purpose is to fund pilot projects to generate addi-

tional data and tools around understudied proteins. Further-
more, this program led to the development of Pharos, an in-
formatics database that integrates information from various
sources to generate PubMed and Novelty scores for each
kinase. In this review, we reference RFA-RM-21-012 to
identify the list of IDG-eligible MAP3K members. Among
the 21 MAP3K members, only 6—MAP3K10, MAP3K14,
MAP3K15, MAP3K16, MAP3K17, and MAP3K21—
members were IDG-eligible. The PubMed and Nov-
elty scores of the IDG-eligible MAP3K members range
from 11.8 to 57.97 and –4.07 to –1.96, respectively. In-
terestingly, MAP3K4, MAP3K6, MAP3K9, MAP3K18,
MAP3K19, andMAP3K20were not eligible despite having
PubMed scores well below the highest scored IDG-eligible
MAP3K16 (57.97), indicating less available publications
for these 6 kinases contrasted to MAP3K16. An analogous
correlation is seen when comparing Novelty scores for the
same 6 kinases; higher novelty scores are seen when com-
pared to the lowest scored MAP3K: MAP3K16 (–4.07).
This relationship is especially surprising for MAP3K19,
a MAP3K member with the lowest PubMed score (4.83)
and highest Novelty score (–1.31) (Table 1). Altogether,
this leads us to anticipate future funding opportunity an-
nouncements including MAP3K4, MAP3K6, MAP3K9,
MAP3K18, MAP3K19, and MAP3K20 in the list of IDG-
eligible kinases.

The MAPK pathway is a signaling pathway that is
a crucial regulator of a diverse multitude of cellular pro-
cesses. Because of the ubiquitous nature of MAPK sig-
naling in cellular biology, we decided to analyze the cor-
relations between mRNA expression levels of different
MAP3K members and patient survival of different cancer
types. Using the KMPlotter database, we generated a table
of differentMAP3K’s and their corresponding hazard ratios
for different cancers. Overall, the major conclusion is that
MAP3K’s play different roles in different cancers. For ex-
ample: MAP3K1 expression seems to have a pro-tumor role
in pancreatic ductal adenocarcinoma, MAP3K3 demon-
strates antitumor effects, and MAP3K2 demonstrates no
correlation. This phenomenon provides supporting evi-
dence for the broad biological roles of MAP3K signaling.
Another example is that MAP3K1 has a beneficial hazard
ratio in squamous cell carcinomas of the cervix, esophagus,
and of head-neck origins while having a harmful hazard ra-
tio in kidney renal papillary cell and liver hepatocellular
carcinomas. This provides supporting evidence the tissue
dependency of MAP3K functions with squamous cell tu-
mors having the most benefit from MAP3K1 expression.

One potential drawback to this bioinformatic analy-
sis approach is that correlations were generated from tis-
sue mRNA levels. Because mRNA expression does not
always perfectly reflect protein expression levels or post-
translational activity, KMPlotter correlations may not per-
fectly align with existing literature or pathophysiology. For
example, MAP3K8 mRNA overexpression is correlated
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with improved ovarian cancer patient survival rates despite
existing literature suggesting a pro- tumor role [87]. This
quandary can be addressed by analyzing protein expression
databases for supporting data. However, that process also
has limitations because protein expression does not always
directly correlate with protein activity. So regardless of
bioinformatics technique used, scientific rigor must be ad-
dressed with supplemental validation and functional stud-
ies.

5. Conclusions

To summarize, our intent with this manuscript is to
highlight the importance of the MAPK signaling pathway
with an emphasis on the MAP3K family of kinases. We do
this by discussing the most recent literature for each kinase,
emphasizing its roles in pathology and associated signal-
ing mechanisms. Additionally, we also use the KMPlotter
bioinformatics database to generate correlations between
mRNA expression levels and patient survival in different
cancer types. Lastly, we discuss the PubMed and Novelty
scores for each kinase and compare them to the previous
IDG-eligible kinases. This comparison leads us to predict
MAP3K4, MAP3K6, MAP3K9, MAP3K18, MAP3K19,
and MAP3K20 to receive IDG-eligible designation in the
future due to their relatively low PubMed and high Novelty
scores. Overall, the MAPK pathway is diverse, complex,
and ubiquitous in essential cellular processes. Disruption
of this signaling axis can lead to diseases such as cancers.
This review is focused on the less studied MAP3K family
of the MAPK signaling pathway. Our goal is to establish a
foundation for future MAP3K research by providing a sum-
mary of existing literature, preliminary bioinformatics data,
and discussing potential funding sources through the NIH
Illuminating the Druggable Genome program.
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