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Abstract

Ferroptosis is an emerging form of non-apoptotic, regulated cell death that is mechanistically dependent on aberrant iron accumulation
and excessive lipid peroxidation. Further evidence indicates that ferroptosis plays a crucial role in the efficacy of tumor immunotherapy.
Ferroptosis is often constrained by tumor-associated macrophages (TAMs), and this poses a challenge to clinicians aiming to exploit the
potency of immunotherapy to treat various forms of cancer. Current advances revealed a dual character to TAMs in regulating tumor
ferroptosis. Specifically, some signaling molecules released from cells undergoing ferroptosis can exert effects on TAM polarization.
In this review, we summarize the currently characterized mechanisms of macrophage-ferroptosis crosstalk, discuss how macrophage-
ferroptosis crosstalk affects the outcome of tumor immunotherapy, and provide an overview of current advances that seek to leverage
this crosstalk to improve cancer immunotherapy efficacy. Despite the fact that further efforts are still required to achieve a more com-
prehensive understanding of the mechanisms that control this signaling, targeting macrophage-ferroptosis crosstalk has clear potential
for reversing immunotherapeutic resistance and may shed light on new therapeutic strategies to overcome some advanced and metastatic
malignancies.
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1. Introduction
Tumors constantly evolve to meet the demands of

their surrounding stromal and immune cells, forming a ba-
sis for an intricate, and complex network of cellular and
molecular interactions termed the tumor immune microen-
vironment (TIME). In the early stages of tumor progres-
sion, the TIME exerts an anti-neoplastic effect on the de-
veloping neoplasm, but later serves as an accomplice in
promoting tumor growth, metastasis, and therapeutic re-
sistance. Thus, the TIME presents a challenge to effec-
tive tumor management [1–4]. To reshape TIME to fa-
vor its tumor-suppressive capacities, immunotherapy has
emerged as a promising strategy for some refractory ma-
lignancies, most notably evidenced by its approval to treat
advanced melanoma in 2011 [5]. Despite manifold targets
and mechanisms, most existing immunotherapies share a
common tumor-killing ability by triggering regulated cell
death (RCD) [6]. Ferroptosis, an iron-dependent and lipid-
peroxide-driven form of RCD [7], exerts a prominent effect
during immunotherapy [8].

First discovered when studying erastin-induced cell
death in 2012, ferroptosis has aroused ongoing interest ow-
ing, in part, to its property of selective tumor scaveng-
ing [9,10]. Unlike other forms of RCD, ferroptosis does
not rely on the caspase system, and demonstrates unique

morphological characteristics including a condensed mito-
chondrial membrane, vanished mitochondria cristae, and
a ruptured outer mitochondrial membrane. However, re-
tention of a relatively intact nucleus occurs during ferrop-
tosis [11]. Aberrant iron accumulation plays an essential
role in initiating ferroptosis through a Fenton reaction and
iron-activated enzymes, whereas excessive lipid peroxida-
tion products eventually lead to the oxidative destruction of
intracellular biomembranes [12]. Although many signaling
molecules are characterized as participating in regulation
of ferroptosis, the endogenous antioxidant glutathione per-
oxidase 4 (GPX4), which is widely expressed and requires
glutathione (GSH) to reach its optimal activity, is viewed as
a key controlling molecule in preventing the activation of
ferroptosis during both physiological and pathophysiolog-
ical conditions [10]. Intriguingly, CD8+ T cell-mediated
ferroptosis is widely observed in most tumor cells during
immunotherapy treatment, revealing potential therapeutic
values for ferroptosis in promoting cell killing during tu-
mor immunotherapy [8,13,14].

Another key factor influencing the efficacy of tumor
immunotherapy is tumor-associated macrophages (TAMs).
It is well accepted that TAMs function as a double-edged
sword within the TIME [15]. This range in TAM function
owes to two distinct cell polarizations, defined as the clas-
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sic phenotype (termed M1) and the alternative phenotype
(termed M2), which have opposing functions in tumor pro-
gression. M1 macrophages function in antigen presenta-
tion, induce inflammatory responses, scavenge pathogenic
microorganisms, and exert anti-neoplastic effects within the
TIME [16,17]. In contrast, M2 macrophages are able to
limit the inflammatory response and contribute to tumor
progression by stimulating proliferation, angiogenesis, and
metastasis [18]. Notably, M2-like TAMs are highly asso-
ciated with therapeutic resistance and are widely viewed
as providing a barrier to effective tumor immunotherapy
[19,20].

Intriguingly, TAMs and ferroptosis share an intricate
crosstalk signaling network as compelling evidence from
integrative bioinformatic analyses highlights their intimate
association at many levels. Hence, it is of great necessity
to profile and interpret their interplay in a more compre-
hensive view. Herein, we endeavor to highlight and inte-
grate the sophisticated crosstalk pathways between TAMs
and tumor ferroptosis, and subsequently discuss how their
crosstalk affects the outcomes of tumor immunotherapy.
Finally we seek to summarize current advances associated
with macrophage-ferroptosis crosstalk in tumor elimination
in anticipation that this will shed light on new therapeutic
strategies for as-yet undruggable malignancies.

2. Ferroptosis within the TIME
Ferroptosis starts with aberrant iron metabolism and

excessive lipid peroxidation, and ends with disrupted lipid
bilayers [6]. Physiologically, extracellular Fe3+ ions are
captured by transferrin and reduced into Fe2+ inside the
cell, while Fe3+ ions are exported through solute carrier
family 40 member 1 (SLC40A1) [21]. Only a physiologi-
cal level of Fe2+ ions are freely involved in various biolog-
ical processes, whereas excess Fe2+ ions are sequestered
in ferritins. As a result, ferritin dysfunction leads to ex-
cessive release of Fe2+ ions, which can, in turn, activate
iron-dependent lipid peroxidases and contribute to the gen-
eration of reactive oxygen species (ROS) [22,23]. In this
scenario, polyunsaturated fatty acids (PUFAs) within lipid
bilayers will be oxidized to PUFA-OOHs, and such lipid
peroxide moieties result in irreversible membrane damage
and eventually trigger ferroptosis (Fig. 1).

Within the TIME, ferroptosis is co-regulated by in-
tracellular and extracellular pathways. The pivotal in-
tracellular system in regulating ferroptosis is the system
Xc−/glutathione (GSH)/glutathione peroxidase 4 (GPX4)
axis [24]. The system Xc− is a transmembrane heterodimer
composed of a light chain xCT (encoded by SLC7A11) and
a heavy chain 4F2 (encoded by SLC3A2) [25]. As an amino
acid antiporter, system Xc− plays a pivotal role in uptak-
ing cystine and exporting glutamate in mammalian cells,
thus providing necessary precursors for GSH biosynthe-
sis [25]. With a reductive sulfhydryl structure, GSH could
scavenge excessive ROS and detoxify lipid hydroperoxides

in the presence of GPX4, a dedicated antioxidant enzyme
using GSH as the deoxidative cofactor [26]. Intriguingly,
multiple inducers of ferroptosis work by blocking system
Xc− and GPX4 degradation, thus leading to overproduc-
tion of ROS and lipoperoxides [6]. For example, a small
molecule termed erastin can prevent cystine uptake by di-
rectly inhibiting SLC7A11 resulting in a decrease in GSH
generation [9]. Furthermore, erastin can trigger ferroptosis
through multiple system Xc−-independent pathways [27].
One such mechanism is to induce opening of the voltage-
dependent anion channel (VDAC) on the outer mitochon-
drial membrane. This leads to increased mitochondrial
metabolism and excessive mitochondrial-associated ROS.
In addition, erastin can upregulate acyl-CoA synthetase
long chain family member 4 (ACSL4) to regulate lipid
metabolism. Of note, erastin-induced ROS overproduction
can indirectly activate p53 and promote ferroptosis as well
[27]. However, some GSH-independent molecules, like
ferroptosis suppressor protein 1 (FSP1), are also found to
mediate tumor ferroptosis, although the underlying mecha-
nisms remain elusive [28].

Beyond intracellular mediators, ferroptosis within the
TIME is principally induced by CD8+ T lymphocytes. In
2019, Wang et al. [14] first reported that CD8+ T cells
can induce tumor ferroptosis as a result of immunother-
apy by producing IFN-γ. These investigators found that
IFN-γ released from CD8+ T cells can activate the janus
kinase/signal transducer and activator of transcription 1
(JAK/STAT1) pathway. Once recognized by the receptor
of IFN-γ (IFN-γR), IFN-γ will trigger JAK-mediated phos-
phorylation of IFN-γR, which subsequently leads to the re-
cruitment of STAT1 and formation of STAT1 homodimers
[29,30]. Then the STAT1 homodimers are translocated
into the nucleus where they could bind to the transcrip-
tion region of SLC7A11 and suppressing system Xc−. Fur-
thermore, IFN-γ can lead to high mitochondrial oxidative
status and increased mitochondrial-derived ROS, imply-
ing that IFN-γ may disrupt the mitochondrial metabolism
[31]. This is probably caused by IFN-γ-induced nitro-
oxidative stress via STAT1/NF-κB/NOS2 axis, though the
exact mechanism still remains unknown [31,32]. Apart
from this mechanism, Liao’s team discovered that IFNγ
stimulates ACSL4 to promote incorporation of arachidonic
acid into into C16 and C18 acyl chain-containing phospho-
lipids (Fig. 2). These modified phospholipids are more sen-
sitive to oxidative damage and thereby enhance tumor sen-
sitivity to ferroptosis [33,34]. Additionally, IFNγ can also
enhance the tumor-eliminating potential of CD8+ T cells in
a wide range of malignancies, suggesting a positive feed-
back between CD8+ T cells and IFNγ [35]. Nonetheless, it
requires further investigation whether CD8+ T cells could
trigger ferroptosis in a IFN-γ-independent manner. Regard-
less, the anti-tumor efficiency of CD8+ T cells can be re-
markably affected by the TIME, which makes it difficult
to trigger ferroptosis in certain immunologically silent and
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Fig. 1. Cellular events in the regulation and process of ferroptosis. Dysfunction within iron metabolism leads to excessive release
of free intracellular Fe2+ ions, which subsequently produce ROS through the Fenton reaction or via enzyme activation. These strong
oxidative radicals can, in turn, oxidize PUFAs into lipoperoxides (i.e., PUFA-OOHs) resulting in the destruction of the lipid bilayer
composition of cellular biomembranes. The system Xc−-GSH-GPX4 axis is the core intracelluar antioxidant system against ferroptosis,
in which the system Xc− (composed of xCT encoded by SLC7A11 and 4F2 encoded by SLC3A2) imports cystine and exports glutamate
at the ratio of 1:1. Once transferred into the cell, cystine is rapidly reduced into cysteine and is used to produce GSH for the GPX4-
dependent reductive reaction, thereby scavenging free ROS and PUFA-OOHs. Of note, Erastin can block the uptake of cystine by
disabling the function of SLC7A11. Cys, cysteine; Cys2, cystine; Glu, glutamate; GPX4, glutathione peroxidase 4; GSH, glutathione;
PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; SLC40A1, solute carrier family 40 member 1; SLC3A2, solute carrier
family 3 member 2; SLC7A11, solute carrier family 7 member 11.

lymphocyte-depleted cancer subtypes [36]. Therefore, it is
of great importance to determine the hub orchestrators that
regulate the immunological competence of the TIME as a
means to develop novel strategies to enhance the therapeu-
tic effects of ferroptosis-dependent cancer treatment in clin-
ical practice.

3. Detailed Mechanisms of
Macrophage-Ferroptosis Crosstalk

To date, TAMs are well recognized as a predominant
regulator within the TIME and whose functional status is
prone to remodeling by exogenous signals due to the wide
distribution of diverse signal receptors on their cell sur-
face [37]. It has been well-established that macrophages
are able to trigger ferroptosis via multiple signaling path-
ways, and, in turn, ferroptotic products can regulate the

polarization of TAMs [6,38,39]. These findings imply an
underlying functional existence of macrophage-ferroptosis
crosstalk which may influence the efficacy of tumor im-
munotherapy. Therefore, it is necessary to fully delineate
macrophage-ferroptosis crosstalk to provide critical insight
into factors that can influence the therapeutic effects of im-
munotherapy.

3.1 Dual Effects of Macrophage on Ferroptosis
The two distinct TAM differentiation states govern

TAM effects on tumor ferroptosis. As a major anti-tumor
effector within the TIME, M1 macrophages can promote
tumor ferroptosis by enhancing tumor vulnerability to ox-
idative damage and activating a tumor-eradicating immune
response within the TIME [40]. Recent studies have sug-
gested the existence of at least three different mediators
in this process, including CD8+ cytotoxic T lymphocytes
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Fig. 2. Dual effects of TAMs on ferroptosis. M1-like TAMs can trigger tumor ferroptosis through at least three distinct mechanisms:
activation of CD8+ CTLs, release of proinflammatory cytokines, and providing peroxides to accelerate Fenton reactions. The former
two pathways downregulate the expression of SLC3A2 and SLC7A11 at the transcriptional level, resulting in downregulation of an
endogenous anti-ferroptosis system. The latter mechanism contributes to excessive ROS production which, in turn, promotes tumor
ferroptosis. M2-like TAMs can indirectly suppress ferroptosis either by inactivating CTLs or by upregulating the expression of oncogenic
PD-L1. JAK, Janus kinase; STAT1, signal transducer and activator of transcription 1; Smad2, small mothers against decapentaplegic
homolog 2; Smad3, small mothers against decapentaplegic homolog 3; Smad4, small mothers against decapentaplegic homolog 4; RAS,
rat sarcoma viral oncogene homolog; SLC3A2, Solute Carrier Family 3 Member 2; SLC7A11, Solute Carrier Family 7 Member 11;
PD-L1, programmed cell death 1 ligand 1.

(CTLs), various cytokines, and peroxides resulting from the
respiratory burst (Fig. 2) [41,42].

The CTL-mediated pathway is considered to have
a major contribution to initiating tumor ferroptosis. It
is well established that M1 macrophages utilize cell
contact-dependent signaling to activate CTLs [43], which
plays a crucial role in triggering ferroptosis during tu-
mor immunotherapy. As discussed above, interferon
γ (IFNγ) from activated CD8+ CTLs can downregulate
the expression of SLC3A2 and SLC7A11, the two sub-
units of glutamate-cysteine anti-transporter, though the
JAK/STAT1 signaling pathway [14]. This disables the
GSH-dependent antioxidant system and eventually results
in excessive lipid peroxidation and activation of ferropto-
sis [9]. Notably, IFN-γ-activated ACSL4 could promote
the incorporation of arachidonic acid into tumor phospho-
lipids, enhancing the susceptibility of phospholipid to ox-

idative damage [33,34]. M1 macrophages can also directly
release peroxides, such as H2O2, during the respiratory
burst [44,45], thus accelerating the intracellular Fenton re-
action and consequential creation excessive reactive oxy-
gen species (ROS) which also promote tumor ferroptosis
[46]. Since Fe2+ is an indispensable catalyst for the Fenton
reaction, small amounts of peroxide fromM1 macrophages
appears to make no impact on the activation of tumor fer-
roptosis without coordinating excessive iron accumulation.

Although bioinformatic analyses have identified a sig-
nificant negative correlation between tumor ferroptosis and
M2 infiltration [39,47–52], there are few studies explor-
ing the direct effects of M2 macrophages on tumor ferrop-
tosis. Instead, M2 macrophages are more likely to play
an indirect role in regulating ferroptosis by disrupting the
ferroptosis-promoting function of CTLs [53]. It is well
documented that M2 macrophages can prevent the recruit-
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ment and activation of CTLs via the inhibition of numer-
ous chemokines such as C-X-C motif chemokine ligand 9
(CXCL9), C-X-C motif chemokine ligand 10 (CXCL10)
and C-X-C motif chemokine ligand 12 (CXCL12) [54,55].
Together, these molecules disable major mechanisms that
promote tumor ferroptosis during immunotherapy. In ad-
dition, M2 macrophages can enhance tumor-derived resis-
tance to ferroptosis by upregulating the expression of PD-
L1 on neoplastic cells [56,57], which can engage with PD-1
to initiate programmed cell death in CTLs [53,58]. Fur-
thermore, Xu and colleagues, using a combination of in sil-
ico and in vitro experimental approaches, recently identi-
fied a novel molecular matrix remodeling-associated pro-
tein termed MXRA8, which can decrease the level of intra-
cellular ferrous iron (Fe2+) and lipid peroxidation, mean-
while elevating the infiltration of M2 macrophages in the
glioma cells [59].

It is noteworthy that some M2-associated cytokines
may serve to promote ferroptosis. For example, TGF-β1
can activate NADPH Oxidase 4 (NOX4) which can trans-
port electrons from NADPH to O2 and thus generate ROS
[60]. Moreover, it was reported that TGF-β1 can acti-
vate Smad3 to downregulated the expression of SLC7A11
[61]. Although there was no evidence that Smad3 could
specifically bind to SLC7A11, presumably Smad3 may af-
fect the stability of xCT via ubiquitination and degrada-
tion. Another M2-associated cytokine, IL-6, can disrupt
iron homeostasis by stimulating the generation of hepcidin
via JAK/STAT3 pathway, which can bind to the transmem-
brane iron exporter resulting in iron acculmulation [62,63].
In addition, IL-6 can activate extracellular regulated pro-
tein kinase (ERK) signaling to repress the expression of
xCT [64], which was further supported by the observa-
tion of increased phosphorylated ERK in IL-6-treated HeLa
cells [65]. Nonetheless, how the phosphorylated ERK me-
diates the expression of xCT requires further exploration
[64]. Such anti-tumor effects of M2-like TAMs broadens
our perspective of the functions exerted by M2-like TAMs
in tumor progression, andmay inspire novel ideas for TAM-
targeting therapy in the future [66]. Despite all these devel-
opments, the profile of M2-derived effects on CTLs still re-
mains largely unexplored, and calls for further investigation
into the details of crosstalk signaling are clearly warranted.

In summary, M1 macrophages function in the activa-
tion of tumor ferroptosis through both direct and indirect
mechanisms, whereas M2 macrophages principally act by
opposing inactivation of CTLs in TIME. Despite the need
for more information to fully appreciate the intricacies of
these signaling pathways, there is little doubt that TAMs
play a vital role in regulating tumor ferroptosis. This sup-
ports the emerging view of TAMs are valuable targets to
increase neoplastic sensitivity to ferroptosis-inducing im-
munotherapy.

3.2 Association between Ferroptosis-Related Genes and
TAMs

While macrophages are involved in the regula-
tion of ferroptosis, ferroptosis is also capable of affect-
ing macrophage polarization through several mechanisms.
Current advances in bioinformatics have highlighted signif-
icant correlations between ferroptosis-related genes (FRGs)
and TAM infiltration in several malignancies. Such ad-
vanceswere possible with the assistance of newly-emerging
algorithms such as Cibersort, TIMER, quanTIseq and xCell
(Fig. 3). Generally speaking, ferroptosis-promoting FRGs
are more likely to serve in an anti-oncogenic capacity, while
ferroptosis-blocking FRGs are predisposed to contribute to
tumor progression, and thereby may be linked to TAM in-
filtration. For example, ferroptosis-promoting FRGs such
as HIF1A, SLC7A11, GPX4, FTH1 are highly associated
with poor prognosis as well as TAM infiltration in ovar-
ian cancer. Other ferroptosis-promoting FRGs, including
FGFR3, CDGSH and CISD1, which are directly involved
in either iron storage or inhibiting iron uptake, are also as-
sociated with an increased proportion of tumor-infiltrating
macrophages in bladder cancer [39,67–71]. The ferroptosis
driver SOCS1 and suppressor FTH1 correlate with M1 and
M2 infiltration, respectively, in head and neck squamous
cell carcinoma (HNSCC) [39] which implies the probabil-
ity of ferroptosis-mediated macrophage polarization within
the TIME. Moreover, some ferroptosis-associated lncR-
NAs are also implicated in TAM infiltration in hepatocellu-
lar carcinoma [68]. In conclusion, many differentially ex-
pressed FRGs and lncRNAs are highly associated with tu-
mor prognosis, clearly indicating the potential involvement
of ferroptosis-related signals in tumor progression [39,69–
71]. However, further studies are required to identify the
specific effect of FRGs on TAM polarization.

3.3 Dual Effects of Ferroptotic Products on TAM
Polarization

Recent studies of damage-associated molecular pat-
terns (DAMPs) have revealed one of the feasible means to
mediate ferroptosis-related TAM polarization at the molec-
ular level. By definition, DAMPs are an array of molecu-
lar products from damaged tissues, whose counterparts, the
pattern recognition receptors (PRRs), are located on the sur-
face of macrophages. PRRs function to interpret the mes-
sages delivered by DAMPs and produce responses to tissue
damage [72]. Interestingly, different DAMPs released by
tumor cells undergoing ferroptosis may convey completely
distinct messages, either as an “eat-me” signal or as a “save-
me” signal, depending on the specific type of DAMPs and
neoplastic subtypes (Fig. 4).

The “eat-me” DAMPs allow navigated immune clear-
ance of ferroptotic cells and promote anti-tumor immu-
nity. For example, 1-steaoryl-2-15-HpETE-sn-glycero-3-
phosphatidylethanolamine (SAPE-OOH), one of the oxy-
genated lipid products released from cells undergoing fer-
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Fig. 3. Ferroptosis-related genes (FRGs) in different tumors are associated with TAM infiltration. Integrative analysis with bioin-
formatic tools highlight comprehensive differentially expressed FRGs that are associated with TAM infiltration in different cancers. OC,
ovarian cancer; CCRCC, clear cell renal cell carcinoma; HNSCC, head and neck squamous cell carcinoma; BC, bladder cancer; CC,
colorectal cancer.

roptosis, serves as an “eat-me” DAMP by interacting with
toll-like receptor 2 (TLR2) on macrophages. Within the
context of ovarian cancer, this event has been shown to
promote M1 activation [73]. Another important “eat-me”
DAMP is high mobility group box 1 (HMGB1), whose re-
lease relies on ferroptosis-related autophagy [72]. HMGB1
can not only promote M1 polarization but also can up-
regulate advanced glycosylation end product-specific re-
ceptor (AGER)-mediated TNF-α secretion in TAMs in
bladder cancer [74]. Curiously, additional studies under-
score the indispensable role for autophagy-related genes
like autophagy-related 5 (ATG5) and autophagy-related 7
(ATG7) in this process, indicating a significant role for au-
tophagy in regulating HMGB1 [74].

Alternatively, the “save-me” DAMPs initiate a repair
process in neoplastic tissues, resulting in immunosuppres-
sionwithin the TIME and enhanced resistance to ferroptosis
[8]. It was reported that ferroptotic cells in pancreatic ductal
adenocarcinoma (PDAC) can package an oncogenic form
of the protein KRASG12D into exosomes, which are subse-
quently retrieved by AGERs on TAMs and activate STAT3-

mediated M2 polarization in the TIME [38]. Interestingly,
autophagy is also required for the formation of these exo-
somes. Another DAMP produced by oxidative DNA dam-
age termed 8-hydroxy-2’-deoxyguanosine (8-OHG), was
found to activate transmembrane protein (TMEM173) and
a downstream DNA sensor pathway. In turn, these events
promote TAM infiltration thus favoring PDAC tumorige-
nesis. In contrast, 4-hydroxynonenal (4-HNE), another
lipid peroxidation product similarly emitted by ferroptotic
cells, fails to trigger the same events as 8-OHG [75]. This
presents a paradox as the TMEM173/STING DNA-sensing
pathway generally activates a strong type I interferon re-
sponse resulting in M1 activation and tumor eradication
[76,77]. However, since the TMEM173/STING pathway
can directly increase the genetic instability of neoplastic
cells and as this, in turn, can increase the frequency of ge-
netic variation and create tumor subgroups with stronger
adaptability [78], the long-term effects of 8-OHG may re-
sult in enhanced tumor resistance to ferroptosis.

Notably, ferroptosis is often accompanied by au-
tophagy, which plays an essential role in regulating fer-
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Fig. 4. Relationship between selective autophagy, tumor ferroptosis, ferroptotic DAMPs, and the TAMpolarization. The NCOA4-
mediated ferritinophagy and the RAB7A-mediated lysophagy of lipid droplets could provide labile Fe2+ ions and excessive lipids for
ferroptosis, while selective autophagy of other components may involve in DAMP production. Once released from ferroptotic cancer
cells, the “eat-me” DAMPs (e.g., SAPE-OOH and HMGB1) are recognized by corresponding PRRs (TLR2 and HMGB1) and favor M1
polarization. The “save-me” DAMPs (e.g., KRASG12D and 8-OHG) can mediate M2 polarization in a similar fashion in PDAC. SAPE-
OOH, 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine; TLR2, toll-like receptor 2; HMGB1, high mobility group box 1;
KRAS, Kirsten rat sarcoma vital oncogene; AGER, advanced glycosylation end-product specific receptor; TMEM173, transmembrane
protein; 8-OHG, 8-hydroxy-2′-deoxyguanosine; NCOA4, nuclear receptor coactivator 4; RAB7A, Ras-related protein rab-7a.
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roptosis (Fig. 4). Some ferroptosis-associated DAMPs,
including HGMB1 and 8-OHG, originate from the au-
tophagy of specific cellular components, whereas knockout
of autophagy-dependent genes, such as ATG5 and ATG7,
will inhibit the release of DAMPs [38,79]. Further, the se-
lective autophagy of ferritin and lipid droplets will release
dramatic amounts of labile iron and lipoperoxides, thus pro-
viding a significant pool of molecules to trigger ferroptosis.
For example, ferritin can specifically bind to the C-terminus
of nuclear receptor coactivator 4 (NCOA4) which will sub-
sequently be trafficked into autophagosomes [80]. Simi-
larly, ras-related protein Rab-7a (RAB7A) can contribute to
lipid phagocytosis by recruiting lipid droplets for delivery
into lysosomes [81]. Of note, some classical autophagy-
associated molecules can inactivate the core components
of the intracellular antioxidant system in an autophagy-
independent manner. Specifically, AMPK-mediated Beclin
1 (BECN1) phosphorylation can trigger the formation of the
BECN1/SLC7A11 complex and inhibit the transport activ-
ity of system Xc− in cancer cells [82]. However, whether
and how TAMs can regulate tumor ferroptosis by selec-
tively mediating autophagy remains unclear.

In sum, the core mechanism of ferroptosis-mediated
macrophage polarization can be summarized into three ba-
sic steps: (1) DAMPs are produced by cells undergoing fer-
roptosis; (2) DAMPs are released from cells in a specific
form; (3) DAMPs are ultimately uptaken by macrophages
to induce a series of phenotypic alterations (Fig. 5). On the
basis of these three steps, we can develop a series of thera-
peutic strategies to favor the “eat-me”DAMPs and suppress
the “save-me” DAMPs. It is noteworthy that autophagy is
vital in the production of some DAMPs, and that exosomes
can serve as a crucial DAMP carrier for tumor/macrophage
communication. Thus, targeting autophagy-related signal-
ing molecules, as well as the formation of exosomes, may
also contribute to resetting DAMP release in immunother-
apy.

3.4 Immunogenic Ferroptosis and DAMPs

Ferroptosis is a necrotic process accompanied by ox-
idative damage and autophagic degradation, andwhich gen-
erates a multitude of compounds with strong immunogenic-
ity and adjuvanticity [83]. Accumulating evidence has es-
tablished that ferroptotic tumor cells are abundant sources
of DAMPs such as HMGB1, ATP and HSP90, which could
induce activation and maturation of the antigen-presenting
cells (APCs) and lead to secondary secretion of proinflam-
matory cytokines [84]. Conversely, inhibiting either the re-
lease of DAMPs or blocking binding to PRRs will result
in dysregulation of anti-tumor CTLs within the TIME [85].
Thus, these findings suggest that ferroptosis exhibits hall-
marks of immunogenic cell death (ICD), and plays a crucial
role in activating cancer-killing immune responses within
the TIME.

Ferroptosis exerts immunostimulatory effects mainly

through DAMP production and major forms of ferroptotic
DAMPs can vary in a time-dependent way. For example,
early in the process of ferroptosis, cells produce higher lev-
els of HMGB1 but at later stages, feroptotic cells tend to
generate more oxidized lipids. These oxidation products
decrease phagocytosis and antigen cross-presentation by
dendritic cells [86]. Such a distinct immunogenic propen-
sity between early and late ferroptotic cells is presumably
because ferroptosis-associated autophagy may be the dom-
inant biological event during the early stages of ferropto-
sis, but at later stages this may be replaced by ROS gen-
eration and lipid peroxidation. Other than different tem-
poral stages of ferroptosis, different cancer cell types ap-
pear to have preferences for a specific type(s) of ferroptotic
DAMPs, such as the PDAC-specific KRASG12D mutant and
SAPE-OOH in ovarian cancer. Although, as we have dis-
cussed above, the reason for such a preference is not yet
understood. Although a few observations point towards a
potential tendency for specific ferroptotic DAMPs to func-
tion coordinately with different types of ferroptotic inducers
(such as the RSL3-induced ATP release) [83], no evidence
has been gathered that indicates a specific association be-
tween inducers of ferroptosis and ferroptotic byproducts.

Immunostimulatory efficiency relies on the specific
type of byproduct produced by cells undergoing ferropto-
sis. Generally speaking, cytokines are more effective than
DAMPs as they function at lower concentrations, generally
at the picogram level [87]. Owing to the similarities be-
tween cytokines and DAMPs, Yatim et al. [88] proposed
that cytokines can be seen as inducible DAMPs (iDAMPs),
and both DAMPs and iDAMPs are required for efficient
immune activation. However, most iDAMPs are stimu-
lated by DAMPs in the later stages of activation; there-
fore, DAMPs play a vital role in early immune activation.
Of the various ferroptotic DAMPs, HMGB1 demonstrates
higher immunostimulation efficiency and enhanced stabil-
ity in the extracellular environment compared with ATP,
which is rapidly depleted after 24 h of ferroptosis induction
[86]. However, Elliott et al. [89] discovered abolishment of
APC recruitment when ATP fails to bind to the purinergic
receptors, suggesting that ATP plays an indispensable role
in activation anti-tumor immunity. Additionally, calretic-
ulin exposure is also required for immunostimulation dur-
ing the triggering of ferroptosis-like cell death exhibited by
TRAMP-C1 cells [90]. Taken together, these findings re-
vealed at least three ferroptotic DAMPs, namely HMGB1,
ATP and calreticulin, are essential in mediating the activa-
tion of anti-tumor immunity.

Finally, different PRR pathways have been character-
ized as having distinct effects. In general, DAMPs have
higher affinity to TLRs [91], which can accept a wide range
of ligands and activate serval classical signaling pathways
to promote innate immunity. Some PRRs can activate
specific pathways to exert distinct effects. For example,
CRT and HSPs can bind to LRP1 and drive immunogenic
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Fig. 5. Three basic steps of DAMP-mediated TAM activation and the factors affecting the immunogenic property of ferroptotic
tumor cells. Ferroptotic cancer cells exert the immunostimulatory effects to activate TAMs by the production, release and TAM recog-
nization of DAMPs (taking cytokines as a special kind of inducible DAMPs). Factors affecting DAMP production could largely impact
the type of ferroptotic DAMPs, and different types of DAMPs and PRRs will activate distinct signaling pathways, thereby determining
the immunogenic property of ferroptosis. Of note, it is still unclear whether the type of ferroptosis inducers could impact DAMP produc-
tion. PD-L1, programmed cell death 1 ligand 1; CTL, Cytotoxic T Lymphocyte; LRP1, low density lipoprotein receptor-related protein
1; FPR1, formyl peptide receptor 1; HMGB1, high mobility group box 1; AGER, advanced glycosylation end-product specific receptor.

phagocytosis [92,93], while ATP can stimulate inflamma-
somes through purinergic receptors [85]. Notably, certain
immunostimulatory DAMPs do not signal through PRRs
but rather bind to other immunostimulatory receptors like
purinergic P2 receptors, low density lipoprotein receptor-
related protein 1 (LRP1), formyl peptide receptor 1 (FPR1),
or AGRE to propagate danger signals [94]. Conversely,
some DAMPs may not always act as danger signals but as
“bystanders”. For example, HSP90 does not exert any im-
munogenic effects despite being commonly exposed on the
surface of cancer cells [95]. Taken together, ferroptosis is
an indispensable part of ICD, and presents a promising ther-

apeutic strategy by targeting ferroptotic DAMPs and rele-
vant immune signaling pathways to enhance immunogenic
effects and improve cancer immunotherapy (Fig. 5).

4. Macrophage-Ferroptosis Crosstalk and
Immunotherapeutic Tolerance

Since the initial approval of anti-cytotoxic T
lymphocyte-associated protein 4 (anti-CTLA-4) for clini-
cal use in melanoma patients in 2011, immune checkpoint
inhibitors (ICIs) have been a predominant strategy for
treating some advanced malignancies [96,97]. One of
the most widely-used ICIs, anti-PD-L1 antibody, blocks

9

https://www.imrpress.com


Fig. 6. Immunotherapeutic tolerance caused by the macrophage-ferroptosis crosstalk. Tumor resistance to anti-PD-L1 antibody
derives from negative feedback signaling between ferroptotic cells andmacrophages. Anti-PD-L1 immunotherapy causes intensive tumor
ferroptosis in the early stage, which in return promotes M2 infiltration and tumorigenic PD-L1 expression via the “save-me” DAMPs.
This may account for the iron-induced resistance of advanced PDAC to immune checkpoint inhibitors.

PD-L1, a CTL inhibitor expressed on neoplastic cells.
This approach exploits the anti-tumor potential inherent
in CTLs and included in this response is promotion of
tumor ferroptosis [98]. ICIs were once considered to be
the ultimate solution to metastatic malignancies until drug
tolerance was reported in clinical cohorts [99,100]. It is
well recognized that many of the intrinsic properties of
tumors including tumor heterogeneity, tumor mutation
burden, and metabolic reprogramming are associated with
the therapeutic effects of ICIs [101]. Just as clearly, TIME
components, especially TAMs, play a crucial role in tumor
resistance to ICIs. Various cytokines from TAMs can both
disable and deplete CD8+ T cells as well as interact with
tumor cells resulting in metabolic reprogramming and even
promote irreversible alterations in the cell’s genetics [102].
Such typical changes include overexpression of oncogenic
ICIs and insensitivity to immunogenic cell death [103,104].
Notably, a predominant population of M2-like TAMs is
observed in tissue samples taken from non-responders to
immunotherapy, indicating that M2-like TAMs may play a
central role in contributing to cancer-acquired resistance to
immunotherapy [105,106]. However, some drug-resistant
tumor cells undergoing epithelial-mesenchymal transition
(EMT) may display heightened sensitivity to ferroptosis
due to GPX4 system downregulation and the activation of
inflammatory pathways that occur during EMT [107].

On basis of these findings, we can propose a hy-

pothesis to account for the cancer-acquired immunother-
apeutic tolerance stemming from macrophage-ferroptosis
crosstalk. Specifically, in the early therapeutic stages, anti-
PD-L1 therapies can alert a significant number of CTLs in a
very short time, and this can activate a potent tumor ferrop-
totic response [14]. This response may lead to a predom-
inant release of “save-me” DAMPs and thereby promote
an overwhelming accumulation of M2 macrophages within
the TIME. These dominant M2 macrophages can, in the
long term, elevate the expression of tumorigenic PD-L1 and
activate feedback signaling to suppress CTL-mediated fer-
roptosis during immunotherapy (Fig. 6) [20,108,109]. Al-
though such negative feedback may slow down as tumor
resistance to ferroptosis gradually develops, it will be ir-
reversible once therapeutic resistance is rooted within the
genome of the cancer cells [104]. This may be an im-
portant cause for iron-induced immunotherapeutic resis-
tance in PDAC [38,110]. However, given the cancer type-
dependent property of DAMP production, whether such a
mechanism of immunologic tolerance exists in other types
of malignancies is still unclear. While further efforts are
clearly required to veraciously test this hypothesis, it is very
likely that the macrophage-ferroptosis axis can provide key
insight into mechanisms that govern the development of
immunotherapeutic resistance. Rebalancing macrophage-
ferroptosis crosstalk to favor M1 macrophage polarization
may provide a necessary conceptual framework to under-
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Table 1. Summary of the four types of ferroptosis-inducing agents.
Type Agent Mechanism Application References

Type I
erastin inhibits systemXc−; targets VDAC,

ACSL4 and p53
preclinical experiments Dixon et al. [9]

sorafenib inhibits system Xc− clinical treatement for several advanced cancers Sun et al. [115]
sulfasalazine inhibits system Xc− clinical treatement for lymphoma, SCLC and PC Gout et al. [116]

Type II
RSL3 inactivates GPX4 preclinical experiments

Sui et al. [111]
Yang et al. [117]

altretamine inactivates GPX4 clinical treatement for OC Woo et al. [112]

Type III
FIN56 depletes GPX4 and CoQ10 preclinical experiments Sun et al. [118]
statins depletes GPX4 and CoQ10 undergoing clinical trials for HCC and AML Viswanathan et al. [119]

Type IV FINO2 increases the level of labile iron; in-
activates GPX4

preclinical experiments Gaschler et al. [113]

Others ferroptocide depletes thioredoxin preclinical experiments Llabani et al. [114]
CC, Hepatocellular carcinoma; AML, Acute myeloid leukemia; SCLC, small-cell lung cancer; OC, ovarian cancer; PC, prostate cancer.

stand, and ultimately overcome, the current therapeutic re-
sistance dilemma.

5. Ferroptosis Inducers in Clinical and
Preclinical Trails

Recently, drugs targeting ferroptosis have shown
promise as effective anti-cancer therapeutics. Currently,
ferroptosis inducers can be divided into 4 types based on
targets and mechanisms (Table 1, Ref. [9,111–119]). Type I
ferroptosis inducers directly bind to subunits of systemXc−
and inhibit cystine import into the cell. The most employed
type I inducer is erastin, which was the first identified as
an inducer of ferroptosis inducer. This small compound
was found in a screen for selective tumor-killing agents for
RAS-mutation bearing cancer cells, but was later found to
mediate a novel form of necrotic RCD termed ferroptosis
[9]. Erastin is a multifunctional ferroptosis inducer that not
only inhibits cystine transport by system Xc−, but can also
target VDAC, ACSL4, and p53 as discussed above [27].
Despite its efficiency in triggering ferroptosis, erastin has
poor water solubility and stability within physiological en-
vironments, rendering it unqualified for clinical application
[27].

Sorafenib is currently the FDA-approved ferroptosis
inducer for treatment of certain advanced cancers [120].
Unlike other type I ferroptosis inducers, sorafenib acts as
a multi-kinase inhibitor which inactivates kinases essential
for system Xc− activity [121]. Compared to erastin, so-
rafenib has favorable potency and appropriate pharmacoki-
netic properties. Another clinically approved agent, termed
sulfasalazine, can inhibit system Xc− in a similar manner
as erastin. However, since the correlation between sul-
fasalazine’s molecule structure and pharmacological effects
still remains unclear, it has yet to be determined whether
sulfasalazine’s major therapeutic effects rely on ferroptosis
induction or occur through other mechanisms [122].

Type II ferroptosis inducers inhibit the cellular antiox-

idant system by directly inactivating GPX4, and drugs of
this type include RSL3 and altretamine. Of these, RSL3
is widely used as a complement to erastin in parallel ex-
perimental designs [111], while altretamine is clinically ap-
proved for treating ovarian cancer [112]. Slightly differ-
ent from type II ferroptosis inducers, the type III ferropto-
sis inducers deplete GPX4 by mediating the degradation of
GPX4 and CoQ10, and drugs of this type are FIN56 and
the statins. It remains unclear whether GPX4 depletion is
caused by statins or via statin-mediated decreases in choles-
terol [6]. Further, type IV ferroptosis inducers can acceler-
ate lipid peroxidation by increasing cellular levels of labile
iron. Of note, FINO2, a type IV ferroptosis inducer, can
synergistically trigger the oxidation of labile iron and in-
activation of GPX4 [113]. Finally, some atypical ferropto-
sis inducers can target the non-classical pathways that trig-
ger ferroptosis. One such drug is ferroptocide which tar-
gets thioredoxin to produce excessive ROS [114]. Taken
together, this evidence indicates that targeting ferroptosis
can provide an innovative and promising therapeutic strat-
egy for malignant tumors as a complement to traditional
chemotherapy.

6. Promoting Tumor Ferroptosis with
M2-to-M1 Reprogramming

TAMs are enriched with diverse types of signaling
receptors that are sensitive to glycolipids and cytokines
present within the TIME, and these provide TAMs with
great metabolic and functional plasticity [123,124]. It is
well undeerstood that macrophage polarization is a re-
versible process with modulators from the local microenvi-
ronment intervening in the reprogramming process at multi-
ple levels [125,126]. To reprogram M2-like TAMs to favor
activation of tumor ferroptosis, a series of bioengineered
nanoparticles was developed to target various pathways.
In brief, currently-developed nanoparticles targeting TAM
repolarization can be divided into three main subtypes:
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Fig. 7. Structural and functional characteristics of TAM repolarization-targeting nanoparticles. Nanocarriers can be specifically
recognized and uptaken by TAMs, where the drug molecules are released to exert their effects. Magnetic nanoparticles can be effi-
ciently delivered via magnetic navigation and can be captured through coat/receptor interaction. Cell membrane-derived nanovesicles
are naturally compatible with the structure of lipid bilayers, and, as such, can be easily uptaken by TAMs.

nanocarriers, magnetic nanoparticles, and cell membrane-
derived bionic nanoparticles (Fig. 7).

Nanocarriers work by targeted drug delivery or tumor-
killing nano-scale effects such as cytotoxic photodynamic
and photothermal effects [127,128]. These drugs are usu-
ally designed with unique geometrical structures which
can be specifically recognized and uptaken by TAMs
rather than by other normal tissues, thereby exhibiting low
general cytotoxicity and high biocompatibility [129,130].
For example, Fu and colleagues [131] developed a novel
nanoparticle using a polymer of poly (styrene-co-maleic
anhydride) (PSMA), and a polymer of poly [2-methoxy-
5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (PPV). This
nanoparticle exhibited high affinity for TAMs and can re-
polarize TAMs into the tumoricidal M1 phenotype, likely
owing to its lipopolysaccharide-like structure. In addi-

tion, by taking advantage of the acidic metabolic feature
of the TIME, Xiao’s team [132] ingeniously designed a mi-
cellar nanodrug with M2-targeting peptides hidden in the
pH-sheddable polyethylene glycol (PEG) corona so that
the repolarizing drugs inside in nanoparticle can only tar-
get macrophages within the TIME. Furthermore, Qian et
al. [133] developed an efficient siRNA and CpG oligonu-
cleotide (ODN) delivery system that facilitates TAM re-
modeling by directly silencing M2 macrophage-related
genes by using a nucleic acid step-wise, self-assembly tech-
nique. Inspiringly, CpG-siRNA-tFNA could effectively
trigger proinflammatory cytokine secretion and activate
NF-kB signal pathway, thus inducing dramatic antitumor
immune responses in 4T1-bearing mice.

Magnetic nanoparticles with functional coatings are
the next-generation version of traditional nanocarriers.
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These nanoplatforms are endowed with integrative func-
tions such as magnetic navigation-based targeted deliv-
ery, nano-scale therapeutic effects, and use in magnetic
resonance imaging [134–136]. Iron oxide-based mag-
netic nanoparticles can be released as free iron ions which
can subsequently directly activate tumor ferroptosis [136,
137]. In 2020, Rao’s group [138] developed novel mag-
netic nanoparticles coated with genetically engineered cell-
membranes (gCM-MNs) which can precisely target the
TIME through the guidance of magnetic navigation. Not
only can gCM-MNs block the CD47-SIRPα pathwaywhich
participates in tumor immune evasion, but they can also
promote TAM reprogramming within the magnetic core.
Furthermore, the engineered cell-membrane shell can pro-
tect the magnetic nanoparticles from immune clearance,
thereby enhancing their systemic circulation and tumor ac-
cumulation.

Composed of phospholipid bilayers, saccharides, and
proteins, the cell membrane is naturally compatible with
the in vivo environment and possesses a remarkable
affinity to homogeneous cells [139]. Therefore, cell
membrane-derived bionic nanoparticles are the current op-
timal nanoplatform for targeted therapy. Of note, someM1-
derived exosome mimics can simultaneously act as both an
M2 repolarizer and ferroptosis inducer, providing an ideal
biomaterial to achieve the perfect combination of these two
anti-cancer properties. The case in point is CCR2(+)-Fe-
M1-nanovesicles (Nvs), which are bioengineered with up-
regulated C-C motif chemokine receptor 2 (CCR2) expres-
sion and are loaded with Fe3O4 nanoparticles [140]. Acting
through the CCR2-CCL2 axis, CCR2(+)-Fe-M1-Nvs can
be recruited to metastatic sites, where Fe3O4 nanoparticles
and M1-related modulators synergistically facilitate tumor
ferroptosis by increasing TAM repolarization. Moreover,
Wei et al. [141] developedmannose-modifiedmacrophage-
derived microparticles that with loaded metformin that can
both reset TAM polarization as well as enhance the per-
formance of anti-PD-L1 therapy. Similarly, a cancer cell
membrane-camouflaged gold nanocage loaded with dox-
orubicin and l-buthionine sulfoximine can synergistically
evoke both effective ferroptosis and TAM repolarization
[142].

Despite their great promise, there are great challenges
to the clinical translation of these nanoparticles. For one,
it is hard to guarantee the specificity of observed therapeu-
tic effects in large-scale clinical cohorts due to individual
variation and tumor heterogeneity. For another, techniques
used to prepare nanomedicines in the lab must be improved
to meet the demands and requirements for large-scale pro-
duction [143]. In this context, more effort is needed in
the field of translational medicine to equip these nanodrugs
with critical properties such as stable therapeutic effects and
higher biosafety.

7. Conclusions and Perspectives
Despite great progress made in exploring indepen-

dent roles of TAMs and ferroptosis in tumor immunother-
apy, there are few studies focused on the integrative effects
of macrophage-ferroptosis crosstalk in tumor immunother-
apy. In fact, TAMs and ferroptosis are coordinately regu-
lated, and thus co-regulate response to tumor immunother-
apy. In this review, we profiled the molecular landscape
of macrophage-ferroptosis crosstalk in the TIME with a
focus on the different roles of M1 and M2-like TAMs.
We also discussed the significant roles for macrophage-
ferroptosis crosstalk in immunotherapeutic tolerance, and
summarized the latest advances in treatment strategies that
seek to leverage ferroptosis and TAM repolarization. Al-
though these combined strategies have demonstrated dra-
matic anti-tumor effect, related clinical studies are still
in their infancy and the detailed mechanisms governing
macrophage-ferroptosis crosstalk still remain largely unex-
plained. Thus, further efforts are needed to better under-
stand the signaling network that links TAMs and ferrop-
tosis, and to promote the clinical translation of treatment
strategies that seek to leverage macrophage-ferroptosis sig-
naling for clinical benefit. We believe that synergistic
strategies that target macrophage-ferroptosis crosstalk will
dramatically improve the clinical application of tumor im-
munotherapy in the future.
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