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Abstract

Background: Premature coronary artery disease (PCAD) has a poor prognosis and a high mortality and disability rate. Accurate pre-
diction of the risk of PCAD is very important for the prevention and early diagnosis of this disease. Machine learning (ML) has been
proven a reliable method used for disease diagnosis and for building risk prediction models based on complex factors. The aim of the
present study was to develop an accurate prediction model of PCAD risk that allows early intervention. Methods: We performed retro-
spective analysis of single nucleotide polymorphisms (SNPs) and traditional cardiovascular risk factors (TCRFs) for 131 PCAD patients
and 187 controls. The data was used to construct classifiers for the prediction of PCAD risk with the machine learning (ML) algorithms
LogisticRegression (LRC), RandomForestClassifier (RFC) and GradientBoostingClassifier (GBC) in scikit-learn. Three quarters of the
participants were randomly grouped into a training dataset and the rest into a test dataset. The performance of classifiers was evaluated
using area under the receiver operating characteristic curve (AUC), sensitivity and concordance index. R packages were used to construct
nomograms. Results: Three optimized feature combinations (FCs) were identified: RS-DT-FC1 (rs2259816, rs1378577, rs10757274,
rs4961, smoking, hyperlipidemia, glucose, triglycerides), RS-DT-FC2 (rs1378577, rs10757274, smoking, diabetes, hyperlipidemia, glu-
cose, triglycerides) and RS-DT-FC3 (rs1169313, rs5082, rs9340799, rs10757274, rs1152002, smoking, hyperlipidemia, high-density
lipoprotein cholesterol). These were able to build the classifiers with an AUC >0.90 and sensitivity >0.90. The nomograms built with
RS-DT-FC1, RS-DT-FC2 and RS-DT-FC3 had a concordance index of 0.94, 0.94 and 0.90, respectively, when validated with the test
dataset, and 0.79, 0.82 and 0.79 when validated with the training dataset. Manual prediction of the test data with the three nomograms
resulted in an AUC of 0.89, 0.92 and 0.83, respectively, and a sensitivity of 0.92, 0.96 and 0.86, respectively. Conclusions: The selection
of suitable features determines the performance of ML models. RS-DT-FC2 may be a suitable FC for building a high-performance pre-
diction model of PCAD with good sensitivity and accuracy. The nomograms allow practical scoring and interpretation of each predictor
and may be useful for clinicians in determining the risk of PCAD.

Keywords: premature coronary artery disease; machine learning; single nucleotide polymorphisms; traditional cardiovascular risk fac-
tors; nomogram; rs10757274

1. Introduction
Coronary artery disease (CAD) is a complex disease

with multiple genetic and environmental determinants [1].
Although some progress has been made in the prevention
and treatment of atherosclerosis, CAD remains a leading
cause of death and disability worldwide, with the incidence
increasing in many regions. There has also been a marked
increase in the incidence of premature coronary artery dis-
ease (PCAD) [2,3]. Many genetic factors associated with
the risk of CAD including genetic variations in single gene
such as LDLR, APOB, PCSK9, LRP6, MEF2A and APOE
have been discovered by pedigree or Mendelian random-

ization research [4–7]. However, most of the monogenic
variations with a strong CAD risk association are quite rare
and account for only a small part of the heritability of CAD.
Polygenic common genetic variations (CGVs) with minor
effects are thought to contribute most of the heritability of
CAD [8]. Genome-wide association studies (GWAS) have
identified a large number of CGVs related to CAD, most of
which are single nucleotide polymorphisms (SNPs). About
40% of these CGVs can be attributed to known CAD
risk pathways involving low density lipoprotein cholesterol
(LDL-c), triglycerides (TG), inflammation and hyperten-
sion. However, the remainder cannot be clearly linked to
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the known molecular pathways involved in CAD risk [4,9].
Numerous cohort studies and case-control studies have at-
tempted to confirm or to identify new CAD risk variants.
To date, hundreds of candidate CGVs have been reported
for CAD [10], but using this genetic information to develop
effective prevention and control strategies remains a major
challenge for clinicians or researchers.

The recent emergence of a genetic risk score (GRS)
for CAD is an important step in the use of genetic infor-
mation to identify populations at risk for this disease, while
related studies have further established the polygenic nature
of CAD [8,11,12]. CAD events were found to occur signifi-
cantly more often in individuals with a high GRS, but could
be reduced or delayed if these individuals adopted a favor-
able lifestyle [13]. GRSmodels can improve CAD risk pre-
diction beyond that provided by traditional cardiovascular
risk factors (TCRFs), thus allowing individuals who will
benefit the most from lifestyle improvements or drug pre-
vention to be identified with greater accuracy [5,11]. Indi-
viduals who are aware of being at high genetic risk for CAD
are better able to achieve active control of their TCRFs,
such as LDL-c, compared to those who were only aware
of their TCRF phenotype [14]. PCAD is associated with
high recurrence and mortality rates, as well as poor long-
term prognosis [15,16]. Early warning of PCAD risk is very
important for high-risk groups in that it allows timely appli-
cation of prevention and treatment strategies.

Machine learning (ML) is a branch of artificial intel-
ligence that focuses on building application programs, us-
ing systematic algorithm and statistical processing steps to
train models with a large amount of data. This allows pat-
terns and features to be identified, which in turn allows
predictions to be made with new data [17]. The aim of
this study was to combine SNPs and TCRFs information in
order to develop a high-performance prediction model for
PCAD. Forty-eight SNP loci associated with 43 candidate
genes previously reported to be associated with CAD or
with carotid intima-media thickness (IMT) were analyzed
in southern HanChinese. Several SNPs combinedwith sev-
eral TCRFswere used to construct a high-performance clas-
sifier (HPC) using logistic regression classifier (LRC), ran-
dom forest classifier (RFC) and gradient boosting classifier
(GBC). These HPCs could accurately distinguish PCAD in-
dividuals from controls. Three feature combinations (FCs)
used to establish the HPC were further used to build nomo-
grams. These could directly classify the PCADs and con-
trols with high accuracy and may therefore have clinical
value.

2. Materials and Methods
2.1 Participants

All participants in this study were southern Han Chi-
nese from the Guangdong province of China. Whole blood
samples and the electronic medical records of each partici-
pant were collected between 2008 to 2012 and studied retro-

spectively. Inclusion criteria for the PCAD group were: (1)
males aged<55 years and females aged<65 years [18]; (2)
coronary angiography showing that at least one vessel in the
left coronary artery trunk, left anterior descending branch
(including main diagonal branch), circumflex branch (in-
cluding main marginal branch) or right coronary artery (in-
cluding posterior descending branch or left ventricular pos-
terior collateral branch) had ≥50% degree of stenosis. The
inclusion criteria for the control group were: males aged
≥55 years and females aged≥65 years; no CAD diagnosed
by coronary angiography, no symptoms such as chest tight-
ness or chest pain, and no myocardial ischemia revealed
by echocardiography. Exclusion criteria: participants with
malignant tumors, multiple organ failure, or severe immune
diseases were excluded from the study.

A total of 140 patients with PCAD and 195 controls
were selected as the subjects in this study. After the ex-
clusion of individuals whose SNP genotype information or
clinical data could not be obtained, 131 patients with PCAD
and 187 controls were included in the final analysis.

2.2 Collection of Samples and Clinical Data
Two milliliters of whole blood was collected from

each individual in an ethylenediamine tetra-acetic acid dis-
odium (EDTA) anticoagulant tube. The following infor-
mation was collected from the electronic medical record of
each participant: sex, age, smoking history, hypertension,
diabetes, hyperlipidemia, as well as biochemical test results
for high-density lipoprotein cholesterol (HDL-c), LDL-c,
glucose (GLU), TG and total cholesterol (CHOL).

2.3 Extraction of Genomic DNA
Peripheral blood samples were used to isolate the ge-

nomic DNA with the E-Z 96TM Blood DNA Kit (OMEGA,
USA) according to the manufacturer’s instructions. The in-
tegrity of genomic DNA was confirmed by 1% agarose gel
electrophoresis and the concentration determined using a
Spectrophotometer ND 1000. Each DNA sample was di-
luted to a concentration of 5 ng/µL and stored at –20 °C
until use.

2.4 Selection of Candidate SNPs
Candidate SNPs were selected from SNPs previously

reported in the literature to be associated with CAD or with
carotid intima-media thickness. Those with a frequency of
<0.05 were excluded, meaning that 48 bi-allelic SNPs were
included in this study. Detailed information on these can-
didate SNPs is shown in Supplementary Table 1.

2.5 Genotyping of SNPs
SNPs were genotyped using multiplex polymerase

chain reaction (PCR) and single base primer extension
in a 48-PLEX GENOMELAB SNPSTREAM® system.
Briefly: 96 unique primers (shown in Supplementary Ta-
ble 2) having no interaction with each other were designed
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using the Beckman Coulter’s Autoprimer multiplex primer
design system for 48-plex PCR. The primers were automat-
ically divided into 6 categories according to the allele type:
C/A, T/A, A/G, C/G, T/C and T/G. The 5-prime end of each
was linked with a tag sequence that was complementary to
the corresponding tag sequence in the SNPware tag array
board. The primers and enzyme mix for SNPstream anal-
ysis were provided by Beckman Coulter’s Biomek® FX.
SNPstream analysis was performed on the Beckman Coul-
ter’s Biomek® FX automatic laboratory workstation, re-
sulting in genotype information for each SNP.

2.6 Associations between SNPs and PCAD

Associations between SNP genotype or allelotype and
PCAD were analyzed with the PLINK-model program
package. This performs four tests (1df dominant gene ac-
tion, 1df recessive gene action, 2df genotypic, and Cochran-
Armitage trend) and outputs the combined results. Correla-
tions were evaluated with the Chi-square test and an asymp-
totic p-value was produced. A significant correlation was
considered as p < 0.05. Interactions between SNPs were
analyzed using the GMDRmodel, and multi-site genotypes
were divided into high risk and low risk groups. Cross-
validation and overlapping tests (permutation) were used to
estimate correlations between these gene combinations and
diseases. The best model was judged as having an accuracy
of>50% and a consistent rate of cross-validation of≥5/10
[19,20].

2.7 Statistical Analysis

General statistical analysis was performed using the
statistical package R (https://www.r-project.org/; version
x64 4.0.2). Classification variables were represented by n
(%), and the significance of differences between groupswas
tested using Pearson’s Chi-squared test with Yates’ conti-
nuity correction. Continuous variables with a normal dis-
tribution and homogeneous variance were represented as
the mean ± SD, with the Student’s t test used to evaluate
the significance of differences between groups. Continu-
ous variables that did not conform to the normal distribution
or homogeneous variance were represented as the median
(interquartile range), and the Wilcoxon rank sum test with
continuity correction was used to test the significance of
differences between these groups. Statistical significance
was considered as p < 0.05.

2.8 Feature Selection and Data Pre-Processing were
Performed in Python Environment (Version 3.7)

SNPs and TCRFs with a missing value ratio of greater
than 20% were excluded. Feature combination (FC) was
used to indicate all independent variables (termed “feature”
in ML) that were combined to build a ML model. FCs
were determined in 3 ways. (1) The FCs included SNPs
or TCRFs that showed a significant difference (sd-SNPs
and sd-TCRFs, respectively) between the PCAD and con-

trol groups, as well as the sd-SNP plus the sd-TCRFs. (2)
The features in the FCs were selected from the sd-SNPs and
the sd-TCRFs, or from the SNPs with a differential trend
(dt-SNPs) (p < 0.2) in genetic model analysis and the sd-
TCRFs, using the least absolute shrinkage and selection op-
erator (LASSO) regression method. (3) The FC consisted
of one to eight factors that were randomly selected from the
sd-SNPs and the sd-TCRFs, or from the dt-SNPs and the sd-
TCRFs, by using the iterator ‘combinations’ in the Python
module ‘itertools’.

Next, for each FC a new data sheet was generated from
the original data wherein the variables in the new data were
the factors included in the FC and the response variable
(group). In each new data sheet, the rows with missing
values were removed. The remained rows were then di-
vided into a training dataset and a test dataset using Scikit-
learn (https://scikit-learn.org/stable/; v.0.23.1) (function
‘train_test_split’ with test_size = 0.25, random_state = 0).
The training dataset was used to construct the classifier,
while the test dataset was used to evaluate performance.
‘StandardScaler’ function in the Scikit-learn module was
used to standardize the feature values of continuous vari-
ables before constructing the logistic regression classifier.

2.9 Construction of Classifiers with ML Algorithms

Scikit-learn is a Python module that integrates a wide
range of state-of-the-art ML algorithms for medium-scale
supervised and unsupervised problems [21]. RFC, LRC
and GBC are used to build classifiers for predicting dis-
ease risk, progression, prognosis, and so on. RFC in the
‘sklearn.ensemble’ module is one of the averaging algo-
rithms in ensemble methods and is a perturb-and-combine
technique specifically designed for trees. In practice, vari-
ance reduction due to the introduction of randomness in the
classifier construction is often significant, hence yielding a
better model overall [22]. The probabilities that describe
possible outcomes of a single trial are modeled using a lo-
gistic function known as LRC in the ‘sklearn.linear_model’.
GBC is a boosting method and builds an additive model in
a forward stage-wise fashion that allows for the optimiza-
tion of arbitrary differentiable loss functions. Base estima-
tors in GBC are built sequentially, with several weak mod-
els having to be combined to produce a powerful ensem-
ble that reduces the bias of the combined estimator [23].
The classifiers constructed with the ML algorithm of RFC,
LRC or GBC are referred to in this study as the RFC model
(RFCM), LRC model (LRCM) and GBC model (GBCM),
respectively.

The classifiers for each FC in this study were built
using RFC, LRC and GBC in the Scikit-learn module
and with the training dataset. Five-fold cross for model
validation was performed and the hyper-parameters
for model tuning are shown in Supplementary Ta-
ble 3. The predictive performance of the classifiers
was evaluated with the test dataset by computing the
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Fig. 1. The flow chart of this study. PCAD, premature coronary artery disease; CVD, cardiovascular disease; AUC, the area under the
receiver operating characteristic curve; C-index, consistency index; SNP, single nucleotide polymorphism; TCRF, traditional cardiovas-
cular risk factor; LRCM, logistic regression classifier model; RFCM, random forest classifier model; GBCM, gradient boosting classifier
model.

area under the receiver operating characteristic curve
(AUC), sensitivity, specificity and average precision
(AP) for the prediction of positive cases (using the
‘sklearn.metrics.auc’, ‘sklearn.metrics.recall_score’ and
‘sklearn.metrics.plot_precision_recall_curve’ functions,
respectively). The final models and FCs were determined
according to the performance of the models, with higher
AUC and sensitivity corresponding to better performance.

2.10 Construction and Validation of Nomograms

Nomograms representing a regression model (lrm) fit-
ted with ‘rms’ were drawn with the nomogrammodel in the
‘rms’ R package, which can be used manually to obtain pre-
dicted values. The nomogram has a reference line for read-
ing scoring points (default range 0–100). Once the reader
manually totals the points, the predicted values can be read
at the bottom. Bias-corrected (overfitting-corrected) esti-
mates of predicted vs. observed values were performed
with the ‘calibrate’ model in the ‘rms’ R package by using
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bootstrapping (B = 1000) or cross-validation. Validation of
‘lrm’ models was performed with the ‘validate’ function in
the ‘rms’ R package using the training dataset followed by
the test dataset. The performance of the nomogram model
for predicting outcomes was evaluated by calculating the
concordance index (C-index). The nomogramFomula R
package was used to calculate the total nomogram points
for each sample, and optimal cutpoints for each nomogram
model were computed with the OptimalCutpoints R pack-
age (methods = “Youden”). Decision curve analysis for
each ‘lrm’ model was performed with the ‘rmda’ R pack-
age.

2.11 The Flow Chart of this Study
Fig. 1 shows the design of the study and the process

of data acquisition, data processing, model construction and
verification.

3. Results
3.1 Comparison of TCRFs between the PCAD and Control
Groups

The aim of this study was not to identify PCAD-
related SNPs that were independent of TCRFs, but rather
to constructMLmodels with predictors that included TCRF
and SNP information and to assess whether these had supe-
rior performance compared to ML models built with TCRF
predictors only. Hence, the present study was different to
usual case-control studies in that the TCRFs were intention-
ally not matched between the two groups.

There was no significant difference in the gender ra-
tio between the PCAD and control groups. The median age
of the PCAD and control groups was 48 and 68 years, re-
spectively, with the control group being older due to the ad-
mission criteria. The incidence of smoking, hypertension,
diabetes, and hyperlipidemia were all significantly higher
in the PCAD group than in the control group. Plasma lev-
els of GLU and TG in the PCAD group were significantly
higher than in the control group, whereas HDL-c was sig-
nificantly lower. There was no significant difference in the
plasma levels of CHOL and LDL-c between the two groups
(Table 1).

3.2 Correlation of SNPs with PCAD
Of the 48 SNP loci examined, three SNPs (rs3791398,

rs1256049 and rs2071406) failed genotyping and were ex-
cluded from further analysis. rs10757274, rs10757278
and rs2383206 each showed a significant correlation with
PCAD using the recessive and genotype genetic model test
(p < 0.05). rs7291467 was significantly correlated with
PCAD using the ‘trend’, ‘allelic’ and ‘dominant’ genetic
model test (p < 0.05). Comparison between groups of the
variables that were selected to construct models was shown
in Supplementary Table 4.

3.3 Multifactor Dimensionality Reduction (MDR) Analysis

MDR analysis revealed the best single factor model
that correlated with PCAD was rs10757274. The cross-
validation consistency of this model was 7/10, and the test
balance accuracy was 0.533. The best two-factor model
that correlated with PCAD was comprised of rs10757274
and rs3850641, with a cross-validation consistency of 5/10,
a test balance accuracy of 0.564 and a sign test p-value
of 0.055. The best three-factor model was comprised of
rs2048327, rs16147 and rs1801708, and showed the highest
training balance accuracy (0.680), the lowest detection bal-
ance accuracy (0.477), and the lowest consistency of cross-
validation (3/10) (Table 2). Therefore, the two-factor model
obtained by MDR analysis was considered to be the best
model. Fig. 2 shows the interaction between the two-locus
genotypes. The combinations of rs10757274 (GA) with
rs3850641 (AA), and of rs10757274 (GG) with rs3850641
(GA) were associated with an increased risk of PCAD.

Fig. 2. PCAD risk associated interaction between the SNPs.
In each cell, the left bar indicates the positive score, the right bar
represents the negative score. When the absolute value of the posi-
tive score is greater than that of the negative score, increased risk is
considered in the cell, otherwise, decreased risk in the cell. Risk-
increased cells are indicated by dark gray, risk-decreased cells by
light gray, and empty cells by white. (A) The best single factor
model for correlation between SNPs and PCAD. (B) The best two-
factor model for correlation between SNPs and PCAD.
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Table 1. Comparison of traditional cardiovascular risk factors between the PCAD and control groups.
PCAD (n = 131) Control (n = 187) p value 95% CIa

Male, n (%) 88 (67.18%) 125 (66.84%) 0.9998 -
Age, median (1st Qu., 3rd Qu.)b 52 (48.0, 54.5) 68 (61.0, 74.0) <0.0001 -Inf - (–14.00)d

Smoking, n (%) 48 (36.64%) 11 (5.88%) <0.0001 -
Hypertension, n (%) 41 (31.30%) 35 (18.72%) 0.014 -
Diabetes, n (%) 19 (14.50%) 2 (1.07%) <0.0001 -
Hyperlipemia, n (%) 36 (27.48%) 14 (7.47%) <0.0001 -
GLU (mmol/L), median (1st Qu., 3rd Qu.) 5.70 (5.02, 6.96) 4.83 (4.50, 5.44) <0.0001 0.570–1.100
TG (mmol/L), median (1st Qu., 3rd Qu.) 1.42 (1.07, 2.05) 1.11 (0.87, 1.47) <0.0001 0.180–0.440
CHOL (mmol/L), mean (SD)c 4.63 (1.19) 4.86 (0.80) 0.072 –0.488–0.021
HDL-c (mmol/L), median (1st Qu., 3rd Qu.) 1.00 (0.86, 1.28) 1.25 (1.03, 1.49) <0.0001 –0.280–(–0.130)
LDL-c (mmol/L), mean (SD) 2.92 (1.41) 2.99 (0.71) 0.64 –0.354–0.219
Notes: a, 95% CI, 95% confidence interval; b, QI, Quartile interval; c, SD, standard deviation; d, one-sided test.
PCAD, premature coronary artery disease; GLU, Glucose; TG, triglyceride; CHOL, total cholesterol; HDL-c, high
density lipoprotein cholesterol; LDL-c, low density lipoprotein cholesterol.

Table 2. Multifactor dimensionality reduction analysis for exploring the PCAD-associated interactions between SNPs.
SNPs Training balanced accuracy Testing balanced accuracy Sign Test (p) Cross validation consistency

rs10757274 0.5793 0.5327 0.1719 7/10
rs10757274, rs3850641 0.6281 0.5644 0.0547 5/10
rs2048327, rs16147, rs1801708 0.6801 0.4770 0.9453 3/10

3.4 Classifiers Established using the Significantly
Different Factors

The AUCs of the LRCM, RFCM and GBCM con-
structed with four sd-SNPs (rs10757274, rs10757278,
rs2383206 and rs7291467) were 0.61, 0.63 and 0.62, re-
spectively (Fig. 3A). The AUCs of the LRCM, RFCM and
GBCM built with 7 sd-TCRFs (smoking, hypertension, hy-
perlipemia, diabetes, Glu, TG and HDL-c) were 0.82, 0.85
and 0.84, respectively (Fig. 3B). The AUCs of the LRCM,
RFCM and GBCM constructed with four sd-SNPs plus 7
sd-TCRFs were 0.88, 0.85 and 0.86, respectively (Fig. 3C).
The performance of the classifiers constructed with the sd-
SNPs plus the sd-TCRFs was slightly improved.

3.5 Classifiers Constructed with Features Identified by the
LASSO Regression Method

An optimized FC with 7 features (LASSO-7F-FC:
rs10757274, rs10757278, smoking, diabetes, hyperlipemia,
GLU and HDL-c) was selected by using the LASSO regres-
sion model from the sd-SNPs and sd-TCRFs (Fig. 4A). The
AUCs of the LRCM, RFCM and GBCM constructed with
the LASSO-7F-FC were 0.89, 0.84 and 0.84, respectively
(Fig. 4B). The APs of the classifiers for the prediction of
PCAD were 0.86, 0.78 and 0.78, respectively (Fig. 4C),
while the sensitivity of the classifiers was 0.71. An op-
timized FC with 8 features (LASSO-8F-FC: rs10757278,
rs4537545, smoking, hypertension, diabetes, hyperlipemia,
GLU and HDL-c) was selected using the LASSO regres-
sion method from 18 dt-SNPs (including sd-SNPs) and sd-
TCRFs (Fig. 4D). The AUCs of the LRCM, RFCM and
GBCM constructed with the LASSO-8F-FC were 0.84,

0.86 and 0.83, respectively (Fig. 4E). The APs of the classi-
fiers for the prediction of PCAD were 0.78, 0.77 and 0.76,
respectively (Fig. 4F), while the sensitivity of the classifiers
was 0.64. Although the classifiers built with LASSO-7F-
FC and with LASSO-8F-FC showed high accuracy, their
low sensitivity makes them less useful for identifying indi-
viduals at high risk for PCAD.

3.6 Classifiers Constructed by FCs Selected Randomly by
Iterator

LASSO regression analysis showed that increasing
the number of features beyond 8 did not improve the per-
formance of the model. Therefore, only FCs containing
one to eight factors were randomly selected using an itera-
tor and subsequently used to establish classifiers. Among
the FCs composed of features randomly selected from
the sd-SNPs and sd-TCRFs (RS-SD-FCs), we found that
RS-SD-FC1 (rs2383206, smoking, diabetes, hyperlipemia,
TG, HDL-c), RS-SD-FC2 (rs10757278, diabetes, hyper-
lipemia, GLU, TG, HDL-c) and RS-SD-FC3 (rs10757274,
rs7291467, smoking, diabetes, hyperlipemia, GLU, TG)
could be used to construct classifiers with high performance
(Supplementary Fig. 1A,D,G). Indeed, classifiers built
with RS-SD-FC1, RS-SD-FC2 and RS-SD-FC3 showed
better performance than those constructed by LASSO-8F-
FC and LASSO-7F-FC. RS-SD-FC1, RS-SD-FC2 and RS-
SD-FC3 were each comprised of one or two sd-SNPs and
several sd-TCRFs. Classifiers built only with sd-SNPs
(Supplementary Fig. 1B,E,H) or only with sd-TCRFs
(Supplementary Fig. 1C,F,I) showed markedly lower per-
formance (Supplementary Fig. 1).
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Fig. 3. The receiver operating characteristic curve (ROC) of the classifiers constructed using the factors significantly associated
with PCAD. LogisticRegression, RandomForestClassifier, and GradientBoostingClassifier are three different machine learning algo-
rithms. GLU, Glucose; TG, triglycerides; HDL, high density lipoprotein cholesterol. (A) The ROC of the classifiers constructed with the
sd-SNPs. (B) The ROC of the classifiers constructed with the sd-TCRFs. (C) The ROC of the classifiers constructed with the sd-SNPs
plus the sd-TCRFs.

Fig. 4. Feature selection using the least absolute shrinkage and selection operator (LASSO) regression method and the perfor-
mance assessment for the classifiers established with the features selected with LASSO. The λ is a parameter capable of tuning to
control the overall strength of the penalty in the LASSO regression process. Identification of the optimal LASSO model was performed
via 3-fold cross-validation based on the value of lambda that gives minimum mean cross-validated error. The AUC was plotted verse
log(λ). Red dots represent average AUC for each model with a given λ, and the dotted vertical lines represent the optimal values of λ.
The features in the optimal LASSO models were assessed by building classifiers using machine learning algorithm. (A) Variation of the
AUC of the LASSO models fitted with the sd-SNPs plus the sd-TCRFs as tuning the parameter λ. (B) The receiver operating charac-
teristic curve (ROC) of the classifiers constructed with the features selected by LASSO in (A). (C) The precision recall curve (PRC) of
the classifiers constructed with the features selected by LASSO in (A). (D) Variation of the AUC of the LASSO models fitted with the
dt-SNPs plus the sd-TCRFs as tuning the parameter λ. (E) The ROC of the classifiers constructed with the features selected by LASSO
in (D). (F) The PRC of the classifiers constructed with the features selected by LASSO in (D).

Among the FCs containing features that were ran-
domly selected from dt-SNPs and sd-TCRFs (RS-DT-
FCs), we found that RS-DT-FC1 (rs2259816, rs1378577,

rs10757274, rs4961, smoking, hyperlipemia, GLU, TG),
RS-DT-FC2 (rs1378577, rs10757274, smoking, diabetes,
hyperlipemia, GLU, TG) and RS-DT-FC3 (rs1169313,
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rs5082, rs9340799, rs10757274, rs1152002, smoking, hy-
perlipemia, HDL-c) could be used to build classifiers with
high performance (Fig. 5A,C,E). All of the AUCs for the
classifiers built with RS-DT-FC1, RS-DT-FC2 and RS-
DT-FC3 using LRC, RFC or GBC were higher than 0.90
(Fig. 5A,C,E). Classifiers constructed with RS-DT-FC1 or
RS-DT-FC2 had anAP of>0.90 for the prediction of PCAD
(Fig. 5B,D), while the classifier built with RS-DT-FC3 had
a lower AP (Fig. 5F).

Classifiers constructed with RS-DT-FC1, RS-DT-FC2
and RS-DT-FC3 had better performance compared to all of
the other classifiers mentioned above. Therefore, RS-DT-
FC1, RS-DT-FC2, and RS-DT-FC3were considered the op-
timal FCs and were used to construct the nomograms de-
scribed below.

3.7 Decision Curve Analysis
Decision curve analysis helps clinical decision makers

to balance the advantages and disadvantages of intervention
and thus determine the best intervention point. It can also be
used to evaluate whether a given model has practical value
[24]. The decision curves for the logistic regression mod-
els constructed with RS-DT-FC1, RS-DT-FC2 and RS-DT-
FC3 were distant from the baseline for a wide range of risk
thresholds (Supplementary Fig. 2), suggesting that all of
these models have high net benefits and potential practical
value.

3.8 Nomograms
Nomogram is a graphic tool used for complex cal-

culations. It can transform the logistic regression model
into a simple and intuitive scoring system that has more
practice value for clinicians [25]. Nomograms built us-
ing RS-DT-FC1, RS-DT-FC2 and RS-DT-FC3 (RS-DT-
FC1-nom, RS-DT-FC2-nom and RS-DT-FC3-nom, respec-
tively) show in graphic form the effect of each factor on
the risk of PCAD (Fig. 6A,C,E). The calibration curves
for the nomogrammodels showed good agreement between
the predictions and actual observations (Fig. 6B,D,F). RS-
DT-FC1-nom, RS-DT-FC2-nom and RS-DT-FC3-nom also
showed good discrimination, with C-indexes of 0.79 (95%
CI: 0.73, 0.86), 0.82 (95% CI: 0.76, 0.88) and 0.79 (95%
CI: 0.72, 0.86) respectively for validation with the training
dataset, and 0.94 (95% CI: 0.88, 1.0), 0.94 (95% CI: 0.85,
1.0) and 0.90 (95% CI: 0.82, 0.98) respectively for valida-
tion with the test dataset.

The optimal cutpoints for RS-DT-FC1-nom, RS-DT-
FC2-nom and RS-DT-FC3-nom were computed using the
R package ‘OptimalCutpoints’. These were 101.29, 27.74
and 186.01, respectively. Nomogram scores for each test
sample were calculated using RS-DT-FC1-nom, RS-DT-
FC2-nom and RS-DT-FC3-nom. If the total nomogram
score for a sample was greater than or equal to the cut-
point for that nomogram model, it was predicted to be
from a PCAD patient, otherwise it was predicted to be

from a control. Samples in the test dataset were classi-
fied by comparing the total points, as calculated by refer-
ence to the nomograms, with the cutpoints. The results ob-
tained using RS-DT-FC1-nom, RS-DT-FC2-nom and RS-
DT-FC3-nom showed a prediction sensitivity of 0.92, 0.96
and 0.86, and an AUC of 0.89, 0.93 and 0.83, respectively
(Supplementary Fig. 3).

4. Discussion
This study found that the combination of genetic infor-

mation and TCRFs, usingmachine learning algorithm could
build HPCs, which effectively distinguished the PCAD pa-
tients from the controls. We developed three practical
nomograms and calculated their optimal cutpoints. This
could be compared directly with the total nomogram score
of individual samples, allowing prediction of whether the
samplewas from a PCADpatient. Hence, these nomograms
have potential application for the prediction of PCAD risk.

Interestingly, classifiers built using the most signif-
icant differential factors between the PCAD and control
groups did not show better performance. Only a combina-
tion of specific factors gave an effective HPC, and chang-
ing the feature combination markedly altered the perfor-
mance of the classifier. No obvious epistasis amongst the
SNPs was revealed by MDR analysis. Therefore, some
of the factors and especially some of the SNPs may func-
tion inversely to contribute to the PCAD phenotype, they
could also play a similar but not an additive effect, which
should be avoided to be used together when developing pre-
diction models. This highlights the importance of FC se-
lection in optimizing the performance of ML model. By
comparing several methods for the selection of FCs, we
found that optimal FCs could be identified using iterative
method to randomly select from asmany factors as possible.
Next, models were built with each FC using three ML algo-
rithms and their performance was evaluated. This not only
showed the advantages of ML for the prediction of PCAD,
but also for the selection of features. A recent study us-
ingML reported that serum sphingolipids were cholesterol-
independent biomarkers of CAD, again highlighting the ad-
vantages of ML for the discovery of novel CAD markers
[26].

It is not difficult to understand why although a con-
siderable number of common genetic variation loci are in-
cluded in the early prediction models which is not much
better in risk assessment of CAD than that with TCRFs
[27]. In the present study, the performance of classifiers
constructed only with TCRFs was much better than with
SNPs alone. This was mainly attributed to the fact that
TCRFs truly represent the disease state or the detrimental
substances. Phenotypic correlations are often accompanied
by genetic correlations [7]. CAD is a complex trait deter-
mined by a large number of common genetic variations,
many of which are strongly correlated with known TCRFs
[7]. Indeed, TCRFs such as hyperlipidemia and diabetes
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Fig. 5. Comparison of the performance of the classifiers built with three FCs composed of the factors that were randomly selected
from the dt-SNPs and sd-TCRFs. (A) The ROC of the classifiers constructed with RS-DT-FC1 (rs2259816, rs1378577, rs10757274,
rs4961, Smoking, Hyperlipemia, GLU, TG). (B) The precision recall curve (PRC) of the classifiers constructed with the RS-DT-FC1.
(C) The ROC of the classifiers constructed with RS-DT-FC2 (rs1378577, rs10757274, Smoking, Diabetes, Hyperlipemia, GLU, TG).
(D) The PRC of the classifiers constructed with RS-DT-FC2. (E) The ROC of the classifiers constructed with RS-DT-FC3 (rs1169313,
rs5082, rs9340799, rs10757274, rs1152002, Smoking, Hyperlipemia, HDL). (F) The PRC of the classifiers constructed with RS-DT-FC3.

are determined by multiple genetic variations [28]. Abnor-
mality in any of the TCRFs is likely to be a comprehen-
sive manifestation of many genetic variations and is there-
fore more strongly correlated with the risk of CAD than
most single genetic variations. Genetic variations eventu-
ally cause disease by disrupting the normal cellular balance,
damaging cells or through the accumulation of harmful sub-
stances via their genetic products or via their effect on the
expression of other gene products. Individuals with a high

GRS are more likely to have vulnerable cells and to accu-
mulate harmful substances that cause disease. However,
this is not inevitable if they maintain a good lifestyle and
remain healthy [13], indicating that the combined effect of
various factors determines the final disease phenotype.

In previous studies, rs2259816, rs1378577, rs4961
and rs10757274 were reported to be independent of the
TCRFs [29–31]. In the current study, these variants were
included in the FCs (RS-DT-FC1 and RS-DT-FC2) capable
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Fig. 6. Nomogram and calibration curve. To use the nomograms in clinical practice, find the points corresponding to the variable
value on the variable axis, draw a line vertically up to the points axis, read and record the score corresponding to each variable value,
and sum the scores obtained. Then, find the points corresponding to the total score on the total points axis and draw a line straight
down to the probability axis, and read the probability of PCAD. The arrow indicates the optimal cutpoints on the total points axis. If the
individual’s total score is greater than the optimal cutpoints, it will be predicted high PCAD risk and marked as PCAD. On the category
variable axis, ‘1’ indicates that the event represented by the variable name has occurred, and ‘0’ indicates that the event represented by
the variable name has not occurred. The feature (variable) names are showed on the left of each nomogram. (A), (C) and (E) represent
the nomograms constructed with RS-DT-FC1, RS-DT-FC2 and RS-DT-FC3, respectively. (B), (D) and (F) showed the calibration curve
of the nomograms corresponding to (A), (C) and (E), respectively.
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of building the HPCs and nomograms, suggesting that using
the factors independent of each other to build a prediction
model may achieve the best result. rs10757274 is located in
the chromosome (Chr) 9p21 and was reported to be closely
linked to PCAD [5]. Previous studies have consistently
shown that the contribution of Chr 9p21 to the risk of CAD
is independent of known risk factors such as blood lipids,
blood pressure, diabetes, age and sex [32]. rs10757274 was
again found to be significantly associated with PCAD in the
present study and was included in most of the FCs used to
build HPCs. Together, the evidence strongly suggests that
rs10757274 is a good genetic marker for predicting the risk
of PCAD. This marker has also been associated with vascu-
lar disease phenotypes such as carotid atherosclerosis [33],
stroke [34,35], peripheral artery disease [36], and abdomi-
nal aortic aneurysm [37]. However, the underlying mecha-
nism for the involvement of rs10757274 in cardiovascular
disease is still not clear [32]. Recent studies have shown
that rs10757274 risk allele can cause metabolic dysregula-
tion of the lysophospholipid/autotaxin axis and increase the
risk of CAD, which may be helpful for the identification
of novel CAD risk markers that are independent of TCRFs
[38].

Many predictive models for cardiovascular diseases
have been proposed. The number of predictors contained
in these models (2–80) and their predictive performance
(AUC: 0.61–1.0) varies greatly (systemically reviewed in
ref. [39]). Among the established models, the most widely
validated and continuously improved is the Framingham
score. This has been applied to predict outcomes for fa-
tal or non-fatal CVD [39,40]. Although the Framingham
score is commonly used in the clinic, its predictive accu-
racy still needs improvement [40]. Other models includ-
ing the GRS, HellenicSCORE, QRISK Hippisley-Cox, and
PROCAM Assman (systemically reviewed in ref. [39]) are
rarely used, mainly because they have poor predictive per-
formance, or have too many predictors that are difficult
to obtain, or have poor interpretation of the model [39].
For example, GRS models are based on the genotyping of
dozens of genetic loci, but do not show high accuracy for the
prediction of cardiovascular events [12,13,41]. The Hel-
lenicSCORE has an acceptable predictive accuracy (85%),
but its specificity (20%) was very poor [42]. In the current
study, we constructed three ML model that showed high
accuracy and sensitivity for the classification of PCAD pa-
tients and controls. These were constructed using only 2
to 5 SNPs and several TCRFs. The small number of fea-
tures required by this model means that the necessary in-
formation is readily obtained for most individuals and thus
amenable to further prospective validation and clinical ap-
plication. The nomograms provide an explicit explanation
for each predictor, thus allowing the clinician to read the
result and make a decision according to the optimal cut-
point. High sensitivity is a requirement for PCAD predic-
tion models. The models constructed with RS-DT-FC1 and

RS-DT-FC2 had higher accuracy and sensitivity than the
model built with RS-DT-FC3 and were therefore recom-
mended for future work.

Limitations
Despite the high-performance classifiers and nomo-

grams, this study has some limitations. Firstly, the data
was from a single center and the sample size was rela-
tively small. Secondly, this was a retrospective rather than
a prospective study. Although the models could accurately
classify individuals into PCAD and control groups, the pre-
dictive power of the models requires further validation in
large prospective studies. This study also did not include
other factors identified over the past 10 years and that may
be linked to PCAD. Finally, the sample population was de-
rived from a single race, thus limiting the universality of the
models. Ideally, these models should be tested with larger
samples and with different populations.

5. Conclusions
The selection of features required to build aMLmodel

is likely to be the key determinant of the performance of
that model. Addition of SNP information to TCRF infor-
mation can improve the performance of ML models for
the prediction of PCAD. A combination of features such as
rs2259816, rs1378577, rs4961, rs10757274, hyperlipemia,
smoking, GLU and TG or of rs1378577, rs10757274,
smoking, diabetes, hyperlipemia, GLU and TG can be used
to build high-performance prediction models for PCAD.
However, further prospective research is required prior to
application in practice. The nomograms presented in this
study have widespread potential value and may help clini-
cians to score and interpret the results directly according to
each eigenvalue. rs10757274 may be an important genetic
marker associated with PCAD risk.
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