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Abstract

Background: In biomedical and epidemiological studies, gene-environment (G-E) interactions play an important role in the etiology and
progression of many complex diseases. In ultra-high-dimensional survival genomic data, two common approaches (marginal and joint
models) are proposed to determine important interaction biomarkers. Most existing methods for detecting G-E interactions (marginal Cox
model and marginal accelerated failure time model) are limited by a lack of robustness to contamination/outliers in response outcome and
prediction biomarkers. In particular, right-censored survival outcomes and ultra-high-dimensional feature space make relevant feature
screening even more challenging. Methods: In this paper, we utilize the non-parametric Kendall’s partial correlation method to obtain
pure correlation to determine the importance of G-E interactions concerning clinical survival data under a marginal modeling framework.
Results: A series of simulated scenarios are conducted to compare the performance of our proposed method (Kendall’s partial correlation)
with some commonly used methods (marginal Cox’s model, marginal accelerated failure time model, and censoring quantile partial
correlation approach). In real data applications, we utilize Kendall’s partial correlation method to identify G-E interactions related to the
clinical survival results of patients with esophageal, pancreatic, and lung carcinomas using The Cancer Genome Atlas clinical survival
genetic data, and further establish survival prediction models. Conclusions: Overall, both simulation with medium censoring level
and real data studies show that our method performs well and outperforms existing methods in the selection, estimation, and prediction
accuracy of main and interacting biomarkers. These applications reveal the advantages of the non-parametric Kendall’s partial correlation
approach over alternative semi-parametric marginal modeling methods. We also identified the cancer-related G-E interactions biomarkers
and reported the corresponding coefficients with p-values.

Keywords: gene-environment interaction; Kendall’s correlation; marginal modeling; partial correlation; survival prediction; TCGA

1. Introduction In the framework of marginal analysis, for each gene,
to fit a model consisting of the single gene itself, consider
a few E factors, and its interaction with E factors. The
conceptual marginal model is “Outcome ~ Es + G + G *
(Es)”, where the response outcome variable can be con-
tinuous phenotypes, categorical disease status or patients’
survival time, Es represents a set of environmental factors
include environmental exposures as well as demographic,

clinical and socioeconomic variables, and G*(Es) repre-

In order to understand, model, and treat complex dis-
eases such as diabetes, cancer and so on, gene-environment
(G-E) interaction has been shown to be a significant role
beyond the main genetic (G) or environmental (E) effects
[1,2]. G-E interaction has important implications for the
etiology and progression of many complex diseases. For
example, Batchelor, ef al. [3] demonstrated that the interac-

tion between gene 7P53 and environmental factor age to af-
fected the prognosis of glioblastoma. To this end, we would
like to identify significant interaction biomarkers that are
associated with clinical survival outcomes, which is a cru-
cial task for establishing survival prediction models.

According to Zhou, et al. [4], several statistical meth-
ods have been developed to identify significant G-E inter-
actions biomarkers. In high-dimensional genetic data, two
general approaches are proposed to identify important in-
teracting biomarkers and estimate their corresponding ef-
fects. One performs a marginal analysis, considering only
one gene at a time; the other performs a joint analysis and
considers all genes in a single model.

sents the interaction between the G factor and all E fac-
tors. The significant G-E interaction can be identified based
on the correspondence of the marginal p-value. Since the
marginal model is low-dimensional, the main advantage of
the marginal model is its computational stability and con-
ceptual simplicity; accordingly, marginal programs are still
popular in the fields of bioinformatics and biomedicine. In
particular, marginal popular models include the accelerated
failure time (AFT) model and Cox’s model.

However, a common limitation of traditional marginal
analysis methods is their lack of robustness. In actual ge-
netic studies, Xu, et al. [5] noted that long-tailed distribu-
tions and contamination in prognostic response outcomes
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Fig. 1. The scatter plot and long-tailed distribution of clinical survival time data for the TCGA ESCA, PAAD, and LUAD.

and predictor biomarkers are not uncommon. In addition,
human input errors can also lead to long-tailed distributions
and contamination. The long-tailed distribution of the sur-
vival time means the survival data has a higher rate of cen-
soring. Due to the censoring rate being higher, the propor-
tion of missing survival time is higher. Therefore, the long-
tailed distribution of the survival time can lead to the poor
performance of the statistical methods.

In Fig. 1, we analyze The Cancer Genome Atlas
(TCGA) clinical survival data for esophageal carcinoma
(ESCA), pancreatic adenocarcinoma (PAAD) and head and
lung adenocarcinoma (LUAD) to show the long-tailed dis-
tribution phenomenon. In the top three panels of Fig. 1, the
dashed line is the sample mean of logarithm of survival time
(months) minus three times standard deviations of survival

time (months), which is the 99.73% confidence interval,
but we observe that there are still some cancer patients out-
side the 99.73% confidence interval. Looking at the bottom
three panels, the dashed line is the density of fitted normal
distribution for logarithm of survival time (months) and the
solid line is the empirical density function for logarithm of
survival time (months), so it can be seen that the empirical
distribution of the actual survival data of cancer patients is
different from the fitted normal distribution. And, we also
performed an Anderson-Darling test for normality, with the
test statistic focusing on a good fit with more emphasis on
the tails. The corresponding p-values for ESCA, PAAD,
and LUAD are 6e-04, 3e-03, and 3.5¢-05, respectively. We
have strong evidence to claim that the logarithm of survival
times for TCGA data does not follow a normal distribution.

&% IMR Press


https://www.imrpress.com

From these two viewpoints, it can be inferred that the
survival data is contaminated. Moreover, censored survival
outcomes make the relevant feature screening difficult, so
several robust methods are proposed to overcome the prob-
lem based on the marginal analysis framework [5-7].

Xu, et al. [5] developed the censored quantile par-
tial correlation approach (CQPCorr) to identify G-E inter-
actions. The CQPCorr approach is built on the quantile re-
gression technique, utilizes weights to accommodate cen-
soring, and adopts a partial correlation to obtain pure corre-
lation for response and interaction biomarker by controlling
the main genetic and environmental effects. Shi, ef al. [6]
developed a robust rank-based estimation approach for the
identification of G-E interaction, which is less sensitive to
model specification, but computation-demanding.

Furthermore, Wang and Chen [8] proposed an inverse
probability-of-censoring weighted (IPCW) Kendall’s tau
statistic to measure the association of a right-censored sur-
vival trait with biomarkers, and the associated Kendall’s
partial correlation reflect the relationship of the survival
trait with second-order variables containing quadratic and
two-way interactions conditional on the main effects. In
simulation studies and real data applications, they demon-
strate that the newly proposed method can provide sub-
stantially higher accuracy of gene-gene interaction selec-
tion hence leading to more accurate survival prediction than
existing methods, as the Kendall’s tau measure is not influ-
enced by outliers, which is a major concern in gene expres-
sion data where contaminated data are common. Further-
more, as it is a model-free measure, it can work for a wide
class of survival models while being easy and fast to cal-
culate big data with ultrahigh-dimensional features space.
Consequently, we extended the application of the non-
parametric [IPCW Kendall’s partial correlation approach to
the G-E interaction content.

In this article, we perform a series of simulated scenar-
ios to compare marginal AFT, marginal Cox and CQPCorr
methods with our proposed IPCW Kendall’s partial corre-
lation method concering the accuracy of G-E interaction
selection under a marginal modeling framework, while in
the application of real data, we also aim at selecting several
important G-E interactions associated with clinical survival
outcomes of patients with ESCA, PAAD and LUAD using
TCGA clinical survival genetic data [9].

2. Materials and Methods
2.1 The Marginal Models Review

In this section, we first introduce the common and
robust marginal modeling methods for G-E interactions.
Consider a study with N independent subjects. For a
subject i, suppose that there are q environmental/clinical

variables e; = (e;1, €2, ..., €iq) and p genes x; =

1xq>
’

(Ti1, Tig, -+, Tip) 1xp" Assume the survival outcome 7} is

related to the environmental/clinical variables e;, gene ex-
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pression covariates x;, and their component-wise interac-
tions

/

w;,. = (wit, . . ~-awiqp)1qu =

-y Wilp, W41, -

!
(eilxih <oy €1 T4p, €52L41, - - - »eiqxip)lxqp .

Since the survival time may be right-censored and in-
completely observed. Define observe survival time V =
min(T, C), Cis censoring time, and weuse § = I(T < C)
is the indicator of whether the survival time of subject is
censored.

In a marginal Cox’s regression framework for G-E se-
lection, the hazard function at time ¢ for subject i ’s survival
given all environmental factors, one gene factor k and their
corresponding interactions in a single model is modeled as

A(t] es, @i, wig) = Xo(t) exp (€0 + T3 B + Wi v.p,) i =
L...,N:k=1,....,p.

where Ao (f) is a non-negative deterministic base-
. . p
line hazard function, w;x, = (einTik,-..,CiqgTik) 1xq

and (a,fy,7v.,) are corresponding  parameters
for these considering biomarkers. We define
0 - (ala--~7O‘q7ﬂla---36p77117"'7’qu)1><(q+p+qp)

as full parameters of the full model.

In a marginal accelerated failure time model frame-
work for G-E selection, the log of survival time for subject
i ’s given all environmental factors, one gene factor k and
their corresponding interactions in a single model is mod-
eled as

log (T;) = ao + eja + Bk + Wi v, +e,i=1,...,N;
k=1,...,p.

Where o is an intercept term and e is the error term.
Note that the significant G-E interaction can be selected
based on the correspondence of the marginal p-value.

Although inverse probability-of-censoring weighted
(IPCW) Kendall’s partial correlation [8] was originally de-
veloped for G-G interaction selection, this method can nat-
urally be applied to the G-E interaction selection issue, as
the concept is the same. Kendall [10] defined the partial
rank correlation in the context of Kendall’s correlation, and
showed that Pearson’s partial correlation formula still ap-
plies to Kendall’s correlation. For example, for four random
variables K1; K2; K3; K4, Kendall’s partial correlation is
calculated by the following formula

T12.3 — T14.3724.3

T12.34 = )
2 2
\/1 — Ti43 \/1 — To4.3

gives the Kendall’s partial correlation between K1 and K2
conditional on K3 and K4.

Therefore, the Kendall’s partial correlation of the sur-
vival trait with the G-E interaction terms can be obtained as
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follows,

TT,E]'GK~E_7’ - TT,G)C-E]’ TE]’G)C,G)C'E]

b
2 2
\/1 —T1,.Gy-E; \/1 ~ TE;Gy.,Gi E,

L k=1,....p

TT,E;Gy-E;,Gr, =
j=1,..

To accommodate right-censored survival time data,
we utilize the IPCW Kendall’s tau statistic proposed by
Wang and Chen [8] and consider the resulting partial corre-
lation statistics:

%T7E1Gk-EJ - %T,Gk'Ej TEij,Gk'EJ

9
~2 2
\/1 ~—TT,Gy-E; \/1 ~ TE;Gy,Gr-E;

yGk=1,...,p

TT,E;Gy-E;,Gy, =
i=1,...
The full computation details of

(%T,Eij-'Ej7%T7Gk'Ej7TEij,Gk'Ej) can be seen as
follows,

~ TTEGk_‘T'TETEGk ]
TT,E;Gy,-B; I =155
\/1* T,E; \/1 EG,c
k=1,...,p;
T,Gy ~ TT,E; TGy Ej
- k ko . .
r,Gy-E yi=1,...,q

\/1’ T,B; \/1’TGkE
k=1,...,p;

TE;Gy,G, ~ TEjGy,E; TGy, Ej

\/1— TE GkE) \/17 TGk

k=1,..., D.

TE;Gy. G- Ej = ,J:Lu-,q;

Note that the IPCW Kendall’s tau statistic [8] can be
computed as follows

%T.z:2( é\’ )7127@ S:(V)I(VZ>VJ Z; >Z)—2( év )71

05
Vi>V;,Z: < Zj
ZK]SC(V) ( J )

The CQPCorr method [5] consists of three steps,
where quantile regression is used to accommodate long-
tailed or contaminated responses, partial correlation is used
to determine important interactions biomarkers, and the
main G and E effects are appropriately controlled. The full
detail can be seen in Xu, ef al. [5]. Note that there is a tun-
ing parameter in the CQPCorr approach, which is a quantile
used in the first and third steps, with quantile 7 = 0.5 be-
ing the most popular choice [5]. The CQPCorr approach
can be performed by “QPCorr.matrix” R function of the R
package “GElnter” (https://cran.r-project.org/web/package
s/GElnter/) [11].

2.2 Evaluation Performance in the Simulation Study

To evaluate the performance of G-E interaction se-
lection, we considered seven measures, such as accuracy
rate (ACC), true positive rate (TPR), precision rate (PRE),
true negative rate (TNR), false positive rate (FPR), false

negative rate (FNR) and minimum of model size (MMS),
where the definitions of the first six metrics are displayed
in Supplementary Table 1 and MMS is the minimum of
model size of a selected set of associated interaction vari-
ables, including all potential valid interaction biomarkers.
MMS measures the complexity of the selected model and
reflects the accuracy of the screening process; larger ACC,
TPR, PRE, TNR/smaller FPR, FNR, MMS values indicate
higher accuracy of feature screening. We adopt the hard
thresholding rule proposed by Fan and Lv [12] to select the
candidate set of G-E interactions; that is, after ranking the
G-E interaction predictors using a certain correlation mea-
sure, we select a prefixed number (WIZ(N)) of top-ranked
G-E interaction predictors as our candidate model. We then
report the average number of these seven measures for each
method in 200 replications.

In order to respect the “main effect, interaction”
hierarchical constraint, if we choose a w.;; interaction
biomarker in the model, then we assume the main factors
e.; are x.j, are related to the response, and all environmen-
tal factors are considered into the model, we then estimate
the corresponding parameters using a maximum-likelihood
estimation approach based on the AFT regression model.
We report the root mean square error (RMSE) to measure
the accuracy of the estimation, which is defined as

RMSE = \/; Z; (65 - 9})2,

where S is the full model size including all main and in-
teraction covariates. In order to evaluate the estimation
of the performance of the selected biomarkers, we report
RMSE.M, the average of the root mean square error of 200
replications.

To evaluate the performance of survival prediction,
let & be an estimator of the AFT regression parameter in
a prediction model obtained from the training dataset and
v, 87, ¥ ) :c;‘/, w;‘/) the survival and covariate data of
subject i in the test data. Define (e}, =}, w} )8 as the
prognosis index (PI) value for subject i. The AFT test is de-
fined as the p-value of PI, where PI is used as the covariate
in the univariate AFT model of survival outcomes in the test
data. Similarly, LR test is the p-value of the log-rank test
of the null hypothesis of equal survival between the “poor”
and “good” prognostic groups in the test data, depending
on whether the PI is higher or lower than the median PI
value. Also, the c-index metric is considered to investigate
survival prediction accuracy. Smaller AFT test and LR test
values/larger c-index correspond to better predictive power.

2.3 Simulation Scenarios

In the following simulations, a series of simulation
studies were conducted to compare the existing marginal
modeling methods with IPCW Kendall’s partial correlation
approach (IPCW-pcorr) in the selection of G-E interactions,

&% IMR Press
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the estimation of the selected biomarker effects, and pre-
diction of the final survival prediction model. We also con-
sidered a simple measure, IPCW Kendall’s tau correlation
(IPCW-tau). IPCW Kendall’s tau correlation [8] measures
the association between survival characteristics and G-E in-
teraction biomarkers without conditional main effects.

In order to compare the CQPCorr and IPCW Kendall’s
partial correlation approaches clearly, we follow the simu-
lation settings of Xu, ef al. [5] by generating a cohort of
200 subjects and 100 subjects for training and testing data
respectively. Each subject’s survival time follows the ac-
celerated failure time model,

5 1000 5 1000
IOg (T,) = Zajeij -+ Z Brxir + Z Z VikWijk + Ei,
j=1 k=1 J=1 k=1
i=1,...,200,

where the covariates e jointly follow a 5-dimensional mul-
tivariate standard normal distribution with the first-order
autoregressive (AR(1)) structure that is corr (e j ,e ) =
0.3V and the covariates jointly follow a 1000-
dimensional multivariate standard normal distribution with
the AR(1) structure that is corr (xj ,x)) = 0.577F
Moreover, we assume that gene expression may be contam-
inated by outliers generated from a t-distribution with two
degrees of freedom with a probability of 0.1. The outlier
generation setting is the same as that of Wang and Chen
[8]. Consider three error distributions: (Error 1) N(O, 1),
(Error 2) 90% N(0, 1)+10% N(£50, 1) and (Error 3) 80%
N(0, 1)+20% N(0, 50). The last two error distributions
lead to long-tailed distributions/contamination. The censor-
ing time distribution follows a uniform distribution U(a,b) ,
which is chosen to control the censoring rate at about 30%
(light censoring) and 60% (heavy censoring) respectively.

Five parameters scenarios are considered:

C1 setting has v, = 2, 5 = 1, B, = 1 forj = 1,2
andk = 1,2,...,5.,and v,, = 1 forj = 3,4,5and k =
6,7. All other coefficients are 0. Under this scenario, the
first type interactions are stronger than the corresponding
main effects.

C2 setting is the same as C1 setting except that the first
type interactions and the corresponding main effects are at
the same level. Specifically, v;, = a; = 8, = 1.5 for
j=12andk=1,2,...,5.

C3 setting is the same as C1 setting except that the
magnitudes of the main effects are larger. Specifically,
o =ay =0, =...=0;=3.

C4 setting is the same as C1 setting except that the
magnitudes of the interactions are smaller. Specifically,
vk =05 forj=12andk =1,2,...,5, and j = 3,4,5
andk =6,7.

C5 setting is the same as C1 setting except that the
first type interactions have negative effects. Specifically,
Vg =—2forj=1,2andk=1,2,...,5.

&% IMR Press

Each scenario has sixteen important G-E interactions
together with two main E effects and five main G ef-
fects. There are two types of important interactions. The
first type includes ten interactions 7,;,j = 1,2andk =
1,2,...,5 with both main E(aq,a2) and G(5;, ..., B5)
effects. The second type includes six interactions 7,j =
3,4,5and k = 6,7 without main effects, which violates
the “main effects, interactions” hierarchy. These simulated
settings are close to the actual data. Note that the above
simulated survival clinical genomic data can be generated
by “simulated_data” function of the R package “GElInter”

[11].

3. Results
3.1 Simulation Studies

The numerical results are summarized in Ta-
bles 1,2,3,4,5 for scenarios C1 to C5 with a censoring
rate of 30%. In each cell, mean (standard deviation, SD)
values are based on 200 replicates. We observe that the
performances of the IPCW Kendall’s partial correlation
approach are always better than the CQPCorr, marginal
Cox, marginal AFT approaches in all evaluation metrics,
but the marginal Cox and marginal AFT approaches have
smaller variability compared to the IPCW Kendall’s partial
correlation approach in C2, C3, and C4 scenarios.

The numerical results are summarized in Supplemen-
tary Tables 2—6 for scenarios C1 to C5 with a censoring
rate of 60%. In each cell, mean (SD) values are based
on 200 replicates. We observe that the performances of
the CQPCorr approach are always better than the alterna-
tive approaches in all evaluation metrics for scenarios C2,
C3 and C4, and the IPCW Kendall’s partial or IPCW-tau
correlation approach performs better than others for sce-
narios C1 and C5. In addition, we observe the marginal
Cox and marginal AFT approaches have smaller variabil-
ity compared to the [IPCW Kendall’s partial correlation and
CQPCorr approaches.

Table 6 presents simulation findings in tabular form
based on censoring rates (30% and 60%) and five parame-
ter scenarios to give readers a better understanding of how
these approaches stack up.

3.2 Real Data Application with TCGA ESCA Data

After excluding patients with missing survival time
data, our analysis is focused on the subset of the TCGA
ESCA data with 368 patients and 20,501 gene expression
variables. The censoring rate of the survival time in the
data is about 58%.

The top 1000 genes with the smallest p-values based
on the marginal (univariate) COX model are selected for
downstream analysis, since the number of cancer-related
genes is expected to be limited. The seven clinical vari-
ables whose E effects are analyzed include age, gender,
esophageal tumor central location, person neoplasm cancer
status, race, BMI and AJCC pathologic stage, and their
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Table 1.

Simulation results for Scenario C1 with a censoring rate of 30%.

Error

Approach

Acc

TPR

Pre

TNR

FPR

FNR

MMS

MSE

PI

LR

c-index

IPCW-tau
IPCW-pcorr

1 CQPCorr
COX
AFT

0.9974 (0.0005)
0.9974 (0.0006)
0.9965 (0.0007)
0.9962 (0.0007)
0.9961 (0.0011)

0.6981 (0.0841)
0.6991 (0.0852)
0.5494 (0.1148)
0.5094 (0.0986)
0.5116 (0.1267)

0.5852 (0.0711)
0.5845 (0.073)
0.4626 (0.0967)
0.4276 (0.0838)
0.4229 (0.1118)

0.9984 (0.0003)
0.9984 (0.0003)
0.9980 (0.0004)
0.9978 (0.0004)
0.9977 (0.0008)

0.0016 (0.0003)
0.0016 (0.0003)
0.0020 (0.0004)
0.0022 (0.0004)
0.0023 (0.0008)

0.3019 (0.0841)
0.3009 (0.0852)
0.4506 (0.1148)
0.4906 (0.0986)
0.4884 (0.1267)

1100.425 (1113.88)
1118.815 (1130.12)
1532.490 (1274.86)
2769.280 (1337.15)
3031.525 (1253.05)

0.0457 (0.0111)
0.0458 (0.0110)
0.0688 (0.0147)
0.0708 (0.0164)
0.0655 (0.0178)

0(0)
0(0)
0(0)
0 (0.0001)
0.0038 (0.054)

0(0)
0(0)
0 (0.0001)
0.0003 (0.0021)
0.0045 (0.055)

0.8805 (0.0364)
0.8805 (0.0362)
0.8277 (0.0524)
0.8125 (0.0546)
0.8122 (0.0592)

IPCW-tau
IPCW-pcorr

2 CQPCorr
COX
AFT

0.9967 (0.0006)
0.9967 (0.0006)
0.9960 (0.0008)
0.9954 (0.0007)
0.9946 (0.0007)

0.5750 (0.091)
0.5775 (0.0919)
0.4625 (0.1241)
0.3778 (0.1036)
0.2550 (0.1097)

0.4834 (0.0767)
0.4853 (0.0761)
0.3895 (0.1045)
0.3182 (0.0872)
0.2134 (0.0915)

0.9980 (0.0003)
0.9980 (0.0003)
0.9977 (0.0004)
0.9974 (0.0003)
0.9970 (0.0004)

0.0020 (0.0003)
0.0020 (0.0003)
0.0023 (0.0004)
0.0026 (0.0003)
0.0030 (0.0004)

0.4250 (0.091)
0.4225 (0.0919)
0.5375 (0.1241)
0.6222 (0.1036)
0.7450 (0.1097)

1628.050 (1258.73)
1649.265 (1275.03)
1898.270 (1342.61)
3311.220 (1136.78)
3912.250 (887.96)

0.1248 (0.0151)
0.1250 (0.0151)
0.1326 (0.0167)
0.1409 (0.0173)
0.1490 (0.0167)

0.0057 (0.0512)
0.0035 (0.0217)
0.0174 (0.1048)
0.0237 (0.0881)
0.0804 (0.187)

0.0058 (0.034)
0.0037 (0.0157)
0.0193 (0.0768)
0.0323 (0.0938)
0.1092 (0.2179)

0.7085 (0.0468)
0.7072 (0.0465)
0.6863 (0.0574)
0.6599 (0.0525)
0.6259 (0.0551)

IPCW-tau
IPCW-pcorr

3 CQPCorr
COX
AFT

0.9964 (0.0007)
0.9964 (0.0007)
0.9957 (0.0008)
0.9951 (0.0008)
0.9941 (0.0007)

0.5269 (0.1099)
0.5253 (0.1084)
0.4212 (0.1258)
0.3294 (0.119)
0.1691 (0.109)

0.4429 (0.0918)
0.4416 (0.0906)
0.3547 (0.106)
0.2774 (0.1002)
0.1414 (0.0907)

0.9979 (0.0004)
0.9979 (0.0003)
0.9975 (0.0004)
0.9972 (0.0004)
0.9967 (0.0004)

0.0021 (0.0004)
0.0021 (0.0003)
0.0025 (0.0004)
0.0028 (0.0004)
0.0033 (0.0004)

0.4731 (0.1099)
0.4747 (0.1084)
0.5788 (0.1258)
0.6706 (0.1190)
0.8309 (0.1090)

2209.155 (1432.65)
2222.295 (1444.16)
2170.735 (1289.56)
3570.570 (1054.19)
4029.910 (796.717)

0.1669 (0.0312)
0.1676 (0.0306)
0.1661 (0.0287)
0.1815 (0.0306)
0.1859 (0.0307)

0.0253 (0.0764)
0.0362 (0.1200)
0.0404 (0.1209)
0.0722 (0.1663)
0.2017 (0.2699)

0.0393 (0.1192)
0.0376 (0.1364)
0.0606 (0.1651)
0.0985 (0.1844)
0.2482 (0.291)

0.6560 (0.0508)
0.6552 (0.0486)
0.6461 (0.054)
0.6213 (0.0503)
0.5787 (0.0512)

In each cell, mean (SD) is based on 200 replicates.

Table 2.

Simulation results for Scenario C2 with a censoring rate of 30%.

Error

Approach

Acc

TPR

Pre

TNR

FPR

FNR

MMS

MSE

PI

LR

c-index

IPCW-tau
IPCW-pcorr

1 CQPCorr
COX
AFT

0.9970 (0.0007)
0.9971 (0.0007)
0.9957 (0.0009)
0.9961 (0.0007)
0.9958 (0.001)

0.6206 (0.1093)
0.6362 (0.1112)
0.4219 (0.1364)
0.4875 (0.1048)
0.4562 (0.1347)

0.5217 (0.0926)
0.5354 (0.0934)
0.3553 (0.1148)
0.4098 (0.0894)
0.3796 (0.1147)

0.9982 (0.0004)
0.9982 (0.0004)
0.9975 (0.0004)
0.9977 (0.0004)
0.9976 (0.0007)

0.0018 (0.0004)
0.0018 (0.0004)
0.0025 (0.0004)
0.0023 (0.0004)
0.0024 (0.0007)

0.3794 (0.1093)
0.3638 (0.1112)
0.5781 (0.1364)
0.5125 (0.1048)
0.5438 (0.1347)

994.4750 (1023.24)
956.3250 (1034.12)
1924.255 (1380.74)
2533.405 (1448.55)
2702.195 (1333.10)

0.0546 (0.0136)
0.0521 (0.0133)
0.0747 (0.0147)
0.0652 (0.0141)
0.0649 (0.0161)

0(0)

0(0)
0.0009 (0.0074)
0.0002 (0.0024)
0.0099 (0.079)

0 (0.0003)
0 (0.0001)
0.0046 (0.0539)
0.0006 (0.0054)
0.0123 (0.0899)

0.8451 (0.047)
0.8513 (0.0445)
0.7764 (0.0705)
0.8026 (0.0564)
0.7879 (0.0668)

IPCW-tau
IPCW-pcorr

2 CQPCorr
COX
AFT

0.9959 (0.0008)
0.9961 (0.0008)
0.9952 (0.0008)
0.9951 (0.0007)
0.9940 (0.0008)

0.4600 (0.1218)
0.4806 (0.1224)
0.3406 (0.1317)
0.3353 (0.1114)
0.1659 (0.0992)

0.3871 (0.1027)
0.4046 (0.103)
0.2868 (0.1109)
0.2824 (0.0938)
0.1389 (0.0833)

0.9977 (0.0004)
0.9977 (0.0004)
0.9973 (0.0004)
0.9973 (0.0004)
0.9967 (0.0005)

0.0023 (0.0004)
0.0023 (0.0004)
0.0027 (0.0004)
0.0027 (0.0004)
0.0033 (0.0005)

0.5400 (0.1218)
0.5194 (0.1224)
0.6594 (0.1317)
0.6647 (0.1114)
0.8341 (0.0992)

1707.035 (1307.47)
1661.200 (1343.69)
2329.945 (1402.15)
3208.765 (1183.70)
4005.95 (836.40)

0.1284 (0.0157)
0.1274 (0.0158)
0.1336 (0.0155)
0.1371 (0.0148)
0.1468 (0.015)

0.0332 (0.1285)
0.0167 (0.0647)
0.0645 (0.1667)
0.0541 (0.1537)
0.1490 (0.2301)

0.0294 (0.1134)
0.0200 (0.0773)
0.0636 (0.1430)
0.0465 (0.1375)
0.1548 (0.2455)

0.6756 (0.0611)
0.6810 (0.0557)
0.6457 (0.0594)
0.6458 (0.0531)
0.6016 (0.0556)

o)

2,

(i

4

IPCW-tau
IPCW-pcorr

3 CQPCorr
COX
AFT

0.9956 (0.0008)
0.9956 (0.0008)
0.9949 (0.0008)
0.9948 (0.0008)
0.9936 (0.0006)

0.3991 (0.1277)
0.4034 (0.1293)
0.2928 (0.129)
0.2734 (0.1181)
0.0991 (0.0841)

0.3361 (0.1076)
0.3395 (0.1088)
0.2466 (0.1086)
0.2303 (0.0995)
0.0830 (0.0707)

0.9975 (0.0004)
0.9975 (0.0004)
0.9971 (0.0004)
0.9971 (0.0004)
0.9965 (0.0003)

0.0025 (0.0004)
0.0025 (0.0004)
0.0029 (0.0004)
0.0029 (0.0004)
0.0035 (0.0003)

0.6009 (0.1277)
0.5966 (0.1293)
0.7072 (0.129)
0.7266 (0.1181)
0.9009 (0.0841)

2194.13 (1335.13)
2136.10 (1372.06)
2585.69 (1313.51)
3609.92 (1065.72)
4140.23 (792.79)

0.1705 (0.0317)
0.1702 (0.0311)
0.1683 (0.0294)
0.1784 (0.0316)
0.1836 (0.0297)

0.0729 (0.1595)
0.0710 (0.1518)
0.1365 (0.2376)
0.1521 (0.2345)
0.3254 (0.3175)

0.0799 (0.1651)
0.0676 (0.1521)
0.1236 (0.2303)
0.1394 (0.2164)
0.3215 (0.3102)

0.6282 (0.0543)
0.6318 (0.0543)
0.6095 (0.0541)
0.6022 (0.0532)
0.5580 (0.0496)

Ss3id NI

In each cell, mean (SD) is based on 200 replicates.
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Table 3.

Simulation results for Scenario C3 with a censoring rate of 30%.

Error  Approach

Acc

TPR

Pre

TNR

FPR

FNR

MMS

MSE

PI

LR

c-index

IPCW-tau
IPCW-pcorr

1 CQPCorr
COX
AFT

0.9955 (0.0008)
0.9958 (0.0008)
0.9945 (0.0008)
0.9955 (0.0007)
0.9955 (0.0009)

0.3956 (0.1263)
0.4350 (0.1262)
0.2397 (0.1256)
0.3900 (0.1096)
0.3928 (0.1309)

0.3332 (0.1063)
0.3663 (0.1063)
0.2018 (0.1058)
0.3284 (0.0923)
0.3272 (0.1103)

0.9975 (0.0004)
0.9976 (0.0004)
0.9970 (0.0004)
0.9974 (0.0004)
0.9974 (0.0005)

0.0025 (0.0004)
0.0024 (0.0004)
0.0030 (0.0004)
0.0026 (0.0004)
0.0026 (0.0005)

0.6044 (0.1263)
0.5650 (0.1262)
0.7603 (0.1256)
0.6100 (0.1096)
0.6072 (0.1309)

2366.805 (1391.63)
2190.735 (1442.02)
3086.990 (1276.07)
3335.320 (1154.68)
3675.175 (1078.55)

0.0995 (0.026)
0.0925 (0.0261)
0.1268 (0.0242)
0.0971 (0.0268)
0.0895 (0.0259)

0.0005 (0.0066)
0 (0.0001)
0.0376 (0.1495)
0.0003 (0.0043)
0.0059 (0.0563)

0.0018 (0.0165)
0.0002 (0.0025)
0.0279 (0.0899)
0.0008 (0.0074)
0.0068 (0.0724)

0.8014 (0.0676)
0.8187 (0.0601)
0.7244 (0.0933)
0.8104 (0.0599)
0.8124 (0.069)

IPCW-tau
IPCW-pcorr

2 CQPCorr
COX
AFT

0.9948 (0.0008)
0.9950 (0.0008)
0.9943 (0.0007)
0.9947 (0.0007)
0.9941 (0.0007)

0.2875 (0.1258)
0.3172 (0.1298)
0.1991 (0.1162)
0.2581 (0.1098)
0.1822 (0.1065)

0.2421 (0.1059)
0.2671 (0.1093)
0.1676 (0.0979)
0.2174 (0.0925)
0.1519 (0.0883)

0.9971 (0.0004)
0.9972 (0.0004)
0.9968 (0.0004)
0.9970 (0.0004)
0.9967 (0.0005)

0.0029 (0.0004)
0.0028 (0.0004)
0.0032 (0.0004)
0.0030 (0.0004)
0.0033 (0.0005)

0.7125 (0.1258)
0.6828 (0.1298)
0.8009 (0.1162)
0.7419 (0.1098)
0.8178 (0.1065)

2893.300 (1361.82)
2755.805 (1395.49)
3260.400 (1221.02)
3802.255 (957.41)
4055.030 (758.31)

0.1612 (0.0237)
0.1578 (0.0245)
0.1704 (0.0216)
0.1626 (0.0223)
0.1709 (0.0218)

0.0275 (0.114)
0.0276 (0.1157)
0.0772 (0.1827)
0.0241 (0.1118)
0.0521 (0.1645)

0.0271 (0.1075)
0.0388 (0.1587)
0.0817 (0.185)
0.0238 (0.1006)
0.0522 (0.1447)

0.6761 (0.0627)
0.6877 (0.0635)
0.6405 (0.07)
0.6790 (0.0589)
0.6501 (0.065)

IPCW-tau
IPCW-pcorr

3 CQPCorr
COX
AFT

0.9947 (0.0008)
0.9949 (0.0008)
0.9942 (0.0007)
0.9944 (0.0007)
0.9937 (0.0006)

0.2731 (0.1283)
0.2912 (0.126)
0.1841 (0.113)
0.2109 (0.1071)
0.1175 (0.0937)

0.2300 (0.108)
0.2453 (0.1061)
0.1550 (0.0951)
0.1776 (0.0902)
0.0986 (0.0787)

0.9971 (0.0004)
0.9971 (0.0004)
0.9968 (0.0004)
0.9969 (0.0003)
0.9966 (0.0003)

0.0029 (0.0004)
0.0029 (0.0004)
0.0032 (0.0004)
0.0031 (0.0003)
0.0034 (0.0003)

0.7269 (0.1283)
0.7088 (0.126)
0.8159 (0.113)
0.7891 (0.1071)
0.8825 (0.0937)

3334.465 (1228.05)
3144.285 (1244.02)
3459.235 (1118.06)
3985.405 (840.16)
4215.990 (707.02)

0.1971 (0.0365)
0.1954 (0.0355)
0.2030 (0.0313)
0.2033 (0.0295)
0.2100 (0.0334)

0.0450 (0.1346)
0.0431 (0.1242)
0.1194 (0.2277)
0.0896 (0.2157)
0.1610 (0.258)

0.0536 (0.1553)
0.0516 (0.1527)
0.1081 (0.2135)
0.0815 (0.1915)
0.1593 (0.267)

0.6438 (0.057)
0.6469 (0.0594)
0.6150 (0.062)
0.6343 (0.0582)
0.5972 (0.0601)

In each cell, mean (SD) is based on 200 replicates.

Table 4.

Simulation results for Scenario C4 with a censoring rate of 30%.

Error

Approach

Acc

TPR

Pre

TNR

FPR

FNR

MMS

MSE

PI

LR

c-index

IPCW-tau
IPCW-pcorr

1 CQPCorr
COX
AFT

0.9950 (0.0008)
0.9951 (0.0008)
0.9942 (0.0007)
0.9951 (0.0007)
0.9947 (0.0008)

0.3153 (0.1236)
0.3328 (0.1240)
0.1816 (0.1146)
0.3253 (0.1144)
0.2744 (0.1308)

0.2655 (0.1041)
0.2803 (0.1045)
0.1529 (0.0965)
0.2739 (0.0963)
0.2304 (0.1100)

0.9972 (0.0004)
0.9973 (0.0004)
0.9968 (0.0004)
0.9972 (0.0004)
0.9971 (0.0004)

0.0028 (0.0004)
0.0027 (0.0004)
0.0032 (0.0004)
0.0028 (0.0004)
0.0029 (0.0004)

0.6847 (0.1236)
0.6672 (0.1240)
0.8184 (0.1146)
0.6747 (0.1144)
0.7256 (0.1308)

2563.640 (1320.47)
2197.875 (1271.31)
3632.740 (1118.21)
2823.735 (1282.34)
2932.025 (1271.79)

0.0409 (0.0095)
0.0401 (0.0094)
0.0470 (0.006)
0.0370 (0.0066)
0.0388 (0.0089)

0.0088 (0.0580)
0.0053 (0.0439)
0.0638 (0.1655)
0.0010 (0.0106)
0.0210 (0.1205)

0.0212 (0.1062)
0.0135 (0.0559)
0.0747 (0.1868)
0.0016 (0.0114)
0.0288 (0.1397)

0.7293 (0.0759)
0.7382 (0.0765)
0.6514 (0.0806)
0.7615 (0.064)
0.7342 (0.0794)

IPCW-tau
IPCW-pcorr

2 CQPCorr
COX
AFT

0.9943 (0.0007)
0.9944 (0.0008)
0.9939 (0.0007)
0.9942 (0.0006)
0.9932 (0.0005)

0.2037 (0.1171)
0.2131 (0.1212)
0.1416 (0.1032)
0.1803 (0.0979)
0.0303 (0.0469)

0.1716 (0.0986)
0.1795 (0.1021)
0.1192 (0.0869)
0.1518 (0.0824)
0.0255 (0.0395)

0.9968 (0.0004)
0.9969 (0.0004)
0.9966 (0.0003)
0.9968 (0.0003)
0.9963 (0.0004)

0.0032 (0.0004)
0.0031 (0.0004)
0.0034 (0.0003)
0.0032 (0.0003)
0.0037 (0.0004)

0.7962 (0.1171)
0.7869 (0.1212)
0.8584 (0.1032)
0.8197 (0.0979)
0.9697 (0.0469)

3247.700 (1167.82)
3004.435 (1192.98)
3734.380 (1045.65)
3677.595 (1054.77)
4463.435 (446.62)

0.1184 (0.0141)
0.1186 (0.0149)
0.1149 (0.0131)
0.1208 (0.0132)
0.1240 (0.0129)

0.2933 (0.3132)
0.2565 (0.2773)
0.3258 (0.2996)
0.2336 (0.2641)
0.4211 (0.3052)

0.1963 (0.262)
0.1996 (0.2662)
0.2536 (0.29)
0.1274 (0.2101)
0.3092 (0.2942)

0.5812 (0.0607)
0.5864 (0.0613)
0.5652 (0.0577)
0.5962 (0.0563)
0.5477 (0.0462)

IPCW-tau
IPCW-pcorr

3 CQPCorr
COX
AFT

0.9940 (0.0007)
0.9940 (0.0007)
0.9937 (0.0006)
0.9938 (0.0005)
0.9931 (0.0003)

0.1512 (0.103)
0.1509 (0.1064)
0.1128 (0.0872)
0.1181 (0.0856)
0.0163 (0.0382)

0.1274 (0.0868)
0.1271 (0.0896)
0.0950 (0.0734)
0.0995 (0.0721)
0.0136 (0.0322)

0.9967 (0.0003)
0.9967 (0.0003)
0.9965 (0.0003)
0.9966 (0.0003)
0.9962 (0.0002)

0.0033 (0.0003)
0.0033 (0.0003)
0.0035 (0.0003)
0.0034 (0.0003)
0.0038 (0.0002)

0.8488 (0.103)
0.8491 (0.1064)
0.8872 (0.0872)
0.8819 (0.0856)
0.9838 (0.0382)

3694.655 (1072.43)
3590.680 (1041.92)
3949.735 (960.11)
4090.200 (802.156)
4525.750 (444.49)

0.1622 (0.0303)
0.1620 (0.0296)
0.1529 (0.0289)
0.1648 (0.0321)
0.1594 (0.0303)

0.3868 (0.3014)
0.3894 (0.3063)
0.3934 (0.3077)
0.3606 (0.2951)
0.4492 (0.2978)

0.3065 (0.2821)
0.3088 (0.2861)
0.3464 (0.317)
0.2857 (0.3036)
0.4227 (0.2807)

0.5511 (0.0486)
0.5534 (0.0506)
0.5487 (0.0456)
0.5586 (0.0491)
0.5314 (0.0399)

In each cell, mean (SD) is based on 200 replicates.
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Table 5. Simulation results for Scenario C5 with a censoring rate of 30%.

Error

Approach

Acc

TPR

Pre

TNR

FPR

FNR

MMS

MSE

PI

LR

c-index

IPCW-tau
IPCW-pcorr
1 CQPCorr

COX
AFT

0.9972 (0.0006)
0.9972 (0.0006)
0.9967 (0.0006)
0.9962 (0.0006)
0.9959 (0.0024)

0.6506 (0.0900)
0.6541 (0.0868)
0.5769 (0.0966)
0.4950 (0.0957)
0.4997 (0.1165)

0.5474 (0.0752)
0.5501 (0.0728)
0.4858 (0.0814)
0.4152 (0.0799)
0.4119 (0.1038)

0.9983 (0.0003)
0.9983 (0.0003)
0.9980 (0.0003)
0.9978 (0.0003)
0.9975 (0.0024)

0.0017 (0.0003)
0.0017 (0.0003)
0.0020 (0.0003)
0.0022 (0.0003)
0.0025 (0.0024)

0.3494 (0.0900)
0.3459 (0.0868)
0.4231 (0.0966)
0.5050 (0.0957)
0.5003 (0.1165)

1490.900 (1307.73)
1506.345 (1300.66)
1814.535 (1379.89)
2728.400 (1418.65)
2923.145 (1373.36)

0.0496 (0.013)
0.0488 (0.0125)
0.0606 (0.0131)
0.0712 (0.0171)
0.1277 (0.6735)

0(0)

0(0)

0(0)

0(0)
0.0096 (0.0775)

0(0)

0(0)

0(0)
0.0001 (0.0008)
0.0117 (0.0812)

0.8683 (0.041)
0.8696 (0.0393)
0.8457 (0.0449)
0.8169 (0.0471)
0.8112 (0.0662)

IPCW-tau
IPCW-pcorr
2 CQPCorr

COX
AFT

0.9966 (0.0007)
0.9966 (0.0006)
0.9962 (0.0007)
0.9955 (0.0007)
0.9947 (0.0008)

0.5584 (0.1035)
0.5603 (0.1003)
0.4981 (0.1059)
0.3859 (0.1001)
0.2666 (0.1115)

0.4701 (0.0870)
0.4717 (0.0843)
0.4195 (0.0892)
0.3247 (0.0847)
0.2233 (0.0942)

0.9980 (0.0003)
0.9980 (0.0003)
0.9978 (0.0003)
0.9974 (0.0003)
0.9970 (0.0005)

0.0020 (0.0003)
0.0020 (0.0003)
0.0022 (0.0003)
0.0026 (0.0003)
0.0030 (0.0005)

0.4416 (0.1035)
0.4397 (0.1003)
0.5019 (0.1059)
0.6141 (0.1001)
0.7334 (0.1115)

2219.715 (1467.74)
2265.580 (1492.43)
2325.780 (1404.27)
3383.00 (1176.03)
3765.250 (955.26)

0.1240 (0.0139)
0.1247 (0.015)
0.1267 (0.0149)
0.1416 (0.0178)
0.1467 (0.0158)

0.0069 (0.0693)
0.0047 (0.0377)
0.0061 (0.0646)
0.0139 (0.0461)
0.0570 (0.1472)

0.0116 (0.0514)
0.0119 (0.0485)
0.0113 (0.0503)
0.0318 (0.0816)
0.1101 (0.2090)

0.6998 (0.0512)
0.7010 (0.0506)
0.6968 (0.0479)
0.6659 (0.0505)
0.6282 (0.0526)

[PCW-tau
IPCW-pcorr
3 CQPCorr

COX
AFT

0.9961 (0.0007)
0.9961 (0.0007)
0.9958 (0.0007)
0.9951 (0.0007)
0.9940 (0.0007)

0.4909 (0.1095)
0.4897 (0.1105)
0.4409 (0.1135)
0.3228 (0.1061)
0.1609 (0.1079)

0.4133 (0.0921)
0.4123 (0.093)
0.3712 (0.0955)
0.2718 (0.0894)
0.1355 (0.0909)

0.9978 (0.0004)
0.9978 (0.0004)
0.9976 (0.0004)
0.9972 (0.0003)
0.9967 (0.0003)

0.0022 (0.0004)
0.0022 (0.0004)
0.0024 (0.0004)
0.0028 (0.0003)
0.0033 (0.0003)

0.5091 (0.1095)
0.5103 (0.1105)
0.5591 (0.1135)
0.6772 (0.1061)
0.8391 (0.1079)

2567.115 (1391.50)
2600.685 (1379.32)
2567.785 (1298.51)
3514.235 (1103.94)
4025.405 (816.489)

0.1674 (0.0287)
0.1684 (0.0281)
0.1620 (0.0288)
0.1833 (0.0331)
0.1897 (0.0307)

0.0503 (0.1478)
0.0456 (0.1287)
0.0488 (0.1378)
0.1012 (0.2113)
0.2303 (0.2805)

0.0661 (0.1640)
0.0682 (0.1650)
0.0645 (0.1636)
0.1433 (0.2262)
0.3021 (0.3110)

0.6459 (0.0530)
0.6472 (0.0530)
0.6461 (0.0531)
0.6143 (0.0552)
0.5756 (0.0534)

In each cell, mean (SD) is based on 200 replicates.

Ss3id NI

Censoring rate ClI setting C2 setting C3 setting C4 setting CS5 setting
30% IPCW-pcorr  IPCW-pcorr  IPCW-pcorr  IPCW-pcorr  [PCW-pcorr
60% IPCW-tau CQPCorr CQPCorr CQPCorr IPCW-pcorr

Table 6. Simulation findings in tabular form based on censoring rates (30% and 60%) and five parameter scenarios.

Table 7. Proportions of significant LR-test (LR-test p-value < 0.05) over 50 random splits for different interaction screening methods under TCGA data.

TCGA data  IPCW-tau IPCW-pcorr CQPCorr COX  AFT
ESCA 0.96 1 1 0.84 1
PAAD 0.34 0.46 0.38 042 0.26
LUAD 0.5 0.58 0.46 0.32 0.3
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summary information is reported in the Supplementary
Table 7, with its source derived from Wang and Chen [13].
Some of the clinical variables contain missing values, and
we use the sparse boosting method [14] in the R package
“GElInter” to perform multiple imputation for the missing
values in the clinical variables.

We take fifty random splits of the whole data into
258:110 training/test sets of the data to evaluate the per-
formance of all methods for survival prediction via the
significant proportion of the LR-test in the TCGA ESCA
data. Higher significant proportion of LR-test corresponds
to better prediction accuracy. From Table 7 we see that the
performance of the IPCW Kendall’s partial correlation ap-
proach is better than the marginal Cox, marginal AFT and
CQPCorr methods.

In addition, we apply the proposed IPCW Kendall’s
partial correlation approach for whole data to identify sev-
eral important G-E interaction biomarkers and estimate the
corresponding parameters by AFT regression model. Ta-
ble 8 provides the list of selected associated predictors with
their correspondence weights, with the “*” notation mean-
ing statistical significance (p-value < 0.05). One candidate
gene (GADD45B) has been shown to be related to ESCA
[15] while Weygant, et al. [16] indicated that the gen-
der factor can be used as prognosis biomarker for ESCA.
In addition, we found the GADD45B-gender interaction
biomarker to be significant from Table 8, and therefore
we consider the GADD45B-gender biomarker to be a po-
tential prognostic biomarker for ESCA, as the major gene
GADD45B and gender factor have been documented to be
associated with ESCA.

3.3 Real Data Application with TCGA PAAD Data

After excluding patients with missing survival time
data, our analysis is focused on the subset of the TCGA
PAAD data with 170 patients and 20,501 gene expression
variables. The censoring rate of the survival time in the data
is about 58%.

The top 1000 genes with the smallest p-values based
on the marginal (univariate) COX model are selected for
downstream analysis, since the number of cancer-related
genes is expected to be limited. The seven clinical vari-
ables whose E effects are ethnicity, race, lymph node ex-
amined count, maximum tumor dimension, anatomic neo-
plasm subdivision, gender and age, and their summary in-
formation is reported in Supplementary Table 8, with its
source being from Wang, ef al. [13]. Some of the clini-
cal variables contain missing values, and we use the sparse
boosting method [14] in the R package “GElnter” to per-
form multiple imputation for the missing values in the clin-
ical variables.

We take fifty random splits of the whole data into
119:51 training/test sets of the data to evaluate the perfor-
mance of all methods for survival prediction via the sig-
nificant proportion of the LR-test in the TCGA PAAD data.
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Table 8. Selected G-E interaction biomarkers with their
corresponding estimates (p-values) by IPCW Kendall’s
partial correlation approach for the whole TCGA ESCA

data.
Gene Person neoplasm cancer status Gender
Cl60rf87 -0.0829 (0.9182)
C220rf29 —0.3488 (0.2335)
C8orf58 —0.6543 (0.0054)* 1.6584 (0.0265)*
DLLI 0.1923 (0.5715)
DUSPI 0.0855 (0.7145)
EIF2S3 0.7882 (0.0254)*
ELACI —0.7617 (0.0044)*
ELK] —0.8351 (0.0470)*
EPHB4 —0.5758 (0.0045)*
EPO 0.1598 (0.3890)
GADD45B —2.1710 (0)*
ILS —0.0228 (0.7388)
JUN 0.2225 (0.6218)
KDM4D —0.2091 (0.2257)
LZTS2 1.0687 (0.1153)
MAPK7 —0.9098 (0.3922)
NFIX 0.8423 (0)*
NT5C3L —0.3800 (0.0026)*
PATLI 1.2257 (0.0014)*
TABI 0.9494 (0.1037)
TRIB2 0.1155 (0.4378)
TRMT2A4 —-1.0338 (0.0319)*
TXLNA 0.9600 (0.0223)*
UBE2J2 —1.2922 (0.1182)
WDR24 1.5244 (0.0002)*
ZC3H7B —1.9506 (0.0004)*
ZDHHCS —0.2015 (0.4832)
ZNF74 1.01682 (0.0003)* —2.2506 (0.0361)*
ZNRF'3 —0.1136 (0.5441)

Higher significant proportion of LR-test corresponds to bet-
ter prediction accuracy. From Table 7, we see that the
performance of the IPCW Kendall’s partial correlation ap-
proach is better than the marginal Cox, marginal AFT and
CQPCorr methods.

In addition, we apply the proposed IPCW Kendall’s
partial correlation approach for whole data to identify sev-
eral important G-E interaction biomarkers and estimate the
corresponding parameters by AFT regression model. Ta-
ble 9 provides the list of selected associated predictors with
their correspondence weights, with the “*”” notation mean-
ing statistical significance (p-value < 0.05). Two candidate
genes (NRSN2 and TRIM59) have been shown to be related
to PAAD [17,18], while Chakladar, et al. [19] indicated that
the gender factor can be used as prognosis biomarker for
PAAD. In addition, we found the TRIM59-gender interac-
tion biomarker to be significant from Table 9, and therefore
we consider the TRIM59-gender biomarker to be a potential
prognostic biomarker for PAAD, as the major gene TRIMS59
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and gender factor have been documented to be associated
with PAAD.

Table 9. Selected G-E interaction biomarkers with their
corresponding estimates (p-values) by IPCW Kendall’s
partial correlation approach for the whole TCGA PAAD

data.
Gene AJCC pathologic nodes Gender
BCAS3 —0.3774 (0.6215)
COQ104 —0.5120 (0.2800)
FAM110B 0.3987 (0.3284)
KCTD2 0.0676 (0.9442)
LMBRIL 1.0804 (0.1328)
LRRC37A43 0.0146 (0.9706)
NRSN2 —3.3384 (0.0013)*
PPFIBP] 0.1262 (0.6605)
RYK 0.7033 (0.1168)
SLC22417 0.3416 (0.5455)
TCEAL3 3.8602 (0.0034)*
TMEM43 —0.6927 (0.0955)
TRIMS9 —0.6336 (0.0101)*
TTC214 —-1.524 (0.0115)*
ZNF324 1.1587 (0.2190)
ZNF446 —2.5858 (0.0008)*
ZNF547 1.5870 (0.0258)*

3.4 Real Data Application with TCGA LUAD Data

After excluding patients with missing survival time
data, our analysis is focused on the subset of the TCGA
LUAD data with 505 patients and 20,501 gene expression
variables. The censoring rate of the survival time in the data
is about 64%.

The top 1000 genes with the smallest p-values based
on the marginal (univariate) COX model are selected for
downstream analysis, since the number of cancer-related
genes is expected to be limited. The eight clinical variables
whose E effects are analyzed include age at initial patho-
logic diagnosis, number pack years smoked, AJCC patho-
logic metastasis, AJCC pathologic nodes, AJCC pathologic
stage, race, gender and AJCC pathologic tumor, with their
summary information reported in Supplementary Table 9,
sourced from Wang, et al. [13]. Some of the clinical vari-
ables contain missing values, and we use the sparse boost-
ing method [14] in the R package “GElnter” to perform
multiple imputation for the missing values in the clinical
variables.

We take fifty random splits of the whole data into
354:151 training/test sets of the data to evaluate the per-
formance of all methods for survival prediction via the sig-
nificant proportion of the LR-test in the TCGA LUAD data.
Higher significant proportion of LR-test corresponds to bet-
ter prediction accuracy. From Table 7, we see that the
performance of the IPCW Kendall’s partial correlation ap-
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proach is better than the marginal Cox, marginal AFT and
CQPCorr methods.

In addition, we apply the proposed IPCW Kendall’s
partial correlation approach for whole data to identify sev-
eral important G-E interaction biomarkers and estimate the
corresponding parameters by AFT regression model. Ta-
ble 10 provides the list of selected associated predictors
with their correspondence weights, with the “*” notation
meaning statistical significance (p-value < 0.05). There are
six candidate genes (4TP1344, GPR116, HABP2, MBIP,
SFTA3, and ZSCANI6) have been shown to be related to
LUAD [20-24].

4. Discussion

In our work, we have several motivations to adopt the
sparse boosting method to impute the missing clinical vari-
ables. The first is that the sparse boosting method [14] was
proposed initially to assign TCGA clinical data, and we
also use TCGA clinical data in our actual data application.
The second is that Wu, et al. [11] provides the friendly R
package “GElnter” to perform the sparse boosting method.
Therefore, we adopt the sparse boosting method to impute
the missing clinical variables. We agree with the comment
that using the different impute techniques to process miss-
ing values will lead to different numerical results, it de-
serves further study and will be investigated in our future
work.

In the final step of our analysis, we utilized the max-
imum likelihood estimation approach to estimate the cor-
responding parameters of the selected candidate biomark-
ers. Park and Ha [25] performed variable selection and pa-
rameter estimation procedures for fixed effects in paramet-
ric AFT models using penalized likelihood procedures. We
agree with the comment that the sure independence screen-
ing method [12] is just a screening process, and penalized
regression should be applied to reduce the irrelevant pre-
dictors for the prediction model. Although we found some
useful references about penalized AFT model, we did not
find suitable software or code to perform the regularization
methods. Implementing regularization methods in our anal-
ysis is worthy of further research and will be studied in our
future work.

In real data application, we adopt the hard threshold-
ing rule proposed by Fan and Lv [12] to select the candi-
date set of G-E interaction biomarkers; that is, after rank-
ing the G-E interactions biomarkers using some correlation
measure, we select a prefixed number of top-ranked G-E
interaction predictors as our candidate model. Several al-
ternative strategies for thresholding rule can be considered
such as the soft thresholding rule proposed by Zhu, ef al.
[26], amethod based on the control of the false-positive rate
or false discovery rate by Zhao and Li [27], and a method
based on multiple testing procedure by Song, et al. [28].
Furthermore, we assumed that the number of cancer-related
biomarkers would be limited, so we selected the top 1000

&% IMR Press
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Table 10. Selected G-E interaction biomarkers with their corresponding estimates (p-values) by IPCW Kendall’s partial
correlation approach for the whole TCGA LUAD data.

Gene AJCC pathologic nodes ~ AJCC pathologic stage Race
ATP1344 1.8356 (0.0056)*
B3GNTS 0.7140 (0.0088)*
C16orf89 —0.2306 (0.2214)
Cl7orf44 —2.1237 (0.0114)*
CD302 0.3977 (0.1098)
ENPP4 —0.0032 (0.9809)

FUCAI —0.4834 (0.3353)
FUTI 0.2615 (0.0440)*

GALNT11 2.6784 (0.0037)*
GNA14 0.7127 (0.0684)
GPC4 —3.1234 (0.0036)*
GPDIL —0.2679 (0.4329)
GPRI116 0.9095 (0.0152)*
HABP2 —1.2867 (0.0063)*
HLF —0.3133 (0.2451)
LDBI —0.1730 (0.4393)

LGR4 —0.0776 (0.8053)
LIFR —0.1512 (0.3790) 0.0101 (0.9462)

LMO3 0.2531 (0.1666)
MBIP —1.4990 (0.0005)*
MYLIP -0.2072 (0.2117)

NAPSA —0.5345 (0.0644)
ORMDL3 —1.2296 (0.0306)*
PDIKIL —1.2479 (0.0646)
PLA2G4F 0.0321 (0.7772)
PNMA2 1.7741 (0.0150)*
SEMA44 1.9070 (0.0026)*
SFTA3 0.5666 (0.0294)*
SLC3442 —0.0494 (0.8077)
SNX30 1.6043 (0.0022)*
TMEM170B 0.7158 (0.0049)* —0.0254 (0.8792)

TMEMS57 0.0511 (0.9395)
TRIM24 —0.0804 (0.7317) 0.0944 (0.6107)

UNCI3B —0.1529 (0.2606)

VWA2 0.5239 (0.0641)
ZNF750 —1.4333 (0.0055)*
ZSCAN16 0.3507 (0.0348)*

G-E interaction biomarkers with the smallest p-values for
downstream analysis based on the marginal COX model.
Xu, et al. [5] and Wu and Ma [14] and so on have a sim-
ilar screening process for downstream analysis. Different
candidate models choices lead to different survival predic-
tion models. How to define the number of cancer-related
biomarkers for downstream analysis is a critical and inter-
esting open question?

Voorman, et al. [29] and Ueki, et al. [30] give deep
insight into genome-wide environment interaction studies
(GWEIS), in which gene-environment interaction analysis
is common known to be susceptible to model specification.
Problematic behavior may occur due to insufficient spec-
ification of the null model for models with no genetic ef-
fects. In the framework of marginal analysis, Kendall’s par-
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tial correlation method is a pure correlation used to reflect
the relationship of the survival trait with the G-E interac-
tion biomarker conditional on the main effects. The pro-
posed measure can mitigate errors due to unspecified null
models. However, for simplicity, we specifically focus on
two-way pairwise G-E interactions. Although the same idea
of the proposed IPCW Kendall’s partial correlation method
might apply to the problem of evaluating higher-order in-
teractions, the associated computational complexity seems
challenging and will be investigated in detail in our future
work.

5. Conclusions

In this article, we extend the non-parametric [IPCW
Kendall’s partial correlation [8] approach to G-E interac-
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tions to measure the association of a right-censored survival
trait with G-E interactions biomarkers, and the associated
Kendall’s partial correlation to reflect the relationship of the
survival trait with G-E interactions predictors conditional
on the genetic and environmental effects. We agree with the
comment that there are no methodological advances of this
paper. However, the paper provides a useful contribution
to real genomic data applications. In simulations (medium
censoring level) and real data applications, we show that the
proposed IPCW Kendall’s partial correlation method can
provide substantially more powerful and accurate predic-
tor selection, and can lead to more accurate survival pre-
diction than alternative methods (marginal COX, marginal
AFT and CQPCorr).

In the real data analysis for informative G-E interac-
tion biomarker selection, we first performed a G-E interac-
tion screening procedure on the entire data based on hard
threshold rules using the non-parametric Kendall’s partial
correlation method, then incorporated all environmental
factors and some genes selected based on the hierarchical
principle into the survival prediction model, we then es-
timated the corresponding parameters of the selected can-
didate biomarkers using a maximum-likelihood estimation
approach based on the AFT regression model. To this end,
we not only defined survival prediction models, but also
provided their corresponding weights for selected biomark-
ers, which have implications for clinical significance.
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