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Abstract

While frailty corresponds to a multisystem failure, geriatric assessment can recognize multiple pathophysiological lesions and age
changes. Up to now, a few frailty indexes have been introduced, presenting definitions of psychological problems, dysregulations in
nutritional intake, behavioral abnormalities, and daily functions, genetic, environmental, and cardiovascular comorbidities. The geriatric
evaluation includes a vast range of health professionals; therefore, we describe a broad range of applications and frailty scales-biomarkers
to investigate and formulate the relationship between frailty lesions, diagnosis, monitoring, and treatment. Additionally, artificial intel-
ligence applications and computational tools are presented, targeting a more efficacy individualized geriatric management of healthy
aging.
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1. Introduction
Fundamentally, Geriatrics has been developed to un-

derstand better and manage aging, paving the way to
healthy aging. While aging is progressive and determined
as unavoidable for all humans, quality of life among el-
derly individuals is disrupted by many diseases occurring
in aging but not caused by aging per se. A condition
such as dementia and other neurodegenerative disorders and
metabolic syndrome, cardiovascular and musculoskeletal

conditions affect most of the elderly population worldwide
[1,2]. Their implications have been conceptualized under
frailty, an umbrella term encompassing the multitude of
dysfunctions in human biological mechanisms that influ-
ence several organ systems and quality of life and mainly
refers to genetic, physiological, behavioral alterations, neu-
rodegeneration, and other comorbidities coexistence. Com-
prehensive modeling of frailty is a prerequisite to conduct-
ing frailty—oriented research [3]. Currently, two models
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Fig. 1. Interim relationship of geriatric medicine and frailty management with quality of life, computational tools and expert
systems. The proposed multidisciplinary approach in this article will be significant for researchers from different fields, including frailty
indexes and scores, artificial intelligence applications, and computational tools targeting frailty diagnosis and treatment.

of frailty have been reported, the phenotypic and the multi-
dimensional model of frailty. The Cardiovascular Health
Study has validated the phenotypic model and based on
a pre-defined set of clinical features associated with ag-
ing and the severity of concomitant conditions. The Cana-
dian Aging and Health study have validated the multidi-
mensional model to predict all-causes mortality. Although
both perceptions have contributed to geriatrics research, the
frailty index is considered broader and more suitable for
the study of populations with or tools related to demen-
tia. Hence, the authors have focused on the multidimen-
sional aging model in this study given numerous dementia
and neurodegeneration—oriented computational tools [4].
In this context, it is established that individuals accumu-
late age-related disorders and conditions, subjecting them
to potentially lethal internal and external stress factors. To
evaluate the vulnerability of an old patient, the frailty in-
dex is commonly used. Increased frailty is linearly associ-
ated with adverse health outcomes and mortality [5,6]. The
rapid development and success of computational tools have
transformed healthcare and medical practice during the past
decade, with their multidisciplinary applications extending
from diagnostic algorithms, risk stratification to establish-
ing treatment strategies, aiding physicians’ and healthcare
workers’ decisionmaking, as well as providing patients per-

sonalized management and improved quality of life. In ad-
dition to refined Artificial Intelligence (AI) tools and appli-
cations, wearable devices and social assistive robotic sys-
tems have revolutionized the approach to senior services.
Several recent publications in gerontology and geriatrics
evaluating the use of modern technological approaches and
AI in senior care indicate the need for their implication and
proved efficacy in everyday clinical practice [6,7]. Frailty
development and symptoms inflection points seem to vary
among the elderly population. By taking into considera-
tion some of the latest researches on geriatric medicine and
frailty [8–12], a few lists for frailty scale and symptoms
have already been presented concerning mainly psycholog-
ical, behavioral and daily functions, genetic, environmen-
tal, cardiovascular, aging, comorbidities and neurodegen-
eration symptoms [13–17]. In the following sections, we
describe the corresponding theory and highlight the core
components of this review study, including the necessary
framework to design a Geriatrics Clinical Decision Support
System and well-known computational tools for the man-
agement of frailty and individualized diagnosis and treat-
ment in geriatric patients (Fig. 1). Frailty scales enhanced
with computational tools and expert systems have a pos-
itive outcome in frail populations’ quality of life. At the
same time, inherent characteristics and health determinants
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of these populations can affect their access to this frame-
work. While geriatric evaluation is based on a broad range
of tests and frailty scales-biomarkers, several artificial intel-
ligence applications and computational tools may provide
holistic management of geriatric patients. This is a litera-
ture review study. We have searched biomedical (Pubmed)
and tech-oriented (Intech) databases with keywords (frailty,
geriatrics, classifications, computational system, and com-
putational tool) to identify computational tools applied in
geriatricmedicine and frailtymanagement. Original studies
reporting or assessing the impact of such tools in the afore-
mentioned fields were prioritized for inclusion. Technical
reports, protocols published in peer-reviewed journals, and
reviews and assessment reports of computational tools were
also eligible for this study to fully assess the contempo-
rary computational arsenal available in geriatrics and frailty
management. We excluded reviewed studies published in
languages other than English and non peer-reviewed mate-
rial of commercial or promotional content.

2. Designing a Frailty Expert System
Fillit et al. [18] and Alexiou et al. [2] defined Geri-

atric Assessment Programs (GAPs) as multidimensional di-
agnostic processes to identify functional and pathophysio-
logical problems in a frail person’s life and design a long-
term treatment. Within a rapidly increasing aging popula-
tion and life expectancy worldwide, geriatric medicine fo-
cus on functional disabilities and other comorbidities that
frail patients commonly present over 65 (Figs. 2,3, Ref.
[19]). Several screening tests are already applied involving
the evaluation of activities of daily living (ADL) and in-
strumental activities of daily living (IADL) efficacy, such
as Mini-Mental State Examination (MMSE), Clinical De-
mentia Rating (CDR), Hachinski ischaemic Scale, Geriatric
Depression Scale (GDS), Functional Assessment Ques-
tionnaire, Neuropsychiatric Inventory Questionnaire (NPI-
Q), and Alzheimer’s Disease Assessment Scale-Cognitive
(ADAS-COG) [20–28] including physical, social and sex-
ual function and cognitive health measure. The concepts
of ADL/IADL have evolved in close proximity to de-
mentia and cognition research. Hence, dementia-centered
computational approaches consist of the bulk of related
ADL/IADL evidence [29]. On top of the above, many dis-
orders are not caused by aging itself and do not occur in
every elderly patient like anemia, cardiovascular diseases,
cancer, stroke, diabetes mellitus, hypothyroidism, osteo-
porosis, prostate disease, sexual dysfunction, vision loss,
and free radicals, and this could be a crucial problem on the
efficient recognition of frail patients. Many patients with
Mild Cognitive Impairment (MCI) display the same mor-
phological changes as Alzheimer’s Disease (AD) patients
and show no progression of symptoms. Others eventually
develop other types of dementia [2,30]. Thus, patients with
MCI are a mix of individuals that will and will not con-
vert to AD. As far as imaging techniques are concerned,

the hippocampal volume of medial temporal lobe atrophy
as obtained by Magnetic Resonance Imaging (MRI) and
the temporoparietal/precuneus hypometabolism hypoperfu-
sion on or Single-Photon Emission Computed Tomography
(SPECT) biomarkers of neurological injury is considered as
biomarkers with high efficacy in frail patients [2,31]. An-
other biomarker of neuronal injury is tau/phosphorylated
tau protein. When the two biomarkers, amyloid beta (Aβ)
and tau/phosphorylated tau proteins, are positively mea-
sured, the probability of AD development increases [31,32].
Both Aβ and phosphorylated tau are common biomarkers
for many related disorders and can be detected in vivo or in
vitro [33–36]. The biophysical formulation of frailty can be
based on the well-known Excess Entropy Production (EEP)
for Prigogine’s human aging system, formulated regarding
energy [37–41].

Fig. 2. Changes in life expectancy from 1950, with projections
until 2050, by WHO Region and worldwide [19].

A holistic approach to examining the geriatric popu-
lation remains the wisest strategy to timely diagnose, pro-
vide adequate treatment, improve quality of life, and reduce
morbidity and mortality rates associated with comorbidi-
ties. Additional to all these multiple pathologies, several
cellular changes and molecular mutants can disrupt genetic
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Fig. 3. Proportion of the population aged 60 years or older, by country, 2050 projections [19].

integrity, leading to cancer [23,42]. While several clini-
cal trials for elderly medication therapies led novel ther-
apeutic products like cholinesterase inhibitors for AD, α-
blockers for prostatic hyperplasia, bisphosphonates for os-
teoporosis [43], and many other entities, a medication error
is a common problem that may be present in many differ-
ent phases of the medication process. Therapeutic failure in
frail persons is a common problem due to wrong prescrib-
ing, polypharmacy, difficulties in communication with the
patient, non-adherence to medication, treatment dispens-
ing, and administration [2]. The corresponding data for a
Frailty Expert systemwill mainly consist of biomarkers and
other related risk factors as well as social and social de-
mographic data, classified into specific categories, to assist
further geriatric evaluation and monitoring:

• Personal demographic data
• Current living conditions
• Information related to elderly health insurance
• Physicians, medical doctors-geriatricians or/and

other medical professionals involved
• Personal and family health record
• Hereditary diseases involving the family history
• Information related to physical activity, exercise pro-

gram, dietary restrictions, and medication records does not
require a prescription

• Current medication
• Adverse drug reactions like allergies, intolerabilities,

or other side effects
• Physical examination
• Functional inquiry including ADL, IADL, or other

support in daily living
• Cognitive testing & behavior

• Results of recent medical examinations-diagnostics,
critical medical tests, dental history as well as vaccination
history, imaging tests.

Additionally, a frailty system’s differential diagnosis
must occur to the 2nd level of disease classification, regard-
ing international standards. More details for implementing
the above can be found in the Appendices (Supplementary
Material). Considering the above, many studies aim at
designing an integrative multiscale Virtual Physiological
Human (VPH) model for the accurate evaluation of hu-
man frailty and the proposed diagnostic protocols in el-
derly populations. The clinical data for a VPH model
should include neuropsychological test scores, molecular
data, imaging, electrophysiological data, biomarkers de-
tected from blood, patient history, and demographic data.
While many tools have already been designed and de-
veloped to organize and analyze biological data [44,45],
specialized Information and Communication Technologies
(ICT) components should be used for the implementation of
a VPHmodel, such as theWebOntology Language (WOL),
the Field Modeling Language (FieldML), and the OSIRIX
Open-Source software (OsiriX MD 12.x (PIXMEO SARL,
Geneva, Switzerland)) for the imaging data manipulation
and storage [46–55].

3. Computational Applications in Advanced
Geriatric Medicine

As humanity seeks ways to extend life expectancy
[56], the need for advanced biological engineering tools
is dire. Over the last decades, mounting experience of
methodological scientific documentation and experimenta-
tion, resulted in the development of interdisciplinary ap-
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proaches involving genetic engineering, nanotechnology,
quantummechanics, and computer science. While biomed-
ical evolution and synthetic biology are formulating the so-
called 4th industrial revolution, it is essential to highlight
the available geriatric medicine tools. Considering the ex-
ponential growth of AI funding during the last years, health-
care AI has become an essential component of the major-
ity of these tools. These applications aim to improve treat-
ments’ effectiveness, reduce costs, and leverage healthcare
services by means of home health monitoring apps, mo-
bile biometric analyzers, drop detectors, virtual compan-
ions, and anti-aging open data research [7,10–12,57]. 2019
marked a tremendous increase in healthcare AI funding.
Despite the fact that a considerable decrease was noted dur-
ing the last months of 2019, a positive trend towards higher
funding has been observed from the beginning of 2020 on-
wards [58].

Several innovative tools focus on individualized mon-
itoring and diagnosis in the elderly population based onmo-
bile monitoring applications and wearables (Table 1, Ref.
[29,59–89]). Apple offers the triplet of HealthKit (Apple
Inc., California, USA), ResearchKit 2.0 (Apple Inc., Cali-
fornia, USA), and CareKit (Apple Inc., California, USA)
for multitasking data processing, targeting researchers,
health professionals, and patients [59]. HealthKit is the
core platform for safe data storage and manipulation, and
interconnection between health apps. ResearchKit offers a
reliable framework for the creation surveys and gather clin-
ical data from end-users. Finally, CareKit provides the nec-
essary framework for personalized healthcare and continu-
ous communication between patients and doctors. One of
the well-known and widely applied applications of Apple’s
ResearchKit library is the mPower 2.0 (Sage Bionetworks,
Seattle, USA) [60], which is an evidence Smartphone-based
study for the identification of Parkinson’s Disease (PD)
severity by measuring dexterity, balance, gait, and memory,
providing with very low-cost clinical data from thousands
of patients in a short time [61]. Similarly, the EpiWatch
(Johns Hopkins Medicine Technology Innovation Center,
Baltimore, USA) is a powerful application of Apple’s Re-
searchKit library from the Johns Hopkins University, pre-
dicting seizure incidents using the Apple Watch [62,63].
This app could help manage epilepsy, creating a correla-
tion between episode history and medication, based on the
heart rate accelerometer and gyroscope sensors of the Ap-
ple Watch, simultaneously informing caregivers or family
members of any produced alert situation. Another very use-
ful for frailty management Apple’s ResearchKit applica-
tion is SleepHealth [64,65] (University of California, San
Diego, USA). A mHealth study based on the iPhone, iPod
Touch, and Apple Watch, offers a personalized wellness
tool for the evaluation of sleep habits and their potential
correlation with the comorbidities of the nowadays status
quo, like diabetes, heart disease, obesity, and depression.

Within the Smartphone-based applications and point-

of-care diagnostics [66,90–93], the latest nanoparticle-
enabled Smartphone system (Harvard Medical School,
Boston, USA) from the Harvard Medical School offers
rapid and sensitive virus detection on a microchip labeled
with specifically designed platinum nanoprobes using a
convolutional neural network, such as HBV, HCV, and
Zika virus [66]. Although these advances seem loosely con-
nected to geriatrics, they have become relevant during the
COVID-19 pandemic. Offering point-of-care diagnostics
to vulnerable geriatric populations can mitigate the spread
of viral infections such as COVID-19 and the seasonal flu.
Repurposing such modalities for COVID-19 has been in the
spotlight of ongoing research [94].

On top of these, it is worth to mention the beneficial
At-Home Kidney Testing from Healthy.io (Boston, USA)
[67,68], which turns the Smartphone camera into a medi-
cal device for urine analysis at home. The application aims
to streamline the diagnosis and monitoring of Chronic Kid-
ney Disease (CKD) in few simple steps: the Albumin to
Creatinine ratio (ACR) test kit is sent to patients with their
consent, the patients performs the urine test and use their
smartphone to analyze the results, and eventually the ex-
ported ACR diagram is sent to physicians. Additionally,
platforms with strong sensitivity and high diagnostic ac-
curacy for Diabetic Retinopathy (DR), age-related macu-
lar degeneration, cataract, retinopathy of prematurity, reti-
nal vein occlusion, and glaucoma gradually become avail-
able. The Google DeepMind convolutional neural network-
based DR-detection algorithm (AlphaBet Inc, London, UK)
[69], the IDx-DR AI diabetic screening system (Digital
Diagnostics, Coralville, USA) is already being used to
more effectively diagnose eye diseases [70] and the Eye-
Art DL-based deep-neural networks system (Eyenuk Inc.,
Woodland Hills, USA) for imaging classification [71] are
well known and highly applied in the market AI platforms
for geriatric medicine (not limited). A different approach
uses Brain-Computer Interaction (BCI) tools in patients
with neurodegeneration combined with enriched sensori-
motor stimulations offering cognitive-behavioral therapy
and art therapy [72,73]. These neuroinformatics tools pro-
vide Electroencephalography (EEG)-based self-navigation
through virtual worlds [74,75], reduce depression and apa-
thy through enhanced environmental stimulation improving
dendritic branching and synaptic density resulting in neuro-
genesis [76–78] or apply low-pressure ultrasounds for the
activation of neurons in an effort to reduce or even reverse
neurodegeneration [79–82].

It is crucial to include in this review, personal care
robots, which are nowadays widely used increasing the
quality of life of elderly population. Such social assistive
robots are usually used on a non-medical basis offering as-
sistance autonomously on patients with reduced decision-
making ability also supporting the services of professional
caregivers and geriatricians [83,84]. Even though several
types of assistive robots are already launched in the market
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Table 1. The old and new computational tools/programs used in the geriatric health care system.
Release date Tool Functionality Target group

2014 Apple HealthKit API (Health App) [59] Core platform for safe data storage and manipulation, interconnection between
health apps

Researchers, Healthcare professionals, Patients

2015 Apple ResearchKit API (Health App) [61–
63]

Creating surveys and gathering clinical data from end-users Researchers, Healthcare professionals, Patients

2016 Apple CareKit API (Health App) [59] Framework for personalized healthcare and continuous communication between
patients and healthcare professionals

Researchers, Healthcare professionals, Patients

2015 mPower [60,61] Smartphone-based study for the identification of Parkinson’s Disease (PD)
severity by measuring dexterity, balance, gait, and memory

Patients with PD and specialized healthcare professionals

2019 EpiWatch (combined with the Apple
Watch) [62,63]

Prediction of seizures and management of epilepsy, Correlation between episode
history, medication, vital signs, accelerometer and gyroscope sensors of the Ap-
ple Watch, Instant notification to caregivers

Patients with seizures/epilepsy, caregivers and specialized
healthcare professionals

2016 SleepHealth [64,65] Personalized wellness wearable for the evaluation of sleep habits and their corre-
lation with comorbidities such as diabetes, heart disease, obesity, and depression

Patients and (seemingly) healthy individuals

2019 Harvard nanoparticle-enabled smartphone
system [66]

Rapid and sensitive virus detection by means of a microchip labeled with specif-
ically designed platinum nanoprobes using a convolutional neural network. De-
signed for HBV, HCV and Zika virus but can be adapted to SARS-CoV-2

Elderly, vulnerable populations, frontline workers (particularly
those of advanced age)

2019 At-Home Kidney Testing from Healthy.io
[67,68]

Urine analysis at home bymeans of smartphone camera, referral for the Albumin
to Creatinine ratio (ACR) at-home test kit, results available for doctor’s review

Patients with kidney disease and patients at risk of developing
kidney disease (Diabetes mellitus, hypertension etc.)

2018 The Google IDx-Diabetic Retinopathy
(DR) AI diabetic screening system [69,70]

DeepMind convolutional neural network-based Diabetic Retinopathy detection
algorithm

Patients with diabetesmellitus and known or suspectedDiabetic
Retinopathy

2018 EyeArt® by EYENUK [71] Deep Learning-based deep-neural networks system for imaging classification Patients with diabetes mellitus and known or suspected Dia-
betic Retinopathy, patients with age-related macular degenera-
tion, cataract, retinopathy of prematurity, retinal vein occlusion,
and glaucoma

2006–2019 Brain-Computer Interaction (BCI) neu-
roinformatic tools [72–82]

Electroencephalography (EEG)-based self-navigation through virtual worlds,
management of depression and apathy through enhanced environmental stim-
ulation, or application of low-pressure ultrasounds for the activation of neurons
in neurodegeneration. Mechanistically, these might improve dendritic branch-
ing and synaptic density resulting in neurogenesis

Patients with neurodegeneration combinedwith enriched senso-
rimotor stimulations who can benefit from cognitive-behavioral
therapy and art therapy
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Table 1. Continued.
Release date Tool Functionality Target group

2015 Personal care robots (Care-O-bot®,
Robot-Era®, the Zora®, the JustoCat®,
PARO®) [83–88]

Social assistive robots mainly used on a non-medical basis offering assistance
autonomously on patients with reduced decision-making ability and supporting
the services of professional caregivers and geriatricians

Patients with a low level of functionality—autonomy, physi-
cians, caregivers

2019 Clinatec and the University of Grenoble,
France [89]

Amind-reading exoskeleton based on two brain implants that monitor the brain’s
part responsible for movement

Tetraplegic patients

1950 (Instrumental) Activities of Daily Living
(IADL–ADL), Barthel Index (BI), Katz
Index of Independence in Activities of
Daily Living, Functional Independence
Measure (FIM), Activities of Daily Living
(ADL) Profile, Activities of Daily Living
Questionnaire (ADLQ) [29]

Indexes measuring and assessing personal demographic data, current living con-
ditions, health insurance features, personal and family health record including
hereditary diseases, available healthcare resources, physical activity, exercise
program, dietary restrictions, medication (both on prescription and over the
counter medication) records, adverse drug reactions, physical and laboratory ex-
aminations, imaging tests’ findings, functional inquiry, cognitive testing & be-
havior, dental history, vaccination history

Patients with limited functionality (Dementia, Motor deficits,
Spinal Cord Injury, Dementia, Advanced Cancer etc.)
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like the Care-O-bot®, the Robot-Era®, the Zora®, the Jus-
toCat, and the PARO, for monitoring daily activities, still
the acceptance within the general population can be char-
acterized as low, depending on the patients’ age, gender,
cognitive ability, education, culture and social status quo
[83,85–88]. Closing this section, we present the latest pre-
sentation of an exoskeleton controlled by a brain-machine
interface in tetraplegic patients. The French biomedical
research center Clinatec and the University of Grenoble,
France, demonstrated a mind-reading exoskeleton based on
two brain implants that monitor the brain’s part responsible
for movement [89].

4. Discussion
Computational tools and particularly AI has multiple

applications in medicine, specifically in acute clinical care
and in the hospital setting, implementing various special-
ties and influencing healthcare delivery quality. Clinicians
should be aware of the recent advances of AI in geriatrics.
By endorsing programs and systems in their everyday clin-
ical practice, decision-making will become more efficient
and faster, providing different treatment options in individ-
ual patients. These systems will make extensive use of ex-
isting interoperability standards to address interoperability
issues related to heterogeneous data sources, organize, ana-
lyze, and share vast quantities of biomedical research data,
therefore clinicians will also be much more confident about
their clinical decisions. While GAPs are already increas-
ingly applied in nursing homes and individuals’ health pro-
fessionals for diagnostic accuracy, the proposed study en-
hances the scientific community with a new and efficient
Aging Cure and Care tool. However, the implementation of
such computational tools in clinical practice renders a vari-
ety of challenges. First and foremost, efficacy and proved
patient safety can become quite disputable. For considera-
tion, a diagnostic AI algorithm is deemed a high-risk tool
since the consequences of an instant misdiagnosis could po-
tentially prove problematic, even lethal to patients. More-
over, the liability in case of medical errors attributed to such
tools can be quite intricate, varying among regions and leg-
islative systems [95]. Without a doubt, computational tools
whose human input remains minimal appear more trouble-
some comparing to AI advances with more human engage-
ment. However, the deposition of confidential personal
health-related data to this kind of software can also raise
significant concerns.

What is more, a considerable number of individuals
fulfilling the frailty criteria lack the digital skills necessary
for the shift of their care towards computational diagnostics
and management. During the COVID-19 pandemic, pol-
icymakers, healthcare providers and individuals have be-
come more receptive and knowledgeable in terms of digi-
tal health. This familiarization in the context of COVID-
19 or other communicable and non-communicable diseases
has already paved the way of digital literacy among the el-

derly [96]. Cost-effectiveness and accessibility to AI pro-
grams consist of another two limitations that need further
evaluation. For future direction, extensive clinical and non-
clinical trials are necessary to evaluate these significant pa-
rameters for the AI systems to be approved and widely used
by healthcare professionals [97–99]. The current study’s
limitations include the lack of a meta-analytic approach to
assessing the reported tools’ real-life effectiveness. This
can be the scope of a future study. Overall, computational
tools in contemporary geriatrics and frailty management
aim to improve treatments’ effectiveness, reduce costs, and
increase healthcare validity, and capacitate home health
monitoring apps, mobile biometric analyzers, drop detec-
tors, virtual companions, and anti-aging open data research.
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