
Front. Biosci. (Landmark Ed) 2022; 27(9): 267
https://doi.org/10.31083/j.fbl2709267

Copyright: © 2022 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

Disease Markers and Therapeutic Targets for Rheumatoid Arthritis
Identified by Integrating Bioinformatics Analysis with Virtual
Screening of Traditional Chinese Medicine
Jijia Sun1,2, Baocheng Liu1, Ying Yuan3, Lei Zhang1,*, Jianying Wang1,*
1Shanghai Collaborative Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine,
201203 Shanghai, China
2Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
3Teaching and Research Section of Chinese Materia Medica, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203
Shanghai, China
*Correspondence: zhanglei37@sina.com (Lei Zhang); wjy8310@163.com (Jianying Wang)
Academic Editor: Elisa Belluzzi
Submitted: 23 May 2022 Revised: 30 July 2022 Accepted: 9 August 2022 Published: 28 September 2022

Abstract

Objective: The aim of this study was to identify potentially important Rheumatoid arthritis (RA) targets related to immune cells based
on bioinformatics analysis, and to identify small molecules of traditional Chinese medicine (TCM) associated with these targets that have
potential therapeutic effects on RA.Methods: Gene expression profile data related to RA were downloaded from the Gene Expression
Omnibus (GSE55235, GSE55457, and GSE77298), and datasets were merged by the batch effect removal method. The RA key gene
set was identified by protein-protein interaction network analysis and machine learning-based feature extraction. Furthermore, immune
cell infiltration analysis was carried out on all DEGs to obtain key RA markers related to immune cells. Batch molecular docking of key
RA markers was performed on our previously compiled dataset of small molecules in TCM using AutoDock Vina. Moreover, in vitro
experiments were performed to examine the inhibitory effect of screened compounds on the synovial cells of an RA rat model. Results:
The PPI network and feature extraction with machine learning classifiers identified eight common key RA genes: MYH11, CFP, LY96,
IGJ, LPL, CD48, RAC2, and CSK. RAC2 was significantly correlated with the infiltration and expression of five immune cells, with
significant differences in these immune cells in the normal and RA samples. Molecular docking and in vitro experiments also showed
that sanguinarine, sesamin, and honokiol could effectively inhibit the proliferation of RA rat synovial cells, also could all effectively
inhibit the secretion of TNF-α and IL-1β in synovial cells, and had a certain inhibitory effect on expression of the target protein RAC2.
Conclusions: The core gene set of RA was screened from a new perspective, revealing biomarkers related to immune cell infiltration.
Using molecular docking, we screened out TCM small molecules for the treatment of RA, providing methods and technical support for
the treatment of RA with TCM.

Keywords: rheumatoid arthritis; immune cells; differentially expressed genes; PPI network; feature extraction; molecular fingerprint;
molecular docking; synovial cell proliferation; enzyme-linked immunosorbent assay; western blotting

1. Introduction
Rheumatoid arthritis (RA) is a chronic, systemic, in-

flammatory progressive autoimmune disease occurring in
the synovial joints and other organ systems. Although
the underlying pathogenesis remains unclear, RA is gen-
erally considered to be caused by infections and inflamma-
tory mediators [1,2]. The incidence of RA increases with
age, which most commonly manifests in adults aged 35–50
years. The global prevalence rate is approximately 0.5%–
1.0% and the annual average incidence rate is 0.02%–
0.05% [3], which is approximately 3 times greater in
women than that in men [4]. At present, western medicines
are the main treatment for RA in clinical practice; however,
these drugs are associated with high toxicity and side ef-
fects, as well as high treatment costs [5,6]. Traditional Chi-
nese medicine (TCM) has a long history of treating RA, and
rich experience has accumulated in clinical application [7].

In recent years, studies have shown that anti-RA traditional
Chinese medicinal materials and compound prescriptions
have anti-inflammatory, analgesic, immunomodulatory, as
well as multi-level and multi-link therapeutic effects, with
additional advantages such as high safety, less adverse re-
actions, and low price [8,9].

With recent developments of molecular biology, im-
munology, and genetics, the pathogenesis of RA has been
shown to be related to the changes and influences of ge-
netic, bacterial, and viral factors, as well as associated im-
mune cells (e.g., T lymphocytes, B lymphocytes) and cy-
tokines. Indeed, immune cell infiltration plays an important
role in the development and progression of RA. For exam-
ple, CD4+ T cells account for the main inflammatory cell
type invading the synovial tissue, which participate in the
pathological process of RA [10]. Therefore, from the view-
point of the immune system, it is of great value to clarify the
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Fig. 1. Flow chart of the study design.

molecular mechanism of RA and identify new therapeutic
targets by evaluating the infiltration degree of immune cells
and determining the differences in components among in-
filtrating immune cells.

Moreover, given the above-mentioned advantages of
many TCMs and their components, it is of great practical
significance to identify potential effective anti-RA com-
ponents from a large number of TCMs reported to have
pharmacological effects, and directly or indirectly correlate
these components with RA immune cell infiltration therapy.
In other words, the core problem to be solved at present is to
identify new key therapeutic targets related to immune in-
filtration in RA, and to screen out the effective components
of TCMs that act on these targets with potential therapeutic
effects.

Toward this end, in this study, we analyzed public
gene expression profile data from the Gene Expression Om-
nibus (GEO), and screened out a differentially expressed
gene (DEG) set for RA. We further applied bioinformat-
ics approaches, including protein–protein interaction (PPI)
network analysis, machine learning, and immune cell infil-
tration calculation, to identify new potential targets of RA.
Based on our previously compiled active ingredient set of
TCMs, associated small molecules in TCM were screened
out according tomolecular fingerprint similarity andmolec-
ular docking technology. Finally, these targets were veri-
fied and analyzed by in vitro cell experiments using syn-
ovial cells of an RA rat model. The flow chart of the study
design is provided in Fig. 1.

2. Materials and Methods
2.1 DEGs Analysis of RA

The search term “Rheumatoid Arthritis” was queried
in the GEO to obtain expression profile data of genes re-
lated to RA from three datasets GSE55235, GSE55457, and
GSE77298 based on 10 normal samples and 10 RA sam-
ples, 10 normal and 13 RA samples, and 7 normal and 16
RA samples, respectively.

The raw gene expression profile data of all three
RA GEO datasets were downloaded and subjected to pre-
processing, such as standardization, correction, and gene
name annotation using the limma package (version 3.42.2).
The data were combined, and the sva package (version
3.36.0) was used to perform batch-removal correction on
all chip data. DEGs in RA were screened according to
|log2 fold change (FC)| >1.0 and adjusted p value < 0.05.
The ggplot2 package (version 3.3.1) and pheatmap pack-
age (version 1.0.12) were used to plot the heat map and
volcano map corresponding to the screened DEGs. All
the data analysis was done in R language (version 4.0.2,
https://www.r-project.org/).

2.2 Functional Enrichment Analysis of DEGs in RA

The clusterProfiler package (version 3.14.3) was used
for Gene Ontology (GO) functional annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway en-
richment analysis of all DEGs according to p < 0.05, q <

0.05, and Cytoscape (version 3.7.2, https://cytoscape.org/)
software was used to construct an RA gene-pathway net-
work.
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2.3 Key RA Genes Based on PPI Network Analysis
All DEGs identified in RA were imported into the

STRING (version 11.0, https://string-db.org/) database to
construct a PPI network of RA targets, with the parameters
set as the following: organism, Homo sapiens; combined
score threshold, 0.7. The PPI network for RA was plotted
using Gephi (version 0.9.2, https://gephi.org/).

To identify key RA genes in the PPI network, we
used two methods for considering the network node degree,
which differ from previous methods in that they focus on
examining the efficiency of nodes in the disease network.

The maximum connected reduction (MCRi) refers to
the relative maximum connected reduction of the network
after deletion of node vi in the network, which can be used
as an index for measuring the importance of the deleted
node, calculated as follows:

MCRi =
N −Ni

N
(1)

where N represents the total number of nodes connected
to the network before node deletion, and Ni represents the
number of nodes in the maximum connected branch after
deletion of node vi.

Similarly, the efficiency relative reduction (ERRi) of
node vi in the network is calculated as:

E =
1

N(N − 1)

∑
1≤i<j≤N

1

dij
(2)

ERRi =

∣∣∣∣E − Ei

E

∣∣∣∣ (3)

where E is the average value of the reciprocal of the shortest
distance between network nodes, dij is the shortest distance
between two nodes in the network, Ei is the efficiency of the
remaining networks after deleting node vi and ki edges con-
nected to vi. Thus, ERRi represents the relative reduction
of network efficiency after deleting node vi; the larger the
ERRi, the greater the disturbance degree of node vi to the
PPI network.

We included the top genes in terms of the above two
indicators into the RA key gene set based on PPI network
efficiency analysis.

2.4 Key RA Gene Discovery Based on Feature Extraction
According to the sample classification of the normal

group and RA group, we used the RFECV function in the
sklearn package (version 0.24.2) and adopted three dif-
ferent machine learning algorithms, namely least absolute
shrinkage and selection operator (lasso) regression, ran-
dom forest (RF) classifier, and linear support vector ma-
chine (SVM) classification, to perform feature extraction
on the gene expression data of RA samples to screen out

the key genes based on classification features. The gene
sets screened out by these three different machine learn-
ing classifiers were intersected, and the characteristic genes
common to more than two classifiers were selected as the
key RA gene set based on the feature extraction method.

The key RA gene sets based on PPI network analysis
and feature extraction were intersected again to obtain the
core gene set of RA. To verify the disease classification ef-
fect of these core genes, the three differentmachine learning
classifiers mentioned above were used to predict RA clas-
sification, which was evaluated by the area under the re-
ceiver operating characteristic (ROC) curve (AUC) value.
All classification prediction analyses were performed on the
Anaconda3 (https://www.anaconda.com/).

2.5 Immune Cell Infiltration Evaluation and RA Gene
Correlation Analysis

Based on GEO gene expression profile data, CIBER-
SORT Toolkit (version 1.03) was used to analyze immune
cell infiltration in RA, and the abundances of 22 immune
cell types in RAwere calculated. The abundance difference
heat map, correlation heat map, and violin plot of immune
cells in each sample were plotted using the pheatmap (ver-
sion 1.0.12), corrplot (version 0.84), and vioplot (version
0.3.5) packages, respectively. Spearman correlation analy-
sis was used to analyze the correlations between 22 types
of infiltrating immune cells and key genes to identify genes
closely correlated with immune cell infiltration.

2.6 Screening of Small Molecules in TCMs Based on
Molecular Fingerprint Similarity

The chemical information and data of each component
in our previously compiled active ingredient set of natural
traditional Chinese medicines proven to have clear phar-
macological effects, including 432 small molecules [11],
were obtained through the PubChem database (https://pubc
hem.ncbi.nlm.nih.gov/), including the English name, CAS,
PubChem CID, molecular formula, canonical Simplified
Molecular-Input Line-Entry System (SMILES), and SDF
file.

Before molecular docking of TCM small molecules
according to known target receptors, the receptor file con-
taining the original ligands was downloaded from the PDB
database (https://www.rcsb.org/); molecules with a similar
structure to the original ligand were considered as the po-
tential and optimal candidates for further screening using
molecular fingerprint similarity.

According to canonical SMILES, the molecular fin-
gerprint of each compound was calculated using DRAGON
(version 7.0, Kode, Pisa, Italy) software, and the similarity
between the original ligands and TCM small molecules was
calculated by the Tanimoto coefficient:

T (A,B) =
c

a+ b− c
(4)
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Among them, a is the number of descriptors of the ba-
sic fragment in compound A, b is the number of descriptors
of the basic fragment in compound B, and c is the number
of descriptors of the basic fragment shared by compounds
A and B.

Further, the molecular fingerprint similarity coeffi-
cient S(A,B) between any pair of original ligand and TCM
small molecule was obtained. Taking the overall Tani-
moto coefficient value T (A,B) as the background similar-
ity value, the Z value was calculated according to Eqn. 5 to
measure and screen whether the molecular fingerprint simi-
larity between the original ligand and TCM small molecule
was significantly greater than the mean value of overall
background similarity, as follows:

Z =
T (A,B)− S̄(A,B)

sd(S(A,B))
(5)

where S̄ (A,B) is the overall mean and sd(S(A,B)) is the
overall standard deviation.

2.7 Screening Active Components in TCMs Based on
Molecular Docking

The ligand SDF file of all collected TCM small
molecules was downloaded from the PubChem, wherein
the three-dimensional (3D) structure file was directly con-
verted into a PDB file using PyMOL (version 1.6, https:
//pymol.org/2/) and the two-dimensional file was converted
into a PDB file in 3D format using Chem3D (version 19.0,
PerkinElmer, Waltham, Massachusetts, USA). The PDB
file of target receptors was downloaded from the PDB
database, and key target proteins were pre-processed us-
ing PyMOL to remove impurities such as water molecules.
The PDB file of receptors and ligands was then converted to
a PDBQT file using AutoDockTools (version 1.5.6, https:
//autodock.scripps.edu/).

The coordinates of the central position for molecular
docking were determined by referring to the binding site of
the protein receptor and the original ligand, and the dock-
ing center parameter was defined as a box size of 30× 30×
30. AutoDock Vina (version 1.1.2, https://vina.scripps.edu
/) software was used for semi-flexible molecular docking,
the affinity values (kcal/mol) of all small molecules with
the key targets were calculated, and judgment and analysis
were based on the affinity values and docking conforma-
tions.

2.8 In Vitro Verification in RA Rat Synovial Cells
2.8.1 Preparation for Normal Membrane Cells and RA
Synovial Cells

Eight female clean-grade Wistar rats (each weigh =
120± 10 g), were purchased from Shanghai Model Organ-
isms Center, Inc (Shanghai, China). And they were kept in
the company. Rats were divided into 2 groups of 4 animals
each, one for normal and the other was for CIA model.

3 mg/mL of bovine CII in 0.1 M acetic acid was emul-
sified with an equal volume of complete Freund’s adjuvant
(CFA) to create a stable CII/CFA emulsion (10 mg/mL).
Four rats were injected (i.d.) with the CII/CFA emulsion in
the back (0.1 mL) and tail (0.1 mL); the day of administra-
tion was referred to as “day-0”. On day-7, all rats received
0.1 mL of a CII/CFA booster via tail injection (i.d.).

After 14 days of modeling, the degree of posterior
plantar redness and swelling of CIA rats was significantly
different from that of the normal group according to mea-
surement of the plantar volume and Arthritis Score (p <

0.05). These observations were in accordance with the stan-
dard required for an arthritis model, which suggested that
modeling had been successful.

All rats were killed, and soaked by 75% alcohol for
2 minutes. Fur was removed from the rats knee and mus-
cle was separated. The synovial layer tissue was removed
and was placed in physiological saline with Penicillin-
Streptomycin for 5 minutes. The synovial layer tissue from
different group was rinsed by PBS, and then cut into pieces
on petri dish. We used collagenase II mixed with 10%
FCS to digest the pieces of synovial layer, and then added
DMEM to mix all evenly. After the synovial tissue passing
through 200-mesh sieve, we added 4 mL DMEM to mix
these synovial cells well. After Synovial cells were cul-
tured in the incubator, cells were harvested and adjusted to
a concentration of 1 × 107/mL/well.

2.8.2 Influence of Small Molecules on the Proliferation of
Normal Membrane Cells and RA Synovial Cells

Rat RA synovial cells were cultured in RPMI-1640
medium containing 10% fetal bovine serum (Bio IND, Kib-
butz Beit Haemek, Israel), inoculated in 96-well culture
plates at 2000 cells/well, and then various compounds con-
taining sanguinarine, chelidonine, sesamin, honokiol, and
tripterygium glycoside (National Institutes for Food and
Drug Control, Beijing, China) were added at different con-
centrations (1000, 500, 250, 125, 62.5, 31.25, 0 µg/mL),
followed by incubation at 37 °C for 72 h. After discarding
the culture medium, 10 µL of Cell Counting Kit-8 (CCK-
8, DOJINDO, Kumamoto, Japan) reagent was added to
each well for incubation at 37 °C for 4 h, and the absorp-
tion values at 450 nm were measured on an EPOCH multi-
functional microplate reader (BioTek, Winooski, Vermont,
USA). The half-maximal inhibitory concentration (IC50)
values were calculated using GraphPad Prism (version 8,
GraphPad Software, San Diego, CA, USA).

2.8.3 Determination of TNF-α and IL-1β Contents

The cells of CIA rats were subjected to maintenance
culture in RPMI-1640 medium containing 10% FBS on 6-
well plates at 4 × 105 cells/well, and then RPMI-1640
medium containing 10% FBS was added at 1800 µL per
well for culture, followed by the addition of 200 µL of
the compound solutions: sanguinarine (350 µg/mL), che-
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lidonine (500 µg/mL), sesamin (750 µg/mL), and honokiol
(350 µg/mL). Tripterygium glycoside was used as the con-
trol drug and the non-treated group was used as the arthritis
model cell control group. The cells were cultured in an in-
cubator (Model 3111 CO2 incubator; Thermo Fisher, USA)
with 5% CO2 at 37 °C for 72 h. The culture medium was
collected and centrifuged at 400 × g for 5 min, and the
supernatant was collected for detection of rat TNF-α and
IL-1β by enzyme-linked immunosorbent assay (ELISA)
kits (Multi Sciences) according to the manufacturer instruc-
tions.

2.8.4 Changes in Cell Target Proteins Detected by Western
Blotting

The cell samples treated with the various compounds
as described above were collected, subjected to protein de-
termination by the Bradford method, and boiled at 100 °C
for 5 min in loading buffer. The samples were then loaded
onto a 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis gel at equivalent volumes for electrophore-
sis, and the proteins on the gel were transferred onto cellu-
lose acetate membranes using transfer buffer solution. The
samples were blocked with 5% skimmed milk powder for
1 h, and rabbit derived anti rat RAC2 antibody (Abcam,
Cambridge, England) was added at 1:1000. The samples
were placed in a refrigerator at 4 °C overnight, and the goat
anti rabbit IgG (H+L) (Beyotime, ShangHai, China) labeled
with horseradish peroxidase was added at 1:1000. After
washing in Tris-buffered saline with Tween, the samples
were subjected to color development by enhanced chemi-
luminescence and images were captured and analysis using
Fluorescence imaging system (CLiNX, Shanghai, China).
In addition, Image J (version 1.80, https://imagej.nih.gov/i
j/) was used to measure and analyze the gray level of WB
expression.

2.8.5 Statistical Analysis
One-way ANOVA for multiple comparisons, and Stu-

dent’s t test for two groups comparisons were utilized to
analyze the significance of differences. Data were analyzed
by SPSS software (version 18.0, IBM Corp., Chicago, IL,
USA), results were considered as statistically significant if
the p-value was < 0.05.

3. Results
3.1 DEGs in RA

After the combination and batch removal correction of
the GSE55235, GSE55457, and GSE77298 datasets, a total
of 527 DEGs in RA were screened out, including 348 up-
regulated genes and 179 down-regulated genes. The heat
map and volcano plot for the expression levels of the DEGs
are shown in Fig. 2.

3.2 Functional Annotation and Enrichment Analysis
Results of DEGs in RA

Functional annotation and enrichment analysis sug-
gested that the DEGs in RA are mainly involved in various
immune-related functions and pathways. Among the 1233
associated GO biological functions, the DEGs were mainly
concentrated in 24 GO functions, as shown in Fig. 3A.,
namely leukocyte migration (GO:0050900), T cell activa-
tion (GO:0042110), immune response-activating cell sur-
face receptor signaling pathway (GO:0002429), immune
response-activating signal transduction (GO:0002757), etc.

KEGG pathway enrichment analysis suggested that
the DEGs are mainly involved in 39 signaling pathways, in-
cluding cytokine-cytokine receptor interaction (hsa04060),
chemokine signaling pathway (hsa04062), Epstein-Barr
virus infection (hsa05169), viral protein interactionwith cy-
tokine and cytokine receptor (hsa04061), and cell adhesion
molecules (hsa04514); the top 30 main signaling pathways
with enrichment of the highest number of genes are shown
in Fig. 3B and the gene-enrichment pathway network is
shown in Fig. 3C.

3.3 Identification and Analysis of Key RA Genes
We imported the 527 DEGs into the STRING to obtain

the PPI network of RA, as shown in Fig. 4A. Two types of
importance degree values of all genes in the PPI network
were obtained using the MCR and ERR algorithms, respec-
tively, as shown in Fig. 4B.

According to the calculation results, genes that met
the threshold conditions (MCR >0.0065 and ERR >0.005)
were selected, the intersection of which was taken, thus
obtaining 31 key genes based on PPI network analysis, as
shown in Fig. 5A: PCK1, RHOB, AGTR1, MYH11, CFP,
VAMP8, PLA2G7, PTPRC, SEMA4D, STAT1, LY96, ATF3,
SCD, ADCY2, IGJ, PLA2G2D, MCM5, EGFR, ITGA4,
MYC, LPL, IRS2, ZAP70, LILRB2, CD48, GBP1, APOB,
RAC2, EGR1, CSK, and BIRC3.

Using the RFECV tool to extract features and combin-
ing with each of the three machine learning algorithms, 486
genes related to classificationwere screened out by the lasso
regression model, 111 were obtained by the RF classifica-
tionmodel, and 35were extracted by the linear SVMmodel.
After taking the intersection of the genes extracted by the
three classification models, a total of 134 genes with classi-
fication characteristics were obtained (Fig. 5A). After fur-
ther intersecting with the core gene set obtained by PPI net-
work analysis, eight common genes were found: MYH11,
CFP, LY96, IGJ, LPL, CD48, RAC2, and CSK (Table 1).

Further, we took these eight genes as the classification
feature indicators of data samples, used the three machine
learning classification models (Lasso, RF, and SVM) in the
sklearn package again for 50% cross-validation, and calcu-
lated and plotted AUC values and ROC curves of the three
classifier models, as shown in Fig. 5B. The average classi-
fication prediction AUC value of these eight genes in the
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Fig. 2. DEGs analysis results of RA. Heat map (A) and volcano plot (B) of expression analysis of 527 differentially expressed genes
in rheumatoid arthritis (RA) compared with normal control (NC) samples after combination and batch removal of three groups of GEO
chip datasets (GSE55235, GSE55457, and GSE77298).

Table 1. Protein target information of the eight common genes.
Gene names Protein names Uniprot ID

CD48 CD48 antigen P09326
CFP Properdin P27918
CSK Tyrosine-protein kinase CSK P41240
IGJ Immunoglobulin J chain P01591
LPL Lipoprotein lipase P06858
LY96 Lymphocyte antigen 96 Q9Y6Y9
MYH11 Myosin-11 P35749
RAC2 Ras-related C3 botulinum toxin substrate 2 P15153

three classifiers was 0.63, and the highest value was 0.69.
Even though the sample size of RA data included in this
analysis was relatively small, the AUC values of the three
classification models were all greater than 0.6, indicating
that these eight core genes do have certain classification po-
tential for the existing RA samples, suggesting that these
genes have a certain correlation with RA.

3.4 Results of Immune Cell Infiltration Evaluation and
Gene Correlation Analysis

The results of immune cell infiltration analysis are
shown in Fig. 6. Among the 22 types of immune cells in
RA, correlations were found between neutrophils and acti-
vated dendritic cells (ρ = 0.58), neutrophils and resting nat-
ural killer (NK) cells (ρ = 0.59), and resting NK cells and
CD4+ naïve T cells (ρ = 0.50); however, the correlation
coefficients of the infiltration degrees between most other
immune cells were generally low.

Among the 22 types of immune cells, the infiltration of
memory B cells, plasma cells, CD8+ T cells, CD4+ resting
memory T cells, CD4+ activated memory T cells, follicular
helper T cells, gamma delta T cells, activated NK cells, M1
macrophages, resting dendritic cells, activated mast cells,
and eosinophils was significantly different between the nor-
mal group and RA group (p < 0.05).

Spearman correlation analysis showed that six out of
the eight key RA genes were significantly correlated with
the infiltration and abundance of immune cells (p < 0.05),
as shown in Table 2. Among them, CD48 was corre-
lated with infiltration of five types of immune cells, namely
plasma cells (ρ = 0.74), CD4+ naïve T cells (ρ = 0.50),
CD4+ activated memory T cells (ρ = 0.64), gamma delta T
cells (ρ = 0.59), and activatedNK cells (ρ = –0.57). IGJ was
correlated with infiltration of four types of immune cells,
namely memory B cells (ρ = 0.51), plasma cells (ρ = 0.91),
CD4+ activated memory T cells (ρ = 0.62), and activated
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Fig. 3. Functional annotation and enrichment analysis results of DEGs inRA. (A) GO functional enrichment analysis of differentially
expressed genes in RA. (B) KEGG pathway enrichment analysis of differentially expressed genes in RA. (C) Gene-pathway enrichment
network; the dots represent genes and the squares represent pathways.

NK cells (ρ = –0.53). RAC2 was correlated with infiltra-
tion of five types of immune cells, namely plasma cells (ρ
= 0.78), CD4+ resting memory T cells (ρ = –0.54), CD4+
activatedmemory T cells (ρ = 0.56), follicular helper T cells
(ρ = 0.59), and activated NK cells (ρ = –0.57). LY96 and
MYH11 were also correlated with plasma cells and CD4+
activated memory T cells, respectively, andCSK was corre-
lated with plasma cells. Therefore, these six genes, namely
CD48, CSK, IGJ, LY96, MYH11, and RAC2, are potential
therapeutic markers related to immune cell infiltration in
RA.

Moreover, the five types of immune cells correlated
with RAC2 showed significant differences between the nor-

mal and RA samples. Therefore, we selected RAC2 protein
for the subsequent screening and verification of TCM small
molecules.

3.5 Screening of TCM Small Molecules Based on
Molecular Fingerprint Similarity

A PDB file (PDB ID: 2W2V) [12] of RAC2 pro-
tein was downloaded from the PDB database. All four
chains ofRAC2 protein had the known ligand guanosine-5’-
triphosphate (GTP). Therefore, we screened for TCM small
molecules with high similarity to GTP in terms of the chem-
ical structure.

7
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Fig. 4. Identification key RA genes by PPI network. (A) Protein-protein interaction network of RA. (B) Screening of key RA genes
based on the MCR (top) and ERR (bottom) algorithms.

Fig. 5. Identification key RA genes by machine learning. (A) Results of key RA gene screening based on the lasso regression model,
random forest classifier (RFC), and support vector classifier (SVC) feature extraction, and RA core gene discovery based on PPI network
analysis and machine learning feature extraction. (B) Receiver operating characteristic (ROC) curves of disease prediction classification
of the eight core genes.

We collected one SMILES string of GTP (PubChem
CID: 135398633) from the PubChem. The TCM small
molecules and the SMILES strings of GTP were imported
into DRAGON software to calculate the 1024-dimensional
extended-connectivity molecular fingerprints of all small
molecules.

A total of 31 TCM small molecules with similar struc-
tures to GTP were screened out according to a threshold of
Z > 1.0 for subsequent molecular docking screening.

3.6 Screening Results Based on Molecular Docking

Since RAC2 protein has four chains (A, B, C, and D)
and each chain has a corresponding ligand-binding site, we
performed batch molecular docking on four sites in the four
chains of RAC2. Among them, the A-chain binding site co-
ordinate is (5.711, –4.855, 41.735), the B-chain binding site
coordinate is (–10.673, –5.506, 23.999), and the C-chain
binding site coordinate is (10.654, 9.806, –11.671), the D-
chain binding site coordinate is (14.897, 58.007, 29.835).
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Fig. 6. Results of immune cell infiltration evaluation and gene correlation analysis. (A) Infiltration and abundance of 22 types of
immune cells in all RA samples. (B) Heat map of the infiltration and abundance of 22 types of immune cells in RA. (C) Correlation heat
map of 22 types of immune cells in RA. (D) Differences in the infiltration of 22 types of immune cells between RA and normal samples.

According to the scores of docking the 31 small
molecules with the molecules on the different chains of
RAC2, the top 14 TCM small molecules with average affin-
ity values less than –7.0 kcal/mol and with relatively good
scores were as follows: jatrophon, sanguinarine, miroe-
strol, withaferin A, pristimerin, chelidonine, picroside I,
sesamin, gnidimacrin, cephalotaxine, honokiol, oleuropein,
atractylenolide I, and dracorhodin.

Finally, based on themolecular docking results and the
reported literature, we selected four TCM small molecular
compounds for subsequent experimental verification: san-
guinarine, chelidonine, sesamin, and honokiol. It should
be noted that since Jatrophon was out of stock, we cho-
sen sanguinarinewith the second-rankedmolecular docking
score. The other three components were all reported small
molecules of TCM with potential to treat RA (Table 3, Ref.
[13–34]).

The 2D binding conformations of these 4 small
molecules and RAC2were displayed using LigPlot (version
2.2, https://www.ebi.ac.uk/thornton-srv/software/LIGPLO
T/), as shown in Fig. 7.

3.7 Verification with RA Rat Model Synovial Cells
The in vitro CCK-8 assays showed that none of the

screened out TCM compounds had a significant effect on
the proliferation of normal rat synovial cells; however, the

proliferation of RA rat synovial cells to sanguinarine, cheli-
donine, sesamin, and honokiol was significantly decreased,
with IC50 values of 344.3± 3.2µg/mL, 511.7± 4.7µg/mL,
756.8 ± 7.0 µg/mL, and 345.1 ± 3.2 µg/mL, respectively
(Supplementary Material: The curves used to determine
IC50 of these 4 small molecules).

Compared with the normal control group, the levels of
TNF-α and IL-1β produced by rat RA synovial cells signif-
icantly increased, whereas the levels of TNF-α and IL-1β in
cell the culture supernatants of the sanguinarine-, sesamin-,
and honokiol-treated cells significantly decreased, suggest-
ing that these compounds could significantly inhibit the hy-
persecretion of TNF-α and IL-1β in rat RA synovial cells
(Fig. 8A).

Western blotting confirmed that the expression of
RAC2 protein in RA rat synovial cells was significantly
higher than that in normal synovial cells; however, treat-
ment with sanguinarine, sesamin, and honokiol could
significantly suppress the expression of RAC2 protein
(Fig. 8B), and the significant differences in the WB gray
values of the RA group and the three small molecules were
shown in Fig. 8C.
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Table 2. Spearman’s correlation coefficient values of eight core genes with the infiltration of 22 types of immune cells.
22 types of immune cells CD48 CFP CSK IGJ LPL LY96 MYH11 RAC2

B cells naive –0.02 –0.03 –0.31 –0.22 0.07 –0.22 0.21 –0.12
B cells memory * 0.42 0.02 0.26 0.51 0.04 0.17 –0.22 0.36
Plasma cells * 0.74 0.47 0.69 0.91 –0.26 0.71 –0.53 0.78
T cells CD8 * 0.42 0.38 0.41 0.40 –0.30 0.34 –0.25 0.37
T cells CD4 naive 0.50 0.27 0.36 0.37 –0.10 0.29 –0.33 0.49
T cells CD4 memory resting * –0.35 –0.34 –0.45 –0.39 0.34 –0.45 0.39 –0.54
T cells CD4 memory activated * 0.64 0.23 0.41 0.62 –0.22 0.53 –0.54 0.56
T cells follicular helper * 0.47 0.29 0.34 0.42 –0.35 0.22 –0.29 0.59
T cells regulatory (Tregs) –0.34 –0.12 –0.35 –0.39 0.25 –0.35 0.42 –0.42
T cells gamma delta * 0.59 0.24 0.16 0.38 –0.03 0.31 –0.17 0.47
NK cells resting –0.11 0.01 –0.13 –0.12 0.07 –0.10 –0.06 0.02
NK cells activated * –0.57 –0.44 –0.38 –0.53 0.18 –0.41 0.41 –0.57
Monocytes * –0.15 –0.07 –0.13 –0.29 0.01 –0.13 –0.14 –0.18
Macrophages M0 –0.05 0.09 0.11 0.03 0.03 0.15 0.00 0.20
Macrophages M1 * 0.46 0.19 0.06 0.39 –0.17 0.15 –0.06 0.26
Macrophages M2 –0.47 –0.21 –0.08 –0.35 –0.03 –0.21 0.22 –0.47
Dendritic cells resting * –0.25 –0.35 –0.32 –0.36 0.37 –0.47 0.29 –0.44
Dendritic cells activated * –0.03 0.16 0.13 0.01 0.05 0.13 –0.23 0.09
Mast cells resting –0.25 –0.16 –0.13 –0.19 0.29 –0.12 0.28 –0.38
Mast cells activated –0.32 –0.25 –0.38 –0.46 0.11 –0.46 0.18 –0.30
Eosinophils * –0.22 –0.24 –0.35 –0.17 0.20 –0.15 0.22 –0.27
Neutrophils 0.14 0.11 0.23 0.19 –0.13 0.19 –0.33 0.14
With * indicating the significant differences (p< 0.05) of the 22 types immune cells infiltration between the
RA and normal samples.

Table 3. Top 14 traditional Chinese medicine small molecules with mean affinity values less than –7.0 kcal/mol.
Name Formula PubChem CID Mean affinity (kcal/mol) Bioactivity
Jatrophon C20H24O3 5281373 –8.4 Triple-negative breast cancer [13]
Sanguinarine C20H14NO4+ 5154 –8.1 Epithelial ovarian cancer [14]
Miroestrol C20H22O6 165001 –7.7 Improving the antioxidation state in β-naphthoflavone-treated

the livers and uteri [15]
Withaferin A C28H38O6 265237 –7.7 Antidiabetic properties [16]; anti-cancer properties [17]
Pristimerin C30H40O4 159516 –7.7 Breast cancer [18]; colon cancer [19]
Chelidonine C20H19NO5 197810 –7.6 Lipopolysaccharide-induced production of inflammatory medi-

ators [20]; non-small cell lung cancer [21]
Picroside I C24H28O11 6440892 –7.6 Hepatic fibrosis [22]
Sesamin C20H18O6 72307 –7.4 Rheumatoid arthritis [23,24]
Gnidimacrin C44H54O12 3085204 –7.3 HIV [25]
Cephalotaxine C18H21NO4 65305 –7.2 Anti-varicella-zoster virus [26]; inhibiting Zika infection [27]
Honokiol C18H18O2 72303 –7.2 Rheumatoid arthritis [28]
Oleuropein C25H32O13 5281544 –7.1 Metabolic syndrome [29]; antitumor activity [30]
Atractylenolide I C15H18O2 5321018 –7.1 Colon adenocarcinoma [31]; ovarian cancer [32]; anti-

melanoma [33]
Dracorhodin C17H14O3 69509 –7.1 Esophageal squamous cell carcinoma [34]

4. Discussion
RA is a chronic inflammatory autoimmune disease

characterized by infiltration of immune cells into the af-
fected synovium, release of inflammatory cytokines and
degradation of mediators, and subsequent joint damage
[35,36]. With the rapid development of molecular biology
and analysis tools, bioinformatics has provided powerful
strategic markers for the screening of molecules [37,38],

and the CIBERSORT tool has promoted disease analysis
with patterns of immune cell infiltration [39].

Given the limited sequencing data available on RA pa-
tients in existing public databases, we performedDEG anal-
ysis by combining RA chip data from three datasets. Fur-
ther, to ensure the reliability of the results, batch correction
was first performed. Nearly 66% of the DEGs in RA were
up-regulated and 34% were down-regulated. Among the

10

https://www.imrpress.com


Fig. 7. The molecular docking results of these 4 small molecules and RAC2. The 2D conformation diagram of (A) Sanguinarine, (B)
Chelidonine, (C) Sesamin, and (D) Honokiol in the 4 chains of RAC2, from left to right shown the ligand binding poses in chain A, chain
B, chain C, and chain D.
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Fig. 8. Verification with RA rat model synovial cells. (A) Ef-
fects of different small-molecule compounds of TCM on the se-
cretion levels of TNF-α and IL-1β in synovial cells of collagen-
induced arthritis rats. *p< 0.05, **p< 0.01, ***p< 0.001 com-
pared with the model group. (B) Western blots of RAC2 protein
in different groups: Lane 1, sanguinarine treatment; Lane 2, che-
lidonine treatment; Lane 3, sesamin treatment; Lane 4, honokiol
treatment; Lane 5, Tripterygium glycosides treatment (control);
Lane 6, RA model (untreated control); Lane 7, normal rat cells.
(C) Gray value analysis of WB expression of RAC2 in synovial
cells of collagen-induced arthritis rats between RA and different
compounds (#p < 0.05, ##p < 0.01, ###p < 0.001).

key genes correlated with immune cell infiltration, CD48
(log2 FC = 1.24), CSK (log2 FC = 1.05), IGJ (log2 FC =
5.21), LY96 (log2 FC = 1.00), and RAC2 (log2 FC = 1.91)
were up-regulated, whereas onlyMYH11 (log2 FC = –1.50)
was down-regulated.

Many reports have shown that nodes with relatively
large degree values in some networks often do not truly re-
flect their actual roles in PPI networks. Moreover, if the
efficiency of the entire disease network will be substan-
tially reduced after a node is removed from the network,
this can indicate that the node plays a more significant role

in the network. If drugs can interfere with these targets,
the protein regulation relationship within the disease would
be destroyed, offering an effective treatment target. There-
fore, in this study, we used two methods for analysis of net-
work node degree values to identify important nodes in the
PPI networks, which differ from the methods convention-
ally used for such analyses. The MCR and ERR algorithms
adopted in this study were used to measure the actual ef-
ficiency of nodes in the networks to evaluate their impor-
tance.

Based on the combined data of the RA gene expres-
sion profiles from 66 samples, we used feature selection
and adopted three machine-learning classification models
(Lasso, RF, and SVM) to identify the gene set with a signif-
icant classification effect on RA samples. Finally, through
these two analysis methods, we could ensure that the key
genes obtained are not only the important nodes in the
disease protein regulatory network but also characteristic
genes in RA sample classification.

According to the six key genes we finally obtained
with this approach, CD48 is a member of the signaling lym-
phocyte activation molecule family, with a primary role in
the adhesion and activation of immune cells [40]. Other
studies revealed that CD48 is a key immunomodulatory
molecule that affects the prognosis of glioma [41], and it
was also suggested as a potential new target for asthma
treatment [42]. Clinical research has shown that another
one of our key genes in RA, IGJ, is a marker of antibody-
secreting plasma blasts, and 25% of the treated subjects had
an increased mRNA expression level of IGJ at baseline
[43]. Polymorphism of LY96 was correlated with suscep-
tibility to inflammatory bowel disease in the Danish pop-
ulation [44], and also emerged as a significant predictor
of a poorly induced treatment response and the worst sur-
vival rate. A single nucleotide repeat (C8) in the coding
sequence of MYH11 was proposed as a mutation target of
cancer showing microsatellite instability [45]. CSK plays
an important role in regulating intestinal epithelial barrier
function and preventing colitis [46], and can also enhance
the innate immune response to DNA viruses by phosphory-
lating MITA [47].

At present, there have been some reports on the iden-
tification of potential targets of RA based on bioinformat-
ics methods [48,49]. In the work of [41], it was identified
STAT1, RAC2 and KYNU as hub proteins. Consistent with
our findings, RAC2 was also found to be a potential thera-
peutic target in RA.

RAC2 activation is necessary for macrophages to po-
larize to the fibrosis phenotype and is associated with the
progression of pulmonary fibrosis [50]. RAC2 can reg-
ulate the calcification in atherosclerosis by regulating the
production of IL-1β in macrophages [51]. RAC2 mutation
was reported to promote immune dysfunction by promot-
ing RAC2 overactivation, changing GEF specificity, and
impairing GAP function, while retaining key effector in-
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teractions [52]. RAC2 was also identified as a prognos-
tic biomarker and was found to promote the progression of
clear cell renal cell carcinoma [53]. Another study showed
that RAC2 participates in bleomycin-induced lung inflam-
mation contributing to pulmonary fibrosis [54]. Moreover,
some reports have indicated the involvement of RAC2 in
the inflammation-related process of RA [55], and the inter-
actions between STAT1 and RAC2 in nitric oxide regulation
were proposed as candidate therapeutic targets for RA [56].

In the present study, the enrichment analysis showed
that the GO functions of RAC2 mainly involved processes
related to T cell function, such as T cell activation, regu-
lation of immune effector process, regulation of T cell ac-
tivation, and T cell proliferation. In line with this finding,
previous studies showed that RAC2 plays a unique role in
the production of common lymphoid progenitors, plays di-
verse and indispensable roles in the later stage of T cell de-
velopment by regulating survival and proliferation signals,
and plays a very important role in mediating transcription
and cytoskeleton changes during T cell activation [57].

In addition, our KEGG pathway enrichment analy-
sis showed that RAC2 mainly participates in regulation of
the chemokine signaling pathway, B cell receptor signal-
ing pathway, viral myocarditis, leukocyte transendothelial
migration, NK cell-mediated cytotoxicity, and other sig-
naling pathways. Among these pathways, previous studies
have confirmed that the chemokine signaling pathway is in-
volved in the expression of CCL2 in patients with RA [58],
and that the B cells and the B cell signaling pathway are
associated with the pathogenesis and therapeutic targets of
RA [59,60]. Collectively, these findings indicate that RAC2
may be a potential new therapeutic target for RA.

We therefore screened for TCM small molecules as
RAC2 targets focusing on GTP small molecules in the orig-
inal ligands based on molecular fingerprint similarity, fol-
lowed by molecular docking based on the reference posi-
tions on the four different chains of the original ligands to
screen candidates with high treatment potential. Based on
this analysis, four small molecules were screened out with
high affinity: sanguinarine, sesamin, and honokiol, which
were verified to have anti-inflammatory effects using in
vitro assays with synovial cells of a collagen-induced RA
rat model.

To our knowledge, this is the first study that a mul-
tidisciplinary approach has been integrated to discover po-
tential targets of RA and screen small molecules of TCM for
their treatment, and we have established a feasible anti-RA
drug discovery process. However, due to the complexity of
RA and the limitations of experimental conditions, we did
not conduct a comprehensive verification of the molecular
mechanisms and functions of all eight potential RA targets,
but only selected RAC2 for in vitro experimental verifica-
tion. Therefore, the precise functions of targets should be
further elucidated in the future. Although this study found
four small molecules of TCM targeting RAC2 through in

vitro experiments, we did not perform the corresponding in
vivo verification. Further studies are warranted to the actual
therapeutic effect of these small molecules in RA by in vivo
experiments.

5. Conclusions
In summary, we attempted to identify new poten-

tial diagnostic markers of RA with the combination of
PPI network analysis and machine learning, and further
used computer-aided drug design methods such as chemo-
informatics and molecular docking to screen out therapeu-
tic TCM small molecules with therapeutic potential for RA.
The results of this study can provide strong support for fur-
ther appropriate development of TCMs in the treatment of
RA.
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