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Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic and so
it is crucial the right evaluation of viral infection. According to the Centers for Disease Control and Prevention (CDC), the Real-Time
Reverse Transcription PCR (RT-PCR) in respiratory samples is the gold standard for confirming the disease. However, it has practical
limitations as time-consuming procedures and a high rate of false-negative results. We aim to assess the accuracy of COVID-19 classifiers
based on Arificial Intelligence (AI) and statistical classification methods adapted on blood tests and other information routinely collected
at the Emergency Departments (EDs). Methods: Patients admitted to the ED of Careggi Hospital from April 7th–30th 2020 with pre-
specified features of suspected COVID-19 were enrolled. Physicians prospectively dichotomized them as COVID-19 likely/unlikely
case, based on clinical features and bedside imaging support. Considering the limits of each method to identify a case of COVID-19,
further evaluation was performed after an independent clinical review of 30-day follow-up data. Using this as a gold standard, several
classifiers were implemented: Logistic Regression (LR), Quadratic Discriminant Analysis (QDA), Random Forest (RF), Support Vector
Machine (SVM), Neural Networks (NN), K-nearest neighbor (K-NN), Naive Bayes (NB). Results: Most of the classifiers show a ROC
>0.80 on both internal and external validation samples but the best results are obtained applying RF, LR and NN. The performance from
the external validation sustains the proof of concept to use such mathematical models fast, robust and efficient for a first identification
of COVID-19 positive patients. These tools may constitute both a bedside support while waiting for RT-PCR results, and a tool to
point to a deeper investigation, by identifying which patients are more likely to develop into positive cases within 7 days. Conclusions:
Considering the obtained results and with a rapidly changing virus, we believe that data processing automated procedures may provide
a valid support to the physicians facing the decision to classify a patient as a COVID-19 case or not.
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1. Introduction
The severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is responsible for the COVID-19 pandemic.
Since its first report in December 2019 [1], despite great ef-
forts made in almost every country worldwide, this disease
continues to spread globally.

According to the Centre for Disease Control and Pre-
vention indications, the upper respiratory samples, and in
particular the nasopharyngeal specimen, should be col-
lected for RT-PCR based testing of COVID-19 [2].

Unfortunately, RT-PCR has several practical limita-
tions due to time-consuming procedures and to problems
related to the detection rate of viral nucleic acid closely re-
lated to the course of viral infection. The optimal sampling

time is uncertain and subsequently the period of the high
viral load can be missed, resulting in a high rate of false-
negatives [3], while there is a growing interest in the role of
biomarkers in the screening and especially the early detec-
tion of SARS-CoV-2 infection at emergency departments
(EDs) [4,5].

The aim of our study was to assess, through classifica-
tion tools based onmachine learning (ML) and standard sta-
tistical models, the predictive capacity to classify patients as
COVID-19 positive cases from the first wave (April 2020),
starting from diagnosis based on blood tests and other in-
formation routinely collected at the emergency department.
With a rapidly changing virus, we believe that data process-
ing automated procedures may provide a valid support to
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the physicians facing the decision to classify a patient as a
COVID-19 positive or not. We tested different classifiers
to find the best way to combine ML and statistical methods
in the COVID-19 context, in order to improve their effec-
tiveness while preserving the results’ interpretability.

Given the above recalled limitations of RT-PCR test
and as far as the models were developed in early 2020,
when the first wave of COVID-19 occurred and the timing
to swabwas still not well known, the benchmark considered
to train the classifiers is the so called physician’s gestalt,
which stems from a revision of clinical, laboratory (includ-
ing RT-PCR), imaging parameters and a clinical review of
30-day follow-up data. This has been shown to play a key
role in identification of patient infection in the first wave
[6].

In addition, the classifiers were tested on data from
patients from the second wave (October 2020) using, in this
case, as a benchmark, the positivity to the specific RT-PCR
within one week from the access to the ED (not available
in the first dataset). This is in line with the growing body
of evidence suggesting that missed positive patients may
disclosure within 7 days from the admission to hospital [7,
8].

2. Materials and Methods
2.1 Dataset and Analytical Systems

This study was conducted after approval by the local
ethical committee and informed consent was submitted and
signed to the involved patients.

971 consecutive patients at their admission to the ED
of the hospital AOU-Careggi were enrolled starting from
April, 7th to April 30th 2020. Inclusion criteria were: age
≥18 years and first ED evaluation during the study period.
Exclusion criteria were: known diagnosis of COVID-19,
patient’s loss at follow-up after ED discharge with a nega-
tive RT-PCR test result and patient’s refusal to participate
in the study.

Of these, 118 were later classified as cases according
to the physician’s gestalt as described in Nazerian et al. [6],
while the COVID-19 negative were diagnosed with all the
other diagnosis; no noticeable repetition found.

Serum, plasma and blood from peripheral venous sam-
pling were evaluated upon admission to the ED. Hemato-
chemical parameters were evaluated on specific analytical
platforms. In particular: total blood cells count was per-
formed on Sysmex XN analyzer (Dasit, Milan, Italy), while
coagulation and serum biomarkers were evaluated after
centrifugation, plasma samples were tested on ACL-TOP
analyzer (Werfen, Barcelona, Spain) and sera on Cobas
8000 analyzer (Roche, Barsel, Switzerland).

The laboratory variables considered for our analysis
are listed in Table 1:

We also included the following variables (Table 2) not
strictly laboratory related, but easily assessable at the first
emergency:

Table 1. Laboratory parameters measured upon admission to
the ED.

1. White Blood Cells (WBC)
2. Neutrophils (Ne)
3. Lymphocytes (Ly)
4. Platelets (Plt)
5. Hemoglobin (Hb)
6. Lactate Dehydrogenase (LDH)
7. Alanine Transaminase (ALT)
8. Aspartate Aminotransferase (AST)
9. Sodium (Na)
10. Potassium (K)
11. Glucose (Glc)
12. Bilirubin (Bil)
13. Crea (Creatinin)
14. International NormalizedRatio (INR)
15. C-Reactive Protein (CRP)
16. Partial Thromboplastin Time (aPTT)
17. Fibrinogen (Fib)
18. Procalcitonin (PCT)
19. D-Dimer (Dim)
20. Interleukin-6 (IL-6)
21. Troponin-T (TnT)

Table 2. Non-laboratory parameters and other information
commonly collected at the ED.

1. Systolic Blood Pressure (SBP)
2. Diastolic Blood Pressure (DBP)
3. Heart Rate (HR)
4. Oxygen Sauration (sO2)
5. Body Temperature
6. Fever (yes/no)
7. Caugh (yes/no)
8. Dyspnea (yes/no)

Notably, both fever and body temperature were con-
sidered: in particular, fever was referred to at home self-
assessment of body temperature higher than 37.4 ◦C and
considered as a qualitative covariate, while Body Temper-
ature was measured upon the admission to the ED and con-
sidered as quantitative.

Given the characteristics of the first wave, mainly af-
fecting male and geriatric people, we deliberately excluded
from our sets of covariates age and sex. The inclusion of
these covariates would have improved the internal valida-
tion based on the first wave but would have had a worsening
effect of the classification power in subsequent waves.

We decided to use a testing population patient from the
second wave, in order to overcome overfitting matters as
reported in literature [9]. Patients were selected by consec-
utive admission to the ED from 1st to 24th October 2020.
In particular, we used the data from the first 30 admitted
patients who resulted to have a positive molecular test for
COVID-19 within one week and 30 patients with any other
diagnosis (no specific repetition among diagnoses were no-
ticed).
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Fig. 1. Plot of missingness in the laboratory variables, suggesting removal of AST, Dim, TnT.

2.2 Statistical Data Analysis
Recent developments in ML concern automated pro-

cedures to classify units. We here compare seven different
technological approaches that, according to literature, pro-
vide optimal results [10].

The analyses were performed using the R version 3.6.3
(Vienna, Austria), via the package CARET (Classification
and REgression Training).

We used a wrapper method for the feature selection,
combined with cross-validation steps to improve the se-
lection [11,12]. The proposed recursive feature elimina-
tion (RFE) (backward selection algorithm) was combined
with a RF model, and 10-folds cross-validation repeated
for 5 times [11,12]. The set of features for each algorithm
was determined through hyperparameter optimization (grid
search). To tackle the unbalancedness, the Synthetic Mi-
nority Oversampling Technique (SMOTE) computational
method to artificially generate units from the minority class
via the K-nearest neighbor (K-NN) method [13] was used.

3. Results
The pattern of missingness of the laboratory vari-

ables is displayed in Fig. 1. The variables AST, Dim and
TnT show more than 75% of missing values and therefore
were removed from further analysis. Also other variables
(namely Fib, PCT and IL-6) have a rather high percentage
of missingness. However, given their importance, we de-
cided to keep them for further analysis.

Prior the application of various ML techniques, for
each of the laboratory variable, we investigated if some
transformations (such as log transform, quadratic power,
etc.) may lead to an improvement of their discriminatory
power, i.e., their capacity to separate positive from nega-
tive patients. This analysis led us to conclude that the vari-
ables, Ly, LDH, K, Bil, Crea, PCT, INR, IL-6, ALT, may be

better imputed in logarithmic form (after adding 0.01 when
necessary).

Additional preliminary analyses were performed in or-
der to understand the influence of each covariate on the con-
ditional log odds ratio of a patient to be COVID-19 posi-
tive. These concern a semi-parametric Logistic Regression
(LR) against each variable and a parametric LR against each
variable binned into quartiles. The former uses smoothing
techniques based on cubic splines (i.e., third order polyno-
mials constructed to achieve smoothness of the interpolat-
ing function) [14], while the latter is performed by grouping
patients into quartiles, and then fitting a parametric logistic
model against the binned variable considered as a factor.
As an explicative and representative example, in Fig. 2 the
resulting plot for the sO2 variable is presented. Both graphs
show that for this covariate, after the level of 85 there is a
dramatic decrease of the log odds that the patient is a case.

In order to apply the ML and statistical methods, the
dataset was randomly divided in training (80%) and val-
idation set. Therefore, the training set is formed by 778
patients, of which 95 are cases. Furthermore, data coming
from the early-second wave (Oct 01, 2020–Oct 24, 2020)
are also used to verify the accuracy of the classifiers. We
will refer to them as internal (first wave)/external (second
wave) validation sample. Further preliminary data analysis
in the training datasets were performed adapting the method
of Perez-Riverol et al. [15]. In detail, after using K-NN (k
= 5) to impute missing values and a cupping procedure for
outliers, the Ne variable is removed as it exhibits a large
correlation (cutoff 0.7) with WBC and presents higher rate
of missing values in the original dataset. A near zero vari-
ance analysis did not point to further removal.

On the training set, we then used a wrapper method for
the feature selection and cross-validation steps to improve
the selection [5,15]. The proposed recursive feature elimi-
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Fig. 2. An example of the preliminary analyses performed
on all covariates. Here the effect sO2 on the log odds to be a
COVID-19 patient is investigated via: (a) semi-parametric logis-
tic model against the covariate (confidence intervals in grey). (b)
Observed log odds obtained after binning patients into quartiles
plotted against the central point of the interval between consecu-
tive quartiles (in blue the observed log odds for patients with miss-
ing value). The preliminary analysis suggests a possible addition
of a quadratic term of the sO2 variable, which, however, does not
result in a significant effect when considered jointly with the other
covariates.

nation (RFE) (backward selection algorithm)was combined
with a RFmodel, and 10-fold cross-validation repeated five
times [10,11]. This selection algorithm ranks the variables
iteratively according to their importance (determined using
RF) and, at each stage, the least important predictors were
eliminated. The set of hyperparameters for each algorithm
was determined through hyperparameter optimization (grid
search). To tackle the unbalanceness, the Synthetic Mi-
nority Oversampling Technique (SMOTE) computational
method to artificially generate units from the minority class
via the K-nearest neighbor (K-NN) method [13] was used.

The repeated use of RFE indicated 16 covariates as rel-
evant: Fever, Cough, LDH(log), WBC, CRP, Plt, Ly(log),
Dyspnea, Fib, Bil(log), SO2, Na, Hb, PCT(log), Body Tem-
perature, IL-6(log). On these 16 variables, several classi-
fiers have been implemented both parametric (namely LR
and QDA) and non-parametric (namely RF, SVM, NN, K-
NN, NB). In implementing the above classifiers, a Spa-
tial sign transform on the data has been applied, as it is
known that this transform may achieve a better discrimina-
tory power [16], a finding which is confirmed in our anal-
ysis. The imputation method was only used on the training
set in order to preserve the validity of the cross-validation.

Almost all classifiers exhibit a high value of the area
under the ROC curve (AUC), but the best results are ob-
tained when classifiers are implemented on the log trans-
formed data with the rebalancing SMOTE technique. In
this case, with the only exception of SVM and KNN, all
methods applied to the Internal Validation dataset present a
ROC above 0.80 (see Table 3). The external validation also
exhibits a high level of accuracy of precision (see Table 4),
when applied on the log transformed data with the classi-
fiers estimated with the SMOTE technique. In addition, all
classifiers exhibit a good level of Specificity and Sensitiv-

ity in all the tested scenarios, confirming the efficacy of the
proposed approaches. Notice that, depending on the aim
of the classification, Sensitivity could be increased but at
the Specificity expense. We documented that are the clas-
sifiers based on RF, NN and LR are particularly successful.
Since the latter has a parametric form that naturally lends
into a scientific interpretation, next section focuses on the
estimated parameters obtained via implementation of such
model.

Table 3. ROC index (AUC), Sensitivity and Specificity of
classifiers implemented on SMOTE data (Internal Validation

from first wave).
Model ROC (%) Sensitivity (%) Specificity (%)

1 RF 82.35 60.87 90.59
2 NN 83.38 52.17 88.82
3 SVM (radial) 77.95 52.17 86.47
4 K-NN 64.72 47.83 84.12
5 NB 80.43 56.52 82.94
6 LR 86.75 73.91 85.88
7 QDA 82.10 56.52 84.12
RF, Random Forest; NN, Neural Network; SVM, Support Vector
Machine; K-NN, K-nearest neighbor; NB, Naive Bayes; LR, Lo-
gistic Regression; QDA, Quadratic Discriminant Analysis.

Table 4. ROC index (AUC), Sensitivity and Specificity of
classifiers implemented on SMOTE data (External validation

from second wave).
Model ROC (%) Sensitivity (%) Specificity (%)

1 RF 89.70 83.33 100.00
2 NN 83.45 75.00 88.89
3 SVM (radial) 83.45 70.83 86.11
4 KNN 83.85 75.00 91.67
5 NB 79.75 75.00 77.78
6 LR 85.65 70.83 100.00
7 QDA 80.21 66.67 94.44
RF, Random Forest; NN, Neural Network; SVM, Support Vector
Machine; K-NN, K-nearest neighbor; NB, Naive Bayes; LR, Lo-
gistic Regression; QDA, Quadratic Discriminant Analysis.

Focus on the Logistic Model
In Table 5 we reported the estimates of the parameters,

together with their standard errors and p-values (in order to
preserve the interpretation, all variables are here in the orig-
inal scale, with the exception of the log transformation on
the LDH, Ly, Bil, PCT, IL-6). The point and 95% confi-
dence interval estimates of the odds ratios are also reported.
All non-significant variables on SMOTE data appeared to
improve the precision of the classifier in the external val-
idation, and therefore were kept in the classifier (the only
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Table 5. Parameter estimates, standard errors and p-values of the logistic model fitted on SMOTE data.

Estimate Std. Error z value p (>|z|) Odds Ratio
95% CI

Lower Limit Upper Limit

(Intercept) –1.0211 0.1667 –6.13 0.0000 0.3602 0.2598 0.4994
Fever 1.2284 0.1375 8.93 0.0000 3.4158 2.6088 4.4723
Caugh 0.1291 0.1281 1.01 0.3136 1.1378 0.8852 1.4625
LDH(log) 0.6081 0.1989 3.06 0.0022 1.8369 1.2439 2.7127
WBC –0.5338 0.1684 –3.17 0.0015 0.5864 0.4215 0.8157
CRP 0.1849 0.1747 1.06 0.2899 1.2031 0.8543 1.6944
Plt –0.6788 0.1675 –4.05 0.0001 0.5072 0.3653 0.7043
Ly(log) –0.3368 0.1438 –2.34 0.0192 0.7141 0.5387 0.9465
Dyspnea 0.3640 0.1202 3.03 0.0025 1.4391 1.1370 1.8214
Fib 0.5726 0.2079 2.75 0.0059 1.7729 1.1795 2.6647
Bil(Log) –0.3614 0.1369 –2.64 0.0083 0.6967 0.5327 0.9111
sO2 –0.5392 0.1371 –3.93 0.0001 0.5832 0.4458 0.7630
Na 0.5167 0.1338 3.86 0.0001 1.6765 1.2898 2.1792
Hb 0.1235 0.1208 1.02 0.3066 1.1315 0.8929 1.4337
PCT(Log) –1.9303 0.3936 –4.9 0.0000 0.1451 0.0671 0.3138
IL-6(Log) 0.3395 0.2436 1.39 0.1634 1.4042 0.8711 2.2636

exception is Body Temperature). All variables acted in the
expected direction, with the exception of Bil and PCT that
exhibited a significant negative effect. The log odds to be a
case of a patient with Dyspnea was 0.364 higher (that cor-
responded to an increase of 1.1370 on the odds ratio scale)
than a patient without, when both had the same value of the
other covariates. Similarly, at any level of the other covari-
ates, a one-point increase of sO2 decreased the log odds to
be a case of 0.539 (that corresponded to a decrease of 0.583
on the odds ratio scale).

4. Discussion
In the last few years, several research groups are de-

veloping ML methods to support daily clinical practice and
the worldwide pandemic enhanced the efforts in that side
[5]. Our work applied ML methodology and classical sta-
tistical classification models to data coming from routine
blood exams, which are commonly requested at the admis-
sion to the ED. Such exams are ready in a short time and
much cheaper than molecular test or radiological examina-
tions.

Furthermore, despite the fact that the RT-PCR test is
still the gold standard for conclusively diagnosing COVID-
19 infection, there are some concerns about its clinical per-
formance, which is affected by a number of difficult-to-
measure factors like low levels of shedding during incuba-
tion and, despite its known high specificity, its sensitivity
is still debatable [17]. As a matter of fact, among initially
negative patients subjected to repeat SARS-CoV-2 RT-PCR
testing, newly positive results within 7 days at the time of
initial presentation may occur [7].

Notice that, while during the first wave physicians
were facing an unknown disease, in the second wave sev-
eral limitations (as the high rate of false RT-PCR negatives)

were already well documented. As a result, whereas the
30-day review was absolutely necessary for the first wave,
it was not required for the second wave because newmolec-
ular approaches had been created. This validates our deci-
sion to employ the second molecular test when applied to
the second wave data and our use of the physician’s gestalt
when training the model on the first wave data. Since the
two COVID-19 waves were markedly different in terms of
demographic characteristics, we deliberately excluded from
the training dataset age and sex. Keeping them into the
models would have had a worsening effect in the external
validation sample.

LR can be seen both as a good classifier and a tool
to give scientific insights on the subject matter. A thorough
analysis of the calculated parameters reveals that, all 16 fac-
tors affect a patient’s likelihood of being a case in the pre-
dicted way, with the exception of Bil and PCT, which have
a considerable adverse effect. More investigations are re-
quired on this aspect. A possible explanation is that the two
variables do not influence the probability of a patient to be
a COVID-19 case. If so, the unfavorable connection may
be an artifact of the sampling population’s selection pro-
cedure. In fact, patients who present at the ED with high
values of these variables are influenced by diseases other
than COVID-19, assuming the supposition of no effect is
accurate. Since it is rather unlikely that they are affected by
the two diseases at the same time, this fact may induce the
negative association.

Limitations of our study come from the combined ef-
fect of data unbalancedness and missingness. This surely
impacts mostly on the sensitivity of the classifiers, but our
results are however in agreement with previous and recent
studies [5,18]. Further limitation may come from the fact
that, at present, blood tests are not needed, exception done

5

https://www.imrpress.com


for patients with severe COVID-19 symptoms or with com-
plications due to co-morbidities that, however, may affect
blood test results. Recently, other tools considering clin-
ical and epidemiological features are developed and well
described in literature to build risk score to predict SARS-
CoV-2 infection [19]. We claim that training of the model
could be greatly improved if all the covariates that resulted
into relevant according to this and other studies, are mea-
sured for all patients. By doing so, the problem of unbal-
ancedness can be addressed in a more robust way via the
SMOTE rebalancing approach, and the ML and statistical
methods here describedwould then constitute a valid instru-
ment for rapid assessment of a potential COVID-19 positive
patient.

In case of another pandemic, new data should be col-
lected in order to train the classifiers and this may constitute
another limitation.

Anyways, our study is innovative in that we tested for
positivity within a week, in line with the majority of re-
cently published research studies [7,8]. We want to under-
line that proposed algorithms do not claim to be alternative
to the gold standard RT-PCR, but rather to provide an ad-
ditional and impacting complementary information. This
can be used either when the RT-PCR is missing or to iden-
tify, among patients with a negative RT-PCR SARS-CoV-2,
which ones are more likely to result into cases within the 7-
days window, although more recent studies demonstrated
that only patients with a very high clinical probability and
an initially negative result of the RT-PCR justify the need
for retesting [20].

5. Conclusions
In this paper we demonstrated that ML and classical

statistical methods may be applied to common blood tests
upon admittance to the emergency departments when there
is the clinical suspect of COVID-19, given their affordabil-
ity and fast effectiveness.

The focus on the logistic model allows to better un-
derstand data and their trend, while ML models are kind of
black boxes where a complete intuition of the data transfor-
mation remains unknown.

We underline that the use of automated processes to
classify cases may significantly aid clinicians in dealing
with the constantly evolving COVID-19 virus. In this way,
our paper serves more as a manual on how to apply these
techniques and what benefits and drawbacks they might
have. This will support the idea that well trained and prop-
erly tested, routinely updated, automated classifiers may
help clinicians’ decision if implemented in the Laboratory
Information System and the outcome of the classifiers made
available to the ED.
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