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Abstract

Ischemic stroke and cranial radiotherapy may induce brain inflammatory response, oxidative stress, apoptosis and neuronal loss, and
impairment of neurogenesis. Lycium barbarum has anti-oxidation, anti-inflammatory, anti-tumor and anti-aging properties, may produce
both neuroprotective and radioprotective effects. In this narrative review paper, we described the neuroprotective effect of Lycium bar-
barum in different animal models of experimental ischemic stroke and limited studies in irradiated animal models. Relevant molecular
mechanisms are also summarized. It has been shown that in experimental ischemic stroke models, Lycium barbarum produces neuropro-
tective effects by modulating neuroinflammatory factors such as cytokines and chemokines, reactive oxygen species, and neurotransmit-
ter and receptor systems. In irradiation animal models, Lycium barbarum prevents radiation-induced loss of hippocampal interneurons.
Given its minimal side-effects, these preclinical studies suggest that Lycium barbarum may be a promising radio-neuro-protective drug
that can be used as an adjunct treatment to radiotherapy for brain tumor and in the treatment of ischemic stroke. At molecular lev-
els, Lycium barbarum may regulate PI3K/Akt/GSK-3β, PI3K/Akt/mTOR, PKCε/Nrf2/HO-1, keap1-Nrf2/HO-1, and NR2A and NR2B
receptor- related signal transduction pathways to produce neuroprotective effects.

Keywords: ischemic stroke; radiation; radiotherapy; apoptosis; inflammation; oxidative stress; Lycium barbarum; neuroprotective;
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1. Introduction

Stroke, the leading cause of neurologic disease, is the
most common serious manifestation of cerebrovascular dis-
ease [1], resulting in a global annual economic burden. It
has been reported that ischemic stroke accounts for 70–80%
of total stroke events [2]. China is facing the most serious
threat of ischemic stroke in the world [3], which is now the
secondmajor cause of death worldwide [4], and affects both
middle-aged and elderly populations [5,6]. Ischemic stroke
refers to brain tissue and neuronal damage caused by insuf-
ficient blood supply [1], and is caused by an interruption
in cerebral blood flow induced by thrombosis or embolism
[7], leading to neuronal loss, brain atrophy and cognitive
decline, which may also occur in patients with Alzheimer’s
disease [8], motor functional deficits [9], and multiple cog-
nitive functional deficits [10]. Early and rapid restoration
of blood supply within a strict time window is still consid-
ered to be the first choice for the treatment of acute ischemic
stroke [11,12]. However, if the recovery of cerebral blood
flow exceeds a certain time window, it can result in further
neurological damage, resulting in an ischemia-reperfusion
injury [13]. Tissue plasminogen activator has been used
for the treatment of cerebral infarction for over 20 years,

but its side effects limits the prognosis of ischemic stroke
[14]. Therefore, there is an urgent need to find new ther-
apies for treating ischemic stroke. It has been shown that
drugs that possess anti-apoptosis, anti-inflammatory, and
anti-oxidative stress properties, and promote neurogenesis
are effective in the treatment of cerebral ischemia [15–18].
Studies suggest that some Traditional Chinese Medicine
(TCM) and natural compounds have neuroprotective prop-
erties that can be used for treating ischemic stroke [19,20].

With the increasing use of radiation for medical diag-
nosis and therapeutic approaches such as computed tomog-
raphy (CT), positron emission tomography (PET), radio-
therapy and radiopharmaceutical therapy (RPT) of cancers,
the risk of exposure to radiation is increasing. Radiotherapy
has become one of the most common therapeutic methods
for cancer treatment, especially in patients with head and
neck tumors, and brain metastases, these patients are ex-
posed to the risk of radiation-induced brain damage [21].
The brain is very sensitive to radiation exposure. Radia-
tion can affect the central nervous system, leading to mental
retardation, behavioral changes, cognitive impairment, and
neoplastic diseases [22,23]. Although it is well known that
high dose rate radiation causes damage to the brain, skin
and eye [24–27], the effect of low dose radiation on the hu-
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man brain is still unknown. The anti-radiation drug ami-
fostine is limited in clinical practice due to its side effects
[28]. Therefore, it is vital to find drugs with low toxicity,
and effective neuroprotection to limit brain damage.

Traditional Chinese Medicines (TCMs) have a long
history of application in the treatment of human diseases
[29]. Because of their multi-component synergistic effects,
multi-targeted therapeutic benefits, low toxicity and side ef-
fects, and low price, TCMs may have an advantage when
compared to western medicine. Lycium barbarum, a TCM
and food supplement [30], has been used for centuries in
many countries. Lycium barbarum is also known as Wolf-
berry or Goji [31]. The fruit, root bark and leaves of Lycium
barbarum are widely used as food and pharmaceutical ad-
ditives [32], and contains rich chemical components [33].
A large number of studies have shown that it has a vari-
ety of favorable biological effects in patients with diabetes
[32,34], impaired reproductive systems [35,36], eye dis-
eases [37,38], cardiovascular diseases [39,40] and cancers
[41,42]. Lycium barbarum polysaccharide (LBP), the main
active component of Lycium barbarum, has been shown to
possess anti-oxidation, anti-inflammatory, anti-tumor and
anti-aging properties [43–47]. Numerous studies have sug-
gested the potential use of LBP or Lycium barbarum in pro-
tecting against damage induced by experimental ischemic
stroke and radiation exposure [48,49]. In this study, we re-
view the neuroprotective effects andmolecular mechanisms
of Lycium barbarum in experimental ischemic strokes and
radiation exposure.

2. Neuroprotective Effects of Lycium
barbarum on Ischemic Stroke
2.1 Lycium barbarum Inhibits Apoptosis

Mitochondria, the “energy factory” of cells, play an
important role in cellular homeostasis [50]. The brain is an
energy dependent organ and performs its functions via aer-
obic metabolism [51]. In the mitochondrial apoptotic path-
way, cerebral ischemia leads to altered mitochondrial mem-
brane potential and increased permeability [52], which then
causes the release of cytochrome C (Cyt-C) and apoptosis
inducing factor (AIF) and the formation of apoptotic bodies
[53], promoting the activation of pro caspase-9. Activated
caspase-9 can induce the caspase cascade, resulting in the
cleavage and activation of caspase-3 [54]. As a key link
in the mitochondrial apoptotic pathway, caspase-3 specifi-
cally cleaves substrate proteins, such as poly (ADP-ribose)
polymerase (PARP), which in turn leads to PARP hyper-
activation, DNA damage and apoptosis [55,56]. In a mouse
model of middle cerebral artery occlusion (MCAO), pro-
phylactic gavage with LBP for 7 days significantly reduced
neurological deficit scores, the area of cerebral infarction
in the ischemic side, and the apoptosis of neurons. In addi-
tion, LBP pretreatment reversed the increase of caspase-3
protein activity, the decrease of B-cell lymphoma-2 (Bcl-
2) protein expression, and the increase of Bcl-2-associated

X (Bax) protein expression [57,58]. Furthermore, LBP
treatment reduced the expression of Cyt-C, caspase-9 and
cleaved PARP-1 [59]. Caspase-12 precursors are located
in the endoplasmic reticulum [60]. Endoplasmic reticulum
stress specifically activates caspase-12, which then cleaves
downstream proteins such as caspase-3, causing apoptosis
[61]. Cerebral ischemia-reperfusion can induce an increase
of caspase-12 protein and mRNA expression, suggesting
that the endoplasmic reticulum pathway is involved in the
regulation of neuronal apoptosis [62]. In a rat model, gav-
age of LBP twice a day for 3 days improved neurological
function and reduced the water content of brain tissue, and
reduced the expression of caspase-12 protein and mRNA
[63]. This demonstrated that LBP reduced neuronal apop-
tosis by inhibiting caspase-12 in the rat model. Similarly,
a recent study indicated that LBP played a neuroprotective
role by increasing the expression of cyt-C, cleaved caspase-
3, and Bcl-2-associated death promoter, through the NR2B
signal pathway in experimental ischemic stroke [64] (Fig. 1,
Table 1 (Ref. [57–59,63–74])).

2.2 Lycium barbarum Improves the Inflammatory
Response

The inflammatory response is an important target fol-
lowing an acute ischemic stroke. In the classical nuclear
factor-κB (NF-κB) pathway, inhibitors of NF-κB (IκB)
can be phosphorylated by the IκB kinase (IKK) complex
[75], ubiquitinated by ubiquitin ligases and finally degraded
by the proteasome, leading to NF-κB nuclear translocation
and gene transcription [76]. Many factors, including tumor
necrosis factor (TNF) and interleukin 1β (IL-1β), can acti-
vate NF-κB [76], which in turn activates inflammatory cells
in brain tissue after cerebral ischemia, and mediates the ex-
pression of inflammatory cytokines such as tumor necrosis
factor-α (TNF-α), interleukin 6 (IL-6), interleukin-8 (IL-8)
and IL-1β, which exacerbate the ischemia-reperfusion in-
jury [77]. Notably, crosstalk between different interleukins
(ILs) in different immune cells can also affect the outcome
of ischemic stroke [78]. In addition, the mitogen-activated
protein kinase (MAPK) cascade is also highly activated
after ischemic injury. The expression of p38 MAPK is
known to be positively correlated with the expression of the
pro-inflammatory molecules IL-1β, TNF-α, and IL-6 [79].
Therefore, blocking the excessive activation of the MAPK
cascade and the increased production of inflammatory cy-
tokines and is essential to reduce cerebral ischemic injury.

Experiments in mice suggested that LBP significantly
improved the neurological symptoms of the brain and re-
duces the water content and infarct size of brain tissue
[65]. LBP reversed the elevated expression of NF-κB p65,
TNF-α, IL-6 and IL-1β in the ischemic cerebral cortex
[65,66]. The anti-inflammatory effects of LBP were fur-
ther supported by reduced TNF-α and IL-1β mRNA ex-
pression in astrocytes and microglia in the LBP-treated
group, and inhibition of P38 MAPK activation [66]. In ad-
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Fig. 1. Neuroprotective effects and mechanisms of Lycium barbarum on ischemic stroke. Lycium barbarum shows neuroprotective
effects against ischemic stroke by improving inflammation, regulating calcium levels, improving mitochondrial function, inhibiting
apoptosis, and improving oxidative stress.

dition, Liu et al. [80] found that LBP pretreatment signif-
icantly decreased the secretion of inflammatory factors in
lipopolysaccharide-induced peritonitis micemodels (Fig. 1,
Table 2 (Ref. [21,24,81–89]).

2.3 Lycium barbarum Reduces Oxidative Stress
Brain tissue has a higher oxidative metabolism and

fewer antioxidases, and is more sensitive to oxidative stress
than any other organ [90]. Oxidative stress is very im-
portant in the development of many diseases, especially
in ischemic strokes [91–93]. During normal conditions,
the body can produce reactive oxygen species (ROS) dur-
ing aerobic metabolism and there is a balance between
the production and elimination of ROS. As a subtype
of nicotinamide adenine dinucleotide phosphate hydride
(NADPH), the expression of NADPH oxidase 4 (Nox4) sig-
nificantly increases during cerebral ischemia, leading to in-
creased production of ROS [94], and reduced activity of en-
dogenous antioxidant enzymes, such as superoxide dismu-
tase (SOD), glutathione peroxidase (GSH-Px), and catalase
(CAT) [95], which results in decreased cellular structure
and enzymatic activity [96,97]. Excessive ROS-induced
lipid peroxidation can produce large amounts of malon-
dialdehyde (MDA), which further increases brain damage

[48,67]. LBP treatment reduced ROS and MDA, but in-
creased SOD, GSH-Px and CAT production in the mouse
brain with ischemic stroke [67–69]. Western blotting (WB)
results showed that LBP reduced Nox4 protein levels in
the ischemic side of the cerebral cortex [67], and decreased
cerebral ischemia-reperfusion injury (Fig. 1, Table 2).

2.4 Lycium barbarum Alleviates Brain Blood-Brain
Barrier (BBB) Damage and Brain Edema

As an important barrier between the brain and periph-
eral circulation, BBB maintains the homeostasis of the cen-
tral nervous system. It has been reported that the BBB is
destroyed during ischemic stroke resulting in edema for-
mation and hemorrhagic transformation [98,99], which fur-
ther exacerbates the ischemic injury [100]. As a key pro-
tein responsible for water transport in brain, aquaporin-4
(AQP4) mRNA expression is increased after middle cere-
bral artery occlusion, which is consistent with the exacerba-
tion of brain edemamonitored bymagnetic resonance imag-
ing, indicating that the up regulation of AQP4 expression is
involved in the formation of brain edema [101,102]. Matrix
metalloproteinases (MMPs) are mainly expressed in the ip-
silateral ischemic penumbra vascular endothelial cells, and
activated by brain ischemia. The upregulation of matrix
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Table 1. Neuroprotective effects and molecular mechanisms of Lycium barbarum on ischemic stroke.
Compounds Models Strain, sex, age, and

weight
Dosage and time Administration and End

point
Behavioral change Brain effect at cellular level Molecular mechanism References

LBP MCAO model Institute of Cancer
Research (ICR) mice,

male, 27–32 g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit scores↓,
Time spent on

the rotating-stick↑, tail flick
latency↓, number of

autonomous activities↑

p-Akt↑, p-GSK3β (ser9)↑,
p-PDK-1↑, Mcl-1↑, PP2A↓,

GSK3β mRNA↓

PI3K/AKT-GSK3β pathway [72]

LBP MCAO model ICR mice, male, adult,
20–25 g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit scores↓ caspase-3↓, Bax↓, Bcl-2↑ Inhibit apoptosis [57]

LBP MCAO model ICR mice, male, 5–6
weeks, 23–28 g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit scores↓ Bax↓, Bcl-2↑ Inhibit apoptosis [58]

LBP MCAO model ICR mice, male, 6
weeks, 20–25 g

20, 50, 100 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit scores↓ p65 NF-κB↓, TNF-α↓, IL-6↓,
IL-1β↓

Inhibit the activation of
P65NF-κB, anti-inflammatory

[65]

LBP MCAO model ICR mice, male, adult,
20–25 g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Behavioral test
performance↑

p65 NF-κB↓, p38 MAPK↓,
TNF-α↓, IL- 1β↓, IL-6↓,

IL-10↑, IL-1β mRNA↓, TNF-α
mRNA↓

Anti-inflammatory, partly
through inhibiting the

activation of p65 NF-κB and
p38 MAPK

[66]

LBP MCAO model SD rats, half male and
half female, 220–240 g

60, 30, 15 mg/kg, 2
days before insults

Twice daily, intragastric
administration for 3 days

Neurological deficit scores↓ caspase-12 protein↓,
caspase-12 mRNA↓

Inhibit apoptosis [63]

LBP
Four-vessel

occlusion model
Wister rats, male,

220–300 g
20 mg/kg, 7 days
before or/and after

modeling

Once daily, intragastic
administration for 7days

Memory deficits↑ Neuronal survival↑ Inhibit apoptosis
[64]

Oxygen-glucose
deprivation (OGD)

model

Primary cortial neuron
from Wister male rats

100mg/L, after
oxygen-glucose
deprivation

Incubate, 24 h Viability of cortical neurons↑ ROS↓, Bcl-2-associated death
promoter protein ↓, CytC
protein ↓, NR2A protein ↑,

pAkt protein ↑, pCREB protein
↑

Activation of NR2A and
inhibition of NR2B signialing

pathway

LBP MCAO model Kunming mice, male,
25–30 g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

- MDA↓, SOD↑, GSH-Px↑,
CAT↑, LDH leakage↓, ATP↑

Antioxidant, Improve energy
metabolism

[69]

LBP MCAO model Kunming mice, male,
25–30 g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 5 days

- MDA↓, SOD↑, GSH-Px↑,
CAT↑, LDH leakage↓, ATP↑

Antioxidant, Improve energy
metabolism

[68]

LBP MCAO model ICR mice, male, 6
weeks, 20–25 g

20, 50, 100 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit scores↓ Nox4↓, ROS↓, MDA↓, SOD↑,
GSH-Px↑

Antioxidant [67]
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Table 1. Continued.
Compounds Models Strain, sex, age, and

weight
Dosage and time Administration and End

point
Behavioral change Brain effect at cellular level Molecular mechanism References

LBP OGD/RP model primary hippocampal
neurons

15, 30, 60 µg/mL, after
oxygen and glucose
deprivation, before

reperfusion

Incubate - ROS↓, MDA↓, cleaved-caspase3/caspase3↓,
Bcl-2/Bax↑, Beclin 1↓, LC3II/LC3I↓, p62↑,

p-Akt↑, p-mTOR↑

Antioxidant, Inhibit
autophagy, Inhibit

apoptosis,
PI3K/Akt/mTOR signal

pathway

[58]

LBP MCAO model C57BL/6N mice, male,
adult, 10–20 weeks

1, 10 mg/kg, before
insults

Once daily, intragastric
administration for 7 days

Neurological deficit
scores↑,

AQP-4↑, glial fibrillary acidic protein↑, EB
extravasation↓, IgG-leaky↓, occludin↑

Improve injury of cerebral
BBB

[70]

LBP MCAO model SD rats, male, 200–220
g, 8 weeks old

25 mg/kg, before
MCAO

Once daily, injected
intraperitoneally for 4

weeks

Neurological deficits
scores↓

Brain edema ↓, apoptosis↓, IgG leakage↓,
occluding protein↑, claudin-5↑, ZO-1↑

Ameliorate ischemia injury
via protecting BBB

[71]

LBP MCAO model ICR mice, male, 20–25
g

10, 20, 40 mg/kg,
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit
scores↓

Bcl-2↑, Bax↓, Cyt-C↓, caspase-3↓, caspase
-9↓, cleaved PARP-1↓

Attenuate the
mitochondrial apoptosis

pathway

[59]

Lyciumamide
A (LyA)

MCAO model SPF grade, SD rats,
male, 280 ± 20 g

20, 40, 80 mg/kg,
immediately after the

surgery

Peritoneal injection Neurological deficit
scores↓

SOD↑, GPx↑, MDA↓, nuclear Nrf2↑,
cytoplasmic HO-1↑, LDH leakage↓, Bax↓,

Bcl-2↑, cleaved caspase-3↓,
p-PKCε↑, Nrf2↑, HO-1↑

Antioxidant via PKCε/
Nrf2/HO-1 pathway

[73]

OGD/RP model SH-SY5Y cells 0, 5, 10, 20, 40, 80 µΜ Incubate for 8 h before
OGD

LBP
MCAO model ICR mice, male, adult,

28–30 g
40 mg/kg, 7 days
before insults

Once daily, intragastric
administration for 7 days

Neurological deficit
scores↓

Nrf2 mRNA↑, HO-1 mRNA↑, LC3 mRNA↓,
Ca2+↓, MMP level↑, ROS↓, Nrf2↑,
HO-1↑, Keap-1↑, LC3-II↓, Beclin-1↓

Antioxidant via Keap1-Nrf2/
HO-1 pathway

[74]

OGD/RP model PC12 cells 40 µg/mL Incubate for 24 h before
reoxygenation

LBP
Transient global
ischemia injury
rats model

Adult male Wister rats,
220–300 g

20 mg/kg Once daily, intragastric
administration for 7 days

Memory deficits↓
LDH leakage↓, NR2B↓, nNOS↓,

Bad↓, Cyt-C↓, cleaved caspase-3↓, ROS↓,
Ca2+↓, NR2A↑, p-Akt↑, p-CREB↑

Regulate NR2A and NR2B
signal pathway containing

NMDA receptors

[64]

OGD/RP model Embryos of female
Wistar rats at E18

gestation

100 mg/L Incubate for 24 h before
reoxygenation
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Table 2. Radioprotective effects and molecular mechanisms of Lycium barbarum against radiation-induced non-neuronal cell and tissue damage.
Compounds Radiation source

and dose
Strain, sex, age, and weight Dosage and Time Administration and

end point
Behavioral
change

Brain effect at cellular level Molecular mechanism References

The fruits extract of
L. barbarum (LBE) 

γ-ray (whole body),
8.5 and 6.0 Gy

C57BL/6 mice, male,
6–8-week-old

1.0, 3.0, 6.0, and 9.0 g/kg, from 7
days before irradiation to 21 days

post irradiation

Once daily, oral
administration, 28 days

-
TNF-α↓, IL-1β↑, IL-6↑

Immunomodulation and the
synergistically modulating effect

on the gut microbiota and
related metabolites

[81]

X-ray (whole body),
5.5 Gy

BALB/c mice 3.0 g/kg, 7 days before
irradiation to 21 days post

irradiation

Once daily, oral
administration, 28 days

-

γ-ray, 4.0 Gy Rat small intestinal epithelial
cell line 6 (IEC-6)

100, 250, 500, 2000 µg/mL, 24 h
before irradiation

Incubate, 24 h -

Lycium barbarum
polysaccharide fraction
(LBPF)

Ultraviolet (the
dorsal region skin)

HRS/J mice, female,
approximately 8 weeks, -

5% LBPF gel, after irradiation Three times per week,
apply, 4 weeks

- MMP-1↑, MMP-2↑, MMP-9↑ - [85]

LBP Ultraviolet Immortalized human
keratinocytes (HaCaT cells)

300 µg/mL, 24 h berfore
irradiation

Incubate, 24 h - Phosphorylated p38 protein↓,
p38 protein↑, cleaved
caspase-3↓, caspase-3↑,

MMP-9↓

Nrf2/ARE pathway, p38
MAP pathway

[86]

LBP X-rays, 4.0 Gy Kunming mice, male and
female, 18–22 g

50, 100, 200 mg/kg, 2 h after
irradiation

Intraperitoneal
injection, 14 days

- SOD activity↑, MDA Content↓,
CD44↓, CD49d↓

Inhibit apoptosis, antioxidant,
and alter the expression of

adhesion molecule

[83]

LBP  Ultraviolet Human skin fibroblast cell
line (HSF)

300 µg/mL 0.5, 1, 2, 3 and 4 h
before irradiation

Incubate, 0.5, 1, 2, 3
and 4 h

- Nuclear p-Nrf2↑, ROS↓, lipid
peroxide (LPO)↓, SOD↑,
glutathione peroxidase

(GSP-PX)↑

Nrf2 antioxidant pathway [21]

Aqueous and ethanol
extracts of the L. bar-
barum fruit

Ultraviolet Arising retinal pigment
epithelia cell line-19

(ARPE-19)

0–200 µg/mL, 2 h before
irradiation

Incubate, 2 h - ROS↓, γH2AX↓ antioxidant and prevent DNA
damage and cell apoptosis

[24]

LBP Ultraviolet Rat corneal epithelial (RCE)
cells

0, 0.05, 0.1, 0.5, 1, 5, or 10
mg/mL, 24 h before irradiation
and 0–6 h after irradiation

Incubate, 24 h before
irradiation and 0–6 h

after irradiation

- Bcl-2 mRNA↑, Bax mRNA↓,
caspase-3 mRNA↓, caspase-3

protein↓, p-JNK/JNK↓

Attenuate the mitochondrial
pathway and inhibit JNK

phosphorylation

[89]

Lycium ruthenicum
Murr

X-ray (whole body),
5 Gy

Kunming mice, male, 4–6
week old, 25 ± 2 g

2, 4, 8 g/kg, 3, 7, 14 days after
irradiation

Oral administration, 14
days

- caspase-3↓, caspase-6↓, P53↓ Inhibit apoptosis [82]

LBP 60Co-γ (local
irradiation), 2.3 Gy

Wistar rats, male, 160–200 g 10 mg/kg, 6 h before irradiation Once daily, intragastric
administration, 4

weeks

- Bcl-2↑, Bax↓ Inhibit apoptosis [84]

Lycium barbarum
polysaccharide-rich
hydrogel formulation

Ultraviolet HRS/J hairless mice, female,
6-weeks -old

5%, 6 weeks after irradiation Three times a week,
apply, 3 weeks

- c-Fos↓, c-Jun↓, MMP-1↓,
MMP-2↓, MMP-9↓, collagen
I↑, collagen III↑, fibroblast
growth factor-2 (FGF2)↑

MAPK signal pathway [87]

Black wolfberry water
extracts

Ultraviolet HaCaT cells 2 mg/mL, 12 h before irradiation Incubate, 12 h - P38 MAPK↓, P53↓,
caspase-8↓, caspase-3↓, Bcl-2↑

Promote cell proliferation and
prevent cell apoptosis

[88]
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metalloproteinase-9 (MMP-9) exacerbates BBB damage
[103]. In the mouse MCAO model, LBP treatment re-
duced brain edema and Evans Blue (EB) extravasation in
the ipsilateral hemisphere, and vascular luminal leakage of
immunoglobulin G (IgG). The down-regulation of AQP4
and MMP-9 further supports the protective effects of LBP
[70]. A recent study showed that pretreatment with LBP
protected the BBB by significantly reducing the cerebral
infarct volume, cell apoptosis, and IgG leakage, which re-
sulted in decreased hyperglycemia-exacerbated cerebral is-
chemia/reperfusion injury [71] (Fig. 1, Table 2).

3. The Molecular Mechanisms of Lycium
barbarum in Improving Neuronal Damage
after Ischemic Stroke
3.1 PI3K/Akt/GSK-3β Signal Pathway

Glycogen synthase kinase-3 (GSK-3) is a multifunc-
tional serine/threonine protein kinase, belonging to the
glycogen synthase kinase family [104]. Its dysfunction in-
duces a variety of diseases. GSK-3β can be inhibited by
photostatidylinositol-3-kinase (PI3K)-activated protein ki-
nase B (Akt), which is involved in the survival signal path-
way [105,106]. Akt inhibits apoptosis by phosphorylating
GSK-3β [107,108]. There have been an increasing num-
ber of studies involving the drug inhibition of GSK-3 in the
treatment of neurodegeneration and mental diseases [109].
A recent study found that ginsenoside Rd, one of the main
active ingredients in Panax ginseng, could improve cog-
nitive function and reduce tau protein phosphorylation via
the PI3K/Akt/GSK-3β pathway [110]. LBP pretreatment
decreased the incidence of apoptosis in the neurons in the
ischemic brain and increased the expression of myeloid
cell leukemia-1 (Mcl-1). WB and qRT-PCR showed that
the expression of p-Akt, p-GSK-3β (ser9), phosphorylated
3-phosphoinositide-dependent protein kinase 1 (p-PDK-1),
and protein phosphatase 2A (PP2A) increased and GSK-
3β mRNA decreased in the LBP pretreatment group, sug-
gesting that LBP may protect the brain against cerebral
ischemia-reperfusion injury through the PI3K/Akt/GSK-3β
pathway [72] (Fig. 2).

3.2 PI3K/Akt/mTOR Signal Pathway
Activation and modulation of the

PI3K/Akt/mammalian target of rapamycin (mTOR)
signal pathway has been shown to regulate apoptosis and
autophagy [111]. The PI3K/Akt/mTOR signal pathway
has been found to play an important role in angiogen-
esis, including endothelial cell survival, migration and
tube formation [112,113], which suggests that it may
become a promising therapeutic target in ischemic stroke
[114,115]. It has been reported that ginsenoside Rg1
treatment activated the PI3K/Akt/mTOR signal pathway
in cerebral cortical ischemia after strokes [116]. LBP
inhibited neuronal apoptosis by reversing cleaved-caspase
3/caspase 3 and Bax/Bcl-2. In addition, Beclin 1 expres-

sion and microtubule-associated protein 1 light chain 3 II
(LC3-II)/microtubule-associated protein 1 light chain 3 I
(LC3-I) were decreased in the LBP-treated group, but p62
expression was increased, indicating that LBP suppressed
neuronal autophagy, which was further supported by
transmission electron microscopy. A mechanistic study
revealed that LBP treatment increased the expression of
p-Akt and p-mTOR proteins, confirming that LBP may
exert neuroprotective effects through the PI3K/Akt/mTOR
signal pathway [62] (Fig. 2).

3.3 PKCε/Nrf2/HO-1 Signal Pathway
Protein kinase C (PKC) belongs to the ser-

ine/threonine kinase family and mediates the phos-
phorylation of nuclear factor E2-related factor 2 (Nrf2) at
ser-40 site and its antioxidant response [117,118]. Nrf2
is one of the key regulators of endogenous antioxidant
molecules, its nuclear translocation induces the expression
of the cytoprotective gene heme oxygenase 1 (HO-1) [119].
It has been reported that HO-1 is an effective target for the
protection of cerebral ischemia [120]. The cytoplasmic
activity of PKC was decreased and membrane activity
of PKC was increased during cerebral ischemia [121].
Reperfusion injury consistently reduced the levels of Nrf2
and HO-1 [122].

In the Sprague-Dawley (SD) rat model, Lycium bar-
barum treatment improved the neurological deficit score
and brain infarct volume. Furthermore, it reduced oxida-
tive stress, partly and significantly increased the expression
of nuclear Nrf2 and cytoplasmic HO-1 in ischemic cere-
bral cortex; as knocking out either Nrf2 or HO-1 reduces
the protective effect of lyciumamide A (lyA). In addition,
lyA-induced Nrf2 nuclear translocation and the up regula-
tion of HO-1 expression were inhibited by the knockout of
PKCε, suggesting that the neuroprotective effect of lyA is
mediated by activating the PKCε/Nrf2/HO-1 signal path-
way [73].

An in-vitro experiment showed that LyA treatment
reduced lactate dehydrogenase (LDH) leakage, cleaved
caspase-3 levels, Bax/Bcl-2 levels, and the number of apop-
totic cells [73] (Fig. 2).

3.4 keap1-Nrf2/HO-1 Signal Pathway
Kelch-like ECH-associated protein 1 (Keap1) is lo-

calized to the actin cytoskeleton [123]. The Neh2 struc-
tural domain of Nrf2 can be bound to Keap1 in the cy-
toplasm under physiological conditions and subsequently
degraded by ubiquitination, to maintain dynamic stability
[124]. Pathological conditions can induce Nrf2 phospho-
rylation, dissociation from Keap1 and nuclear transloca-
tion, and binds to the nuclear antioxidant response element
(ARE) to promote the expression of antioxidant genes such
as HO-1 [125,126], enhancing the antioxidant capacity of
the organism.
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Fig. 2. Intracellular mechanisms of Lycium barbarum in improving ischemic stroke. Lycium barbarum shows neuroprotective
effects against ischemic stroke through modulation of PI3K/AKT-GSK3β signaling pathway, PI3K/Akt/mTOR signaling pathway,
PKCε/Nrf2/HO-1 signaling pathway, Keap1-Nrf2/HO-1 signaling pathway and NR2B and NR2A-containing NMDA receptor signaling
pathway.

Experiments in mice revealed that ischemic injury dis-
rupted neurological function and cortical brain electrical
activity and reduced cortical blood perfusion on the is-
chemic side, while LBP treatment reversed these abnormal
changes. The expression of Nrf2, HO-1 and Keap-1 were
increased, while the expression of LC3-II and Beclin-1 was
decreased after LBP treatment. Cell experiments revealed
that LBP increased cell survival, reduced intracellular ROS
levels and intracellular free calcium ion content, and stabi-
lizedmitochondrial membrane potential. Nrf2 inhibitor sig-
nificantly reduced the Nrf2 and HO-1 protein content and
increased the expression of Keap-1, LC3-II and Beclin-1
protein on the ischemic side compared to the LBP group,
which was consistent in mouse and cell experiments. These
studies suggest that LBP may protect ischemic brain injury
by regulating the Keap1-Nrf2/HO-1 signal pathway [74]
(Fig. 2).

3.5 NR2A and NR2B Signal Pathway

The activation of different subunits of the glutamate
receptor/N-methyl-D-aspartate receptor (NMDAR) effects
several pathways. For instance, activation of intrasynap-

tic NMDAR 2A (NR2A) stimulates the survival signaling
pathway, while the activation of the extrasynaptic NMDAR
2B (NR2B) triggers the apoptotic pathway. In models of
cerebral ischemia and other neurodegenerative diseases, the
inhibition of NR2B-containing NMDARs are neuroprotec-
tive, while the inhibition of NR2A-containing NMDARs
results in neural death [127,128]. The inhibition of post-
synaptic density-95 (PSD-95) expression selectively atten-
uates excitotoxicity triggered by NMDAR, demonstrating
the importance of PSD-95 in effectively coupling NMDAR
activity to NO toxicity [129]. Once ischemic injury occurs,
neuronal nitric oxide synthase (nNOS) can be transferred to
the cell membrane to form the NR2B-PSD-95-nNOS com-
plex which subsequently produces a large amount of nitric
oxide (NO) resulting in neuronal damage.

In the early ischemic phase, LBP attenuates neu-
ronal damage by preventing the upregulation of NR2B and
nNOS. In the late ischemic phase, LBP reduces calcium in-
flux and mitochondrial permeability, preventing the over-
expression of nNOS, the Bcl-2 associated agonist of cell
death (Bad), Cyt-C, and cleaved-caspase-3 in the NR2B
signal pathway. LBP increased the expression of NR2A,
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p-Akt, and the phosphorylated cAMP response to element
binding (p-CREB). These results suggest that LBP may at-
tenuate ischemic damage to hippocampal neurons by the
NR2A and NR2B signal pathway containing NMDA recep-
tors [64] (Fig. 2).

4. Radioprotective Effects and Molecular
Mechanisms of Lycium barbarum against
Radiation-Induced Damage to the Brain and
Other Organs

Several studies have shown that Lycium barbarum or
Lycium barbarum extract play a vital role against radiation-
induced damage [26,49,81,82]. In the mouse X-ray radi-
ation model, Lycium ruthenicum Murr reversed radiation-
induced decrease of the body weight, alterations in hema-
tology, thymus and spleen indexes, and reduced the expres-
sion of caspase-3, caspase-6 and P53 [82]. LBP inhibited
X-ray-induced apoptosis in bonemarrowmononuclear cells
(BMNC), reduced oxidative damage and decreased the ex-
pression of adhesion molecules CD44 and CD49d [83]. In
the γ-ray radiation model, the extract of L. barbarum re-
duced radiation damage to C57BL/6 mice, BALB/c mice
and the rat small intestinal epithelial cell line 6 (IEC-6)
through immunomodulation and its synergistic effects on
intestinal flora and related metabolites. At molecular level,
it reduced TNF-α, IL-1β and IL-6 expression [81]. In ad-
dition, LBP pretreatment significantly improved the repro-
ductive function of Wistar rats, significantly upregulated
the expression of Bcl-2, while downregulating the expres-
sion of Bax, and inhibited the apoptosis of spermatogenic
cells [84]. Lycium barbarum also promoted cell prolifera-
tion and prevented apoptosis by regulating the expression
of metalloproteinases [85] and modulating the Nrf2/ARE
pathway, and the p38 MAP, MAPK pathway [26,86–88].
It prevented ultra violet (UV)-induced skin and eye dam-
age due to its antioxidant and antiapoptotic effects [27], the
inhibition of the mitochondrial pathway, and the phospho-
rylation of c-Jun NH2-terminal kinase (JNK) [89] (Table 2).

In the brain, Lycium barbarum berry extraction pre-
vented radiation-induced hippocampal neuron loss, and al-
leviated radiation-induced spatial memory and emotional
impairment, and improved the behavioral performance of
BALB/c mice exposed to acute 5.5 Gy X-ray [49]. LBP
pretreatment for 2 weeks reduced brainMDA, but enhanced
SOD and GSH-Px expression. It shortened the escape la-
tency period and space exploration time of SD rats ex-
posed to a single 20 Gy X-ray during theMorris water maze
test. LBP pretreatment for 1 hour significantly inhibited
the apoptosis of hippocampal neurons, increased the ex-
pression of Bcl-2 protein, and decreased the expression of
Bax protein and capsase-3 protein. Furthermore, the pro-
tein expression of PI3K, Akt, andmTOR increased, indicat-
ing that LBP may prevent the radiation-induced apoptosis
of hippocampal neurons through the PI3K/Akt/mTOR sig-
nal pathway [130]. Furthermore, in in-vitro studies, LBP

improved cell viability, and had a neuroprotective role in
spinal cord neurons exposed to 10GyX-ray radiation by up-
regulating the expression of LC3II/I and Beclin-1 [131,132]
(Table 3, Ref. [49,130–132]).

Based on the molecular mechanism of radiation-
induced brain damage seen in these studies [133–137], the
neuroprotective effect of Lycium barbarum in the ischemic
strokemodel and other diseasesmay also apply to radiation-
induce brain damage (Fig. 3).

5. Discussion and Conclusions
Ischemic stroke, caused by a decrease of blood sup-

ply to a certain region of the brain due to obstruction of a
blood vessel, is the second leading cause of death world-
wide [11]. In addition, there is a shift in the ischemic stroke
burden to younger individuals from elderly groups [137].
Despite progress in the understanding of the pathophysio-
logical mechanisms in stroke over the past 30 years, cog-
nitive impairment and depression, the common complica-
tions of stroke [138,139], remains difficult for treatment
and rehabilitation. In this paper, we reviewed the molecu-
lar mechanism of ischemic stroke, including apoptosis, in-
flammation, oxidative stress, and various signal pathways.
A recent study found that the RANKL genetic variation
played an important role in ischemic stroke [140]. Re-
combinant tissue plasminogen activator, the only Food and
Drug Administration approved therapy for ischemic stroke,
has important limitations in the treatment of ischemic stroke
because of the narrow therapeutic time window time of
4.5 h and the potential risk of hemorrhagic transformation
[141,142]. In recent decades, many studies have focused on
the pathophysiology and mechanisms of stroke and found
that neuroprotection is a promising strategy for the treat-
ment of stroke [143]. Unfortunately, most neuroprotective
drugs have failed to translate to clinical practice [144,145].
However, the potential impact of sulfonylures in the out-
come of type 2 diabetic patients with ischemic stroke has
suggested that it can decrease ischemic stroke induced dam-
age [146]. Recently, Traditional Chinese Medicines have
attracted more attention due to its effective neuroprotective
roles. Unlike Western medicine, the Traditional Chinese
Medicines have unique advantages due to their regulatory
effects at multiple targets and organs. LBP, as the main
active ingredient of Lycium barbarum, has been used for
traditional herbal and food supplements for many years in
Asiatic countries. Many studies indicated that LBP play an
anti-oxidative role in oxidative liver injury [147], and it can
protect ganglion cells against retinal ischemic/reperfusion
injury [148]. Song et al. [149] found that LBP could reduce
glucose deprivation-induced injury in PC-12 cells. Sim-
ilarly, several studies have suggested that it can limit is-
chemic stroke injury [64,149]. Considering the neuropro-
tective effect of Lycium barbarum on ischemia stroke in-
jury, Lycium barbarum may be used as a potential thera-
peutic agent for ischemic injury in the future clinical trials.
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Fig. 3. Radioprotective effects and molecular mechanisms of Lycium barbarum against radiation-induce damage. Lycium bar-
barum shows protective effects against radiation through inhibiting oxidative stress, cell apoptosis, reduce hippocampal neuron loss and
improve inflammatory response, specially, modulation of PI3K/Akt/mTOR signaling pathway, MAPK signaling pathway, Nrf2 signaling
pathway, JNK signaling pathway and p38 MAP signaling pathway.

Radiotherapy kills the tumor cells, but also affects the
adjacent normal cells [150], which greatly increases the risk
of radiation-induced brain damage. In addition, radiodi-
agnosis, accidental or environmental high dose/dose rate
radiation contamination can cause biological effects, such
as behavioral disorders, apoptosis, inflammation, neuronal
injury, and oxidative stress [151–154]. Amifostine, a ra-
dioprotective drug used with radiotherapy for patients with
head and neck cancer, is limited in its wide application
due to its relatively large side effects. Therefore, it is ur-
gent to develop radioprotective drugs with low side effects.
Many Traditional ChineseMedicine can improve radiation-
induced damage [155]. The neuroprotective effect of LBP
has been reported in both in vivo and in-vitro models [43].
LBP improves microglia damage induced by bipolar pulse
current by regulating autophagy [156], and Lycium bar-
barum water extract improves brain trauma induced cog-
nitive impairment by prevention of neuronal apoptosis and
promotion of regeneration of hippocampal neurons [157].

Due to many shared neuropathological changes be-
tween ischemic stroke and radiation exposure such as

neuro-inflammation, neuronal damage, apoptosis, oxida-
tive stress, BBB damage, and impaired neurogenesis, the
neuroprotective effect of Lycium barbarum in ischemic
stroke may be applied to radiation-induced brain damage.
Additional extensive research on the radio-neuroprotective
effect of Lycium barbarum will be necessary to determine
its role in clinical practice.

Although more and more attention has been paid to
ischemic stroke, therapeutic treatments are limited to in-
travenous thrombolysis with recombinant tissue plasmino-
gen activator [158,159]. The combined complexity of the
brain structure and the timeliness with which patients re-
ceive treatment compromise clinical treatment of ischemic
stroke [11]. Similarly, the mechanism of radiation-induced
brain damage is still unclear and there is no ideal radiopro-
tective drug in clinical practice. Many experimental stud-
ies have strongly suggested that Lycium barbarum produces
neuroprotective effects on neurological and neuropsychi-
atric diseases, ischemic stroke and injury induced by radia-
tion exposure. These protective effects are mainly achieved
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Table 3. Neuroprotective effects and molecular mechanisms of Lycium barbarum against radiation-induced brain damage.
Compounds Radiation

source and dose
Strain, sex, age,
and weight

Dosage and time Administration and
end point

Behavioral change Brain effect at cellular level Molecular mechanism References

Lycium barbarum
berry extract

X-ray (whole
body), 5.5 Gy

BALB/c mice,
male, 8-week-old,

22 ± 2 g

10 g/kg, 2 h
after irradiation

Once daily, oral
administration, 4

weeks

Tail suspension immobility times↓,
forced swimming immobility times↓,
the average total travelling distance↑,

the average central area staying
time↓, the average escape latency↓,
the average platform crossing time↑,
platform quadrant resident time↑

NeuN immunopositive neurons in the hilus↑,
CB immunopositive interneurons in the the
strata radiatum lacunosum, moleculare
(SRLM) and stratum oriens (SO)↑, PV
positive interneurons in the CA1 stratum
pyramidum (CA1-SP), and the stratum

granulosum of the dentate gyrus (DG-SG)↑

Improves
Radiation-Induced
hippocampal neuron
loss, improvement of
spatial memory and

depression

[49]

LBP
X-ray (Head),

20 Gy
SD rat, male, -,
180–200 g

50 mg/kg,
before

irradiation

Once daily,
intragastric

administration, 2
weeks

The escape latency period↓, space
exploration time↓

MDA↓, SOD activity↑, GSH-Px activity↑ PI3K/Akt/mTOR
signaling pathway and

oxidative stress

[130]

X-ray, 30 Gy Primary
hippocampal

neurons from fetus
of SD rats

50 µg/mL, 1 h
before

irradiation

Incubate, 1 h Phosphatidylinositol-3-kinase (PI3K)↑,
protein kinase B (Akt)↑, mammalian target of

rapamycin (mTOR)↑, B-cell
lymphoma/leukemia 2 (Bcl-2)↑, Bcl-2
associated X protein (Bax)↓, capsase-3↓

LBP X-ray, 10 Gy Primary spinal
cord neurons from

rats

10, 25, 40 mg/L Incubate, 24 h Cell viability↑ LC3II/LC3I↑ Promote autophagy [131]

LBP X-ray, 10 Gy Spinal cord nerve
cells

10, 25, 40 mg/L Incubate, 24 h Cell viability↑ LC3II/LC3I↑, Beclin-1↑, Number of
autophagy lysosomes ↑

Promote autophagy [132]

11

https://www.imrpress.com


by regulating brain oxidative stress, inflammation and neu-
ronal apoptosis. By preventing neuronal loss, less neural
pathway will be destroyed, and more newly generated neu-
rons are integrated into the dentate gyrus-related afferent
and efferent pathways which will reduce ischemic stroke-
and radiation-induced impairment of learning and memory
and patients’ symptoms.

Themolecular mechanisms and neuroprotective effect
of Lyceum barbarum in lacunar versus non-lacunar acute
ischemic stroke will need further study, since the patho-
physiology, prognosis and clinical features of acute small-
vessel ischemic strokes are different from other types of
cerebral infarcts [160]. This review provides evidence that
Lycium barbarum treatment might be a promising treatment
for the protection of the brain against acute ischemic stroke
injury in humans. The radioprotective effect of Lycium bar-
barum on other organs such as skin, eye, reproductive sys-
tems and the intestine may also apply to the brain. Further
studies on the radio-neuroprotective effect of Lycium bar-
barum on other neurodegenerative disorders may provide
the evidence needed to use Lycium barbarum as a supple-
mentary treatment after radiotherapy to prevent acute radi-
ation exposure-induced chronic brain damage.

In this review paper, only limited numbers of stud-
ies on the radio-neuroprotective role of Lycium barbarum
were available. Since ischemic stroke and radiation ex-
posure share many similar neuropathological changes, it is
predicted that further study will provide promising results
to confirm the radio-neuro-protective role of Lycium bar-
barum to translate it for clinical use.
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