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Abstract

Glial cells play an essential role in the complex function of the nervous system. In particular, astrocytes provide nutritive support for
neuronal cells and are involved in regulating synaptic transmission. Oligodendrocytes ensheath axons and support information transfer
over long distances. Microglial cells constitute part of the innate immune system in the brain. Glial cells are equipped with the glutamate-
cystine-exchanger xCT (SLC7A11), the catalytic subunit of system xc−, and the excitatory amino acid transporter 1 (EAAT1, GLAST)
and EAAT2 (GLT-1). Thereby, glial cells maintain balanced extracellular glutamate levels that enable synaptic transmission and prevent
excitotoxic states. Expression levels of these transporters, however, are not fixed. Instead, expression of glial glutamate transporters are
highly regulated in reaction to the external situations. Interestingly, such regulation and homeostasis is lost in diseases such as glioma,
(tumor-associated) epilepsy, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis or multiple sclerosis. Upregulation
of system xc− (xCT or SLC7A11) increases glutamate export from the cell, while a downregulation of EAATs decreases intracellular
glutamate import. Occurring simultaneously, these reactions entail excitotoxicity and thus harm neuronal function. The release of
glutamate via the antiporter system xc− is accompanied by the import of cystine—an amino acid essential in the antioxidant glutathione.
This homeostasis between excitotoxicity and intracellular antioxidant response is plastic and off-balance in central nervous system (CNS)
diseases. System xc− is highly expressed on glioma cells and sensitizes them to ferroptotic cell death. Hence, system xc− is a potential
target for chemotherapeutic add-on therapy. Recent research reveals a pivotal role of system xc− and EAAT1/2 in tumor-associated
and other types of epilepsy. Numerous studies show that in Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s disease,
these glutamate transporters are dysregulated—and disease mechanisms could be interposed by targeting system xc− and EAAT1/2.
Interestingly, in neuroinflammatory diseases such as multiple sclerosis, there is growing evidence for glutamate transporter involvement.
Here, we propose that the current knowledge strongly suggest a benefit from rebalancing glial transporters during treatment.
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1. Introduction

Glial cells play a major role in the central nervous
system (CNS). Comprising different cell types, glial cells
regulate many physiological processes: Astrocytes, par-
ticipating in the tripartite synapse, remove excess levels
of glutamate, thereby enabling proper glutamatergic neu-
rotransmission and preventing extrasynaptic N-methyl-D-
aspartate (NMDA) receptor-induced excitotoxicity [1,2].
Microglia are CNS resident immune cells that regulate the
immune response to threatening stimuli [3]. Oligodendro-
cytes ensheath axons to protect and support them and to
enable rapid information transfer inside neuronal networks
[4].

The excitatory amino acid glutamate plays an impor-
tant role in the homeostasis of the brain [5], thus its regu-

lation by glial transporters is particularly relevant in dis-
eases. In the CNS, neuronal damage can occur through
increased extracellular glutamate, which then triggers cell
death-inducing cascade by the activation of extrasynaptic
NMDA receptors, giving rise to the so-called mechanism of
excitotoxicity [6,7]. This has strong implications for var-
ious diseases of the CNS such as Alzheimer’s disease or
Huntington disease [8]. To regulate glutamate homeosta-
sis, astroglial cell express glutamate exporters and gluta-
mate importers. Through this interplay the level of extra-
cellular glutamate can be regulated. The major glutamate
exporter in the CNS is the system xc−. It is mainly ex-
pressed in the astroglia [9], and during the development of
the rat, the expressions of the system xc− subunits ‘xCT’
or ‘SLC7A11’ (light chain) and ‘4F2hc’ (heavy chain) in-
crease until at least 3 months of age [10]. With aging, sys-
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tem xc− is overexpressed in rats [11]. These findings sug-
gest that with the growing nervous systems, the need to bal-
ance oxidative stress and glutamate homeostastis remains
an important task that is fulfilled by system xc−.

Astroglial glutamate importers such as the excitatory
amino acid transporters 1 and 2 (EAAT1/2) counteract the
extrusion of glutamate. EAATs are sodium-dependent glu-
tamate transporters that are responsible for the removal of
extracellular glutamate by importing glutamate into the as-
trocytes’ cytosol [12]. The examination of both glutamate-
exporting and -importing transporters provides important
insights into the overall astroglial contribution to glutamate
homeostasis and its pathophysiological relevance. The de-
tailed molecular aspects and the physiology of glutamate
transporters are beyond the scope of this plasticity-focused
review. We refer the reader to excellent reviews that com-
prehend this knowledge [13–16].

Oxidative stress can strongly interfere with physio-
logic function. System xc− imports cystine to fuel the an-
tioxidant response of the cells [17] in exchange for gluta-
mate, which is exported to the extracellular fluid. System
xc− activity in astrocytes is not only regulated by glutamate
but also by its second substrate, cystine, since the intracellu-
lar glutathione (GSH) levels can regulate the expression of
system xc− [18]. However, while system xc− contributes
to the antioxidative response [17], its deficiency in system
xc− does not induce oxidative stress by itself, but may dis-
rupt glutamate homeostasis [19].

Neurons in the CNS are susceptible to oxidative stress
due to their high oxygen consumption during metabolism
and the high abundance of lipids, which represent targets
for oxygen radicals [20]. As some neurons are especially
vulnerable to reactive oxygen species, it is important for
the brain to maintain an antioxidative response [21]. The
glutamate-cystine antiporter system xc− is involved in the
antioxidative response, which has been also strongly inves-
tigated in the context of cancer biology [22]. On a molecu-
lar level, the import of cystine through system xc− fuels the
formation of antioxidant glutathione. Inhibiting cystine im-
port through system xc− inhibitors such as erastin promotes
ferroptosis, an iron-dependent form of cell death triggered
by missing antioxidants [23]. In the field of neurooncology,
system xc− thus represents a potential therapeutic target,
and tumor cell death during chemotherapy could potentially
be boosted by add-on therapy with system xc− inhibitors
[24,25].

In this review, wewill focus on the issue of whether al-
terations in glutamate transporter activity are a consequence
of the disease pathology or are part of the pathogenesis
in glioma, tumor-associated epilepsy, Alzheimer’s disease,
Parkinson’s disease, amyotrophic lateral sclerosis, or mul-
tiple sclerosis. We further address the benefits of boost-
ing/inhibiting these proteins and we are going to approach
the question of how to selectively target glial cells, because
of their various responsabilities in the nervous system.

2. Overview of the Function of Glial
Glutamate Transporters System xc− and
EAAT1/2

There is no final consensus yet on the expression lev-
els of the cystine-glutamate antiporter system xc− in differ-
ent CNS cell types. Soria et al. [26] reported co-expression
of system xc− with markers for neurons, as it was shown
in other studies [10,27], and for oligodendrocytes. Recent
findings questioned these data by claiming that system xc−
is expressed mainly in astrocytes, where it is coexpressed
with the sodium-dependent glutamate transporter EAAT1
[9]. System xc− expression was not found in neurons,
oligodendrocytes, or microglia. In line with this, Mesci et
al. [28], could not detect system xc− in motor neurons. In
a systematic approach to evaluate antibody specificity and
technical specifications, it became evident that the antibody
production process and the staining protocols can heavily
impact if system xc− can be detected [29]. Further stud-
ies are required to confirm in which cell system xc− may
be expressed. While we wanted readers to bear in mind this
uncertaintywhen evaluating study results, system xc−mod-
ulation affects every cell type that is in contact with system
xc− modulated extracellular glutamate level regardless of
their individual expression.

Although system xc− expression in neurons is uncer-
tain, its effect on neuronal activity is undebated. Around
the time when Sato et al. [30] used molecular-biological
techniques to clone human system xc− and to describe sys-
tem xc− expression across the brain with in situ hybridiza-
tion [31], the first electrophysiological evidence for system
xc−′s impact on vesicular release was obtained: in acute
brain slices containing the medial prefrontal cortex, bath
application of cystine reduced the frequency of miniature
excitatory postsynaptic currents (mEPSCs) that are the elec-
trophysiological expression of the readily releasable pool
(RRP) of synaptic vesicles [32]. The effect was suppressed
by system xc− inhibitor (S)-4-carboxyphenylglycine [33].
(S)-4-carboxyphenylglycine is a rather unspecific blocker
for system xc− and also acts as an antagonist for the group
1 metabotropic glutamate receptors [34]. This weak recep-
tor specificity of (S)-4-carboxyphenylglycine could inter-
fere with the inhibition of system xc−. There is no indica-
tion that the impact of (S)-4-carboxyphenylglycine on sys-
tem xc− than its modulation of metabotropic glutamate re-
ceptors, since data reveal no direct connection between the
RRP size and group I mGluR activity, at least in the func-
tional context of synaptic long-term depression [35].

In electrophysiological recordings, mEPSCs can only
be detected when action potential-driven release is blocked,
e.g., with the voltage-gated sodium channel blocker
tetrodotoxin (TTX). Spontaneous EPSCs (measured in the
absence of TTX) are not decreased by cystine [33]. Cys-
tine’s dampening effect on mEPSCs is mediated through
group II metabotropic glutamate receptors that balance glu-
tamate release by suppressing synaptic firing upon above-
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threshold extracellular glutamate detection [36]. The in-
crease in extracellular cystine could elevate extracellular
glutamate concentrations, which triggers metabotropic glu-
tamate receptors, which in turn suppress neuronal vesi-
cle release [37,38]. When evoked EPSCs (eEPSC) from
cortical layer 2/3 neurons were recorded, system xc− in-
hibitor sulfasalazine could decrease these eEPSCs [39]. In
mixed primary hippocampus cultures with both astrocytes
and neurons, treatment with system xc− inhibitor erastin
led to a reduction of the RRP size without affecting the re-
cycling pool size [40]. In these cultures, treatment with
system xc− inhibitors erastin [23] and sorafenib [41] re-
sulted in increased extracellular glutamate levels. In addi-
tion to acting on system xc−, sorafenib inhibits several tar-
gets, such as the RAF pathway and the vascular endothelial
growth factor receptor family (VEGFR), which is of par-
ticular importance since VEGF has direct synaptic effects
[42]. The broad range of targets on which sorafenib acts
makes it difficult to determine which target is particularly
relevant in this context. Thus, there is a need for more spe-
cific inhibitors to narrow down the targets involved when
‘dirty drugs’ are used.

The action of system xc− is not restricted to the presy-
naptic site. A study in Drosophila revealed that a reduction
in system xc− reduced extracellular glutamate levels [43].
Specifically, in Drosophila mutants with genetic elimina-
tion of the so-called xCT gene “genderblind”, extracellu-
lar glutamate falls off by 50% compared to wild-type-level
[43]. In response to this reduced glutamate level, the post-
synaptic receptors become more expressed [43]. This ele-
vated postsynaptic receptor expression could be reversed
by exposing postsynaptic glutamate receptors to normal
levels of glutamate [43]. System xc−′s regulation of ex-
tracellular glutamate hence has a direct effect on synap-
tic transmission. This finding was further substantiated
by recordings from the Schaffer collaterals, the CA3-to-
CA1 synapse in the hippocampus, showing that a knock-
out of system xc− leads to more α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors being
expressed at the membrane, and to a strengthened synaptic
transmission [44]. Furthermore, in system xc− deficient sut
mice, long-term potentiation and long-term memory were
decreased, while the basic synaptic transmission was unal-
tered [45]. In line with that normal synaptic transmission,
the assessment of mouse behavior in terms of spontaneous
alternation, rotarod, and open field behavior, revealed that
a genetic knockout of system xc− does not influence these
basic kinds of behavior [46].

Extracellular glutamate may bind to a variety of
receptors, amongst them AMPA receptors, N-methyl-D-
aspartate (NMDA) receptors, or metabotropic glutamate re-
ceptors (mGluRs), and also to glutamate transporters such
as EAAT1/2. While mEPSCs abate upon an excess extra-
cellular glutamate, mGluR1-mediated EPSCs swell [47].
This indicates competition for the extracellular glutamate

between neuronal receptors and glial transporter. Extracel-
lular glutamate levels cannot only be increased by system
xc− activation. Also the inhibition of EAAT1 (GLAST) and
of EAAT2 (GLT1) has similar effects [47]. The interplay
between all different glutamate transporters is complex and
essential in determining how the synaptic transmission is
affected by the manipulation of one of them. This is illus-
trated for example by the finding that system xc− deletion
led to increased expression of EAAT2 [48], which does not
represent a compensatory, but rather a reinforcing mecha-
nism of decreasing extracellular glutamate. The extent to
which glial glutamate transporter-mediated glutamate up-
take (via EAAT1/2) affects neurotransmission is even brain
region-specific: compared with the neonatal rat hippocam-
pus, the expression of EAAT1 and EAAT2 is lower, and
the entry of glutamate into neonatal rat cortical astrocytes
is slower [49].

When pharmacological action on the glutamate trans-
porters is planned, it is important to assess how this broad
inhibition would impact the glutamate transporters on the
diverse glial cells. One promising approach to tackle this
question is the investigation of cell-type specific knock-
outs, e.g., of EAAT2. When EAAT-2 was genetically
knocked out using neuron- or astrocyte-specific Cre-loxP
systems, it turned out that the astrocytic EAAT2-deletion
had more severe effects than the neuronal deletion of
EAAT2 [50]. When astrocytes had lost their glutamate-
importing capacities, mortality and seizure susceptibility
increased [50]. Interestingly, during aging an astrocyte-
specific EAAT2 knock-out differs from a neuron-specific
knock-out on behavioral and transcriptional levels [51],
indicating that the different contributions of neuron- and
astroglial-mediated glutamate imports are directly linked to
behavioral states. These findings stress the fact that it is im-
portant to precisely investigate each transporter and its role
in physiological and pathophysiological settings.

Altogether, glial glutamate transporters control impor-
tant aspects of the physiologic neuronal activity that gives
rise to behavior. In the following paragraph, we will dis-
cuss how these transporters shape astrocytes’ pathophysio-
logical role in the context of different CNS diseases.

3. System xc− and EAAT1/2 in Peritumoral
Astrocytes and Their Impact on Epileptic
Activity

The knowledge that astrocytes are associated with hu-
man disease is growing rapidly [52]. One of the most dev-
astating diseases of the human CNS represents malignant
glioma. Resections—if even possible at all—are incom-
plete at best. The tumors are often treatment resistant and
can progress to higher CNS WHO grades even after early
detection, up to glioma of WHO grade 4 (mostly glioblas-
toma) [53,54]. The expression levels of system xc− in such
highly malignant human glioblastoma cells are positively
correlated with tumor invasion, and negatively correlated
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with patient survival [55,56]. In contrast to the high expres-
sion of system xc− in tumor cells [57,58], the glutamate im-
porters EAAT1 and EAAT2 are abnormally low expressed
in glioma cell lines [59], animal models [60] and human
glioblastoma [61]. It has even been shown that increased
EAAT2 expression inhibits tumor growth [62], further un-
derscoring the idea of glutamate as a proponent of malig-
nant growth [63].

In addition to the harms caused by the tumor itself,
healthy CNS function is often affected in the peritumoral
area as well. In a very recent study, the transcriptome of
human astrocytes that stem from tissue surrounding the tu-
mor site was analyzed [64]. The authors found that peri-
tumoral astrocytes downregulated genes related to reacting
to their microenvironment and synaptic function. Interest-
ingly, amongst those genes were the EAAT2-encoding gene
SLC1A2 and the EAAT1-encoding gene SLC1A3 [64]. In
the peritumoral area of human tumor samples, system xc−
expressionwas not elevated [39], suggesting that solely glu-
tamate importers were downregulated and thereby could
contribute to increase extracellular glutamate levels. In a
tumor-transplant model performed in mice, it was found
that primary CNS tumors release glutamate via system
xc−, which evokes epileptic activity in the peritumoral area
[65]. High expression of system xc− and low expression
of EAAT are biomarkers for glioma-associated seizures
[66,67]. While the primary tumor enhances its glutamate-
releasing capabilities (high system xc− expression), as-
trocytes in the peritumoral area decrease their glutamate-
importing capacities (low EAAT1/2 expression). This leads
to a higher glutamatergic tone in the peritumoral area. As a
result, glioma often coincides with epilepsy [68].

Glutamate transporters are involved in the pathome-
chanisms of epileptic seizures also without glioma as the
underlying cause. In biopsies from patients with pharma-
coresistant temporal lobe epilepsy, qPCR analysis revealed
an upregulation of xCT mRNA [69]. In humans, EAAT1/2
is also involved in epilepsy. Astroglial glutamate trans-
porters EAAT1/2 are investigated in the context of seizures
since almost thirty years ago, in mice, the EAAT2 gene
was located in a chromosomal region known to modulate
neuroexcitability and seizure frequencies [70]. In patients
suffering from pharmacoresistant temporal lobe epilepsy
but without hippocampal sclerosis (i.e., without significant
cell loss), EAAT2 was upregulated in hippocampal subre-
gions, as confirmed by immunohistochemical stainings and
in situ hybridization from post-mortem tissue [71]. In hu-
man epileptic foci in the neocortex, EAAT2 protein expres-
sion was decreased [72], similar to other cohorts of patients
with intractable epilepsy in which EAAT1 and EAAT2were
decreased [73,74]. Taken together, it appears that in human
patients suffering from epilepsy, the glutamate homeosta-
sis is shifted towards an increase in the extracellular gluta-
mate level. However, human studies on measurable levels
of glutamate in epilepsy have yielded mixed results and fur-

ther studies using standardized experimental paradigms are
needed to elucidate this topic [75].

The hypothesis that glutamate excess is contributing
to epileptic seizures [76] was tested in several animal mod-
els with blocked system xc− function: at first, it was de-
scribed that xCT−/− mice have an elevated threshold for
seizures induced by pilocarpine or kainic acid [19]. Thus,
fewer seizures occur in the absence of system xc−. In
these experiments, pilocarpine applications induce seizures
in the temporal lobe via its action on the M1 receptor
and represent a widely used experimental model to study
epileptic seizures [77]. Seizures are induced by kainic
acid because of its analogism with glutamate and the ag-
onistic action on ionotropic glutamate receptors [78]. N-
acetylcysteine as an activator of system xc− could not ex-
ert its usually proconvulsive effects in xCT−/− mice – as-
cribing a seizure-promoting role to system xc− through its
glutamate-extruding activity [19]. In hippocampal rat brain
slices, convulsive agents such as kainic acid, pilocarpine,
and veratridine reduced the EAATs activity and could there-
fore be rescued by the application of a mGluR III agonist
[79]. In this study, the injection of an EAAT inhibitor into
rats exacerbated kainic acid-induced seizures. Thus, more
seizures occured in the absence of EAATs because blockage
of glutamate transporters increased their extracellular con-
centrations. Involving mGluRs, EAAT inhibition in hip-
pocampal pyramidal cells activated mGluR group I and II
receptors and led to epileptic-like activity [80]. Even in ze-
brafish, EAAT2 deficiency led to increased glutamate levels
as well as light-induced seizures in neurons and glial cells
[81].

In a model of self-sustained status epilepticus—where
amygdala-implanted electrodes were used for stimulation
that results in ongoing seizure events—genetic system xc−
inactivation had anticonvulsive and antiepileptogenic ef-
fects, weighing also towards the seizure-promoting role of
system xc− [82]. In their model, pharmacological sys-
tem xc− inhibition (by sulfasalazine treatment) also pre-
vented seizures. In line with this, system xc− null mice
(xCTsut/sut) displayed a reduced occurrence of seizures in a
pentylenetetrazole kindling model, a model in which inhi-
bition of GABAA receptors increases synaptic stimulation
and excitation [83,84]. Although the same authors, how-
ever, later reported lower seizure thresholds in system xc−
null mice after kainic acid or pentylenetetrazole and more
severe seizures [85]—ascribing a seizure-preventing role to
system xc−—it generally appears that targeting glial sys-
tem xc− may support therapy of seizures. In a very recent
study, the system xc− inhibitor sulfasalazine could amelio-
rate seizures that were elicited by astrogliosis [86], ruling
out pharmacological manipulations that potentially may oc-
cur during seizure induction.

In summary, increased expression of system xc− and
reduced expression of EAATs promote epileptic activity
and seizures in peritumoral astrocytes and in temporal lobe
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epilepsy. From zebrafish to humans, a decrease in astroglial
EAAT activity promotes seizures. This raises the hypothe-
sis that a system xc−-driven increase in glutamate promotes
seizures, while the EAAT-driven decrease in extracellular
glutamate prevents seizures. In conclusion, epilepsy treat-
ment might benefit from selectively targeting astrocytic
glutamate transporters in a manner that promotes the ac-
tivity of EAATs but decreases system xc− activity.

4. The Roles of Glutamate Transporters in
Neurodegenerative Diseases and Multiple
Sclerosis

Neurodegenerative diseases like Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis, is
heavily impacting human society. Despite years of research
efforts, our understanding of the pathophysiology of neu-
rodegeneration is still ill-defined [87]. Moreover, up to now
there is no cure for diseased patients. Amongst many cellu-
lar and molecular suspects, astrocytes have been implicated
in neurodegeneration and in neuroprotection [88,89]. In the
following, we specifically discuss the roles of system xc−
and EAAT1/2 in Alzheimer’s disease, amyotrophic lateral
sclerosis, and Parkinsonian disease.

4.1 Alzheimer’s Disease
It is well established that excitotoxicity can lead to se-

vere neuronal cell death in the central nervous system. In
particular, excitotoxicity has been suspected to be also in-
volved in Alzheimer’s disease (AD) pathology [90,91], and
the reduction of extracellular glutamate by targeting gluta-
mate transporters could then prove beneficial for neuronal
survival.

A study in post-mortem tissue from AD patients re-
vealed an increased expression of the light-chain subunit
of system xc− compared to age-matched controls [92]. In
line with this, ADmodel AβPP23mice displayed a stronger
system xc− expression with aging [93]. These transgenic
mice carry a human amyloid-β precursor protein with the
so-called Swedish mutation, a double mutation near the β-
secretase site. Adding the Alzheimer’s disease-related pep-
tide amyloid-β1−40 to neuron-glia-co-cultures amplified
the transcription of system xc− and induced neurotoxicity
[94]. Similarly, the peptide amyloid-β25−35 could evoke
system xc− upregulation in human astroglial cells. This
entailed neuronal cell death, which could be prevented by
adding the system xc− inhibitor sulfasalazine [95]. Taken
together, these studies indicate that in the course of the
disease, system xc− becomes upregulated. AD patients
displayed a reduction of EAAT1 and EAAT2 in the hip-
pocampus or the medial frontal lobe, brain regions be-
ing affected in early disease stages [96]. Application of
Amyloid-β1−42, which is central to AD pathology [97] as
a neurotoxic agent, induced a decrease in the expression of
EAAT1 and EAAT2 in cultured astrocytes [98]. Using an
elegant approach of in vivo two-photon microscopical de-

tection of glutamate with iGluSnFR [99], Hefendehl et al.
[100] have found that glutamate fluctuates and EAAT2 is
downregulated in the vicinity of Amyloid-β plaques. In-
creasing the glutamate transporter EAAT2 expression by
gain-of-function gene targeting [101,102] ameliorated this
phenotype [100]. These data display that glutamate levels
are normalized due to its increased import. In the trans-
genic AβPP23 mice, hippocampal expression of EAAT1
and EAAT2 were also decreased [93]. In conclusion, it can
be stated that AD is accompanied by a decrease in astrocytic
glutamate import capabilities.

Therefore, the question appears how the extracellu-
lar glutamate level develops in human AD patients. While
magnetic resonance spectroscopy in the bilateral posterior
cingulate gyrus showed less glutamate content in AD pa-
tients [103], analysis of the cerebrospinal fluid from pa-
tients with probable AD indicated that glutamate is more
prevalent than in control individuals [104]. Given the dis-
crepancy between AD research performed in mice and what
could be translated to humans in the past [105,106], it would
be important to further examine glutamate levels in hu-
man patients to receive consistent results that are based
on standardized experimental conditions, i.e., at which dis-
ease stage glutamate is measured, in which brain region or
fluid it is measured, and by which method. However, it
appears that glutamate transporter disturbances occur over
the course of the disease—with increased system xc− activ-
ity and impeded EAAT activity—and could be potentially
suited to ameliorate symptoms in patients by selectively tar-
geting them in astrocytes to not interfere with intrinsic neu-
ronal function.

4.2 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegen-
erative disease of motor neurons with the final stage of
paralysis, whose pathogenesis is still unclear and treatment
options are strongly limited to symptomatic approaches
[107].

Recently, it was found for sporadic ALS patients, that
system xc− in their astrocytes is significantly stronger ex-
pressed than in those of healthy subjects [108]. In the
SOD-1mutationmodel of ALS, and also in human samples,
spinal cord-residing microglia expressed more system xc−
than healthy controls [28]. Data from SOD-1 mutated mice
also suggest that increased system xc− activity is a ma-
jor contributor to excitotoxicity-mediated disease activity at
early time points in ALS [109]. Interestingly, a cystine-rich
dietary supplement in the transgenic hSOD1(G93A) mice
has been shown to delay the onset of ALS symptoms, and
survival was even extended when riluzole, a medication for
ALS patients targeting glutamate release [110], was added
to the dietary supplement [111]. This finding demonstrates
that targeting both the oxidative stress and the glutamate
effects proves beneficial for therapy. In summary, system
xc− activity is increased in ALS.
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In post-mortem samples of the spinal cord and mo-
tor cortex of ALS patients, glutamate importer EAAT2
was dramatically decreased [112]. The loss of function
of EAAT2 during ALS has also been demonstrated exper-
imentally on different levels: in an ALS rat model with
SOD-1 mutation, glutamate transport was impaired [113]
and EAAT2 expression was diminished [114]. In several
studies performed in SOD-1 mutated mice, a reduced ex-
pression of EAAT2 in the spinal ccord was observed [115–
119]. EAAT1, however, was not changed over the course
of the disease in the motor cortex from ALS patients or in
transgenic rats expressing the human SOD-1 mutant G93A
[112,119]. Providing a potential therapeutical approach
to the downregulation of glutamate importers, activation
of metabotropic glutamate receptors has proven beneficial
[120]. Based on all this knowledge and technological ad-
vances, in a recent study, EAAT2-based gene therapy in an
ALS mouse model with SOD-1 mutation improved motor
function and survival [121]. A cellular model of ALS with
SOD-1 mutation showed that EAAT2 undergoes enhanced
internalization and degradation, which limits its function to
import glutamate [122]. An early study suggested that de-
fects during the processing of EAAT2 mRNA is the cause
for the lack of protein expression found in the aforemen-
tioned studies [123]. In contrast to EAAT2, alterations in
EAAT1 do not play a major role in ALS [112,124]. Taken
together, ALS is characterized by an increased expression
of system xc−, a reduced expression of EAAT2, and rather
unaffected levels of EAAT1, indicating that enhanced sys-
tem xc− driven glutamate release and impaired EAAT2-
mediated glutamate uptake contribute to ALS pathology.
Both effects appear to occur as a consequence of the dis-
ease and are most probably not the causal agent. Targeting
glutamate homeostasis may represent a beneficial option to
ameliorate ALS symptoms, because neurodegeneration oc-
curing due to excitotoxicity could be slowed down. Future
studies are required to judge this hypothesis and to shed
light on the definite impact of glutamate-driven excitotoxi-
city on the ALS disease course.

4.3 Parkinson’s Disease

Parkinson’s disease (PD) is a disease of the basal
ganglia with strong motor signs that are the result of
neurodegeneration [125]. In mice, PD can be pharma-
cologically modeled using substances such as substance
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-
hydroxydopamine (6-OHDA), or the direct application of
alpha-synuclein, which enables more detailed investiga-
tions of the underlying mechanism of neurodegenerative
changes in PD [126].

After MPTP application to induce parkinsonism in
mice, it was found that xCT expression was increased in
the striatum, but reduced in the substantia nigra, however,
MPTP could induce similar phenotypes in wild-type mice
and mice with a system xc− deletion [127], indicating that

system xc− responds to neurodegeneration but does not af-
fect its induction, at least in this case. Following acute
MPTP application in mice, EAAT2 immunolabeling in the
dorsolateral striatum decreased [128].

In 6-OHDA-lesioned parkinsonian mice, treatment
with levetiracetam—upregulating system xc−—had neu-
roprotective effects in nigrostriatal dopaminergic neurons
[129]. In another study, 6-OHDA treatment induced less
neurodegeneration: a comparison of the substantia nigra
pars compacta of xCT−/− mice with their wild-type litter-
mates suggests that deletion of the glutamate extrusion sys-
tem xc− provides protection against this form of neurode-
generation [130]. When 6-OHDA was applied to the bilat-
eral substantia nigra pars compacta of rats, after two weeks
EAAT1 expression decreased [131]. To counteract this de-
crease in the expression of glutamate importers, ceftriax-
one was able to increase EAAT2 expression in the 6-OHDA
model of Parkinsonian disease [132], similar to what was
found in the MPTP model [133]. Furthermore, EAAT2 ex-
pression was increased inside the basal ganglia following
the clinically relevant L-DOPA application [134].

When nigrostriatal lesions in mice were induced
through the application of the proteasome inhibitor lacta-
cystin, treatment with the anticonvulsant zonisamide ame-
liorated this phenotype without any modulation of sys-
tem xc− [135], implicating that system xc− is neglectable
in some cases of anti-neurodegenerative therapy. With
age, system xc− deficient mice were less prone to this
lactacystin-induced nigrostriatal degeneration [136].

After the application of alpha-synuclein onto astro-
cytes in cultures, or in a synucleinopathy mouse model, the
expression levels of EAAT1 and EAAT2 were increased
[137]. These findings indicate that the glutamate trans-
porter system is responsive to the induction of the disease
as well as the subsequent therapy, making glutamate home-
ostasis a promising target for the modulation of PD symp-
toms.

In an interesting and novel approach, PDwas modeled
in mice by directly targeting the EAATs. When EAAT2 ex-
pression was genetically abrogated in the substantia nigra
pars compacta, mice developed PD-related phenotypes in-
cluding cell death. These observations were associated with
aberrant calcium signaling [138].

In summary, astroglial glutamate transporters—such
as EAAT1/2 and system xc−—are dysregulated in diverse
neurodegenerative diseases. They are implicated in the
pathophysiology underlying those diseases, and they are re-
sponsive to treatment approaches. This underlines the im-
portance of the sensitive regulation of extracellular gluta-
mate for proper CNS function.

4.4 Multiple Slcerosis
In the previous paragraphs, we have highlighted the

contribution of the glial glutamate transporters to CNS
neurodegenerative diseases. Neurodegeneration is often
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accompanied by neuroinflammatory components [139],
which can be cell-mediated by microglia, the CNS resi-
dent immune cells [140], or also T cells [141]. As previ-
ously mentioned, microglia might express system xc− and
thereby might contribute to pathological states [28,142].
We discuss the contribution of glial glutamate transporters
system xc− and EAAT1/2 to neuroinflammation in more
detail using multiple sclerosis (MS) as an example.

In the cerebrospinal fluid of MS patients, the gluta-
mate level is increased [143], which raises the question
of the underlying mechanism. To investigate MS in ani-
mal models, experimental autoimmune encephalomyelitis
(EAE) can be induced to bring key features of MS into the
model animal [144]. Investigations of human monocytes
and EAE revealed an upregulation of system xc− compared
to controls, potentially leading to excitotoxic insults [145].
When system xc− was inhibited by introducing a mutation
in xCT, mice became resistant to the induction of EAE,
indicating a strong role of system xc− in mediating dis-
ease in activity by acting on immune cells [146]. In an-
other study, xCT−/−mice were as susceptible to EAE as
control mice, but mice after bone marrow transplantation
from xCT−/−mice—with therefore xCT-deficient immune
cells—displayed attenuation of EAE [147]. Differences be-
tween both studies could have occurred through the usage
of different antigens for immunization, however, the main
finding of system xc− in EAE severity remains rather in-
dependent from the chosen protocol. The increased sys-
tem xc− activity in EAE mice has been confirmed in 18F-
fluorodeoxyglucose PET scans [148]. In addition to solely
investigating xCT, its molecular and cellular interplay is
of particular importance. Interleukin 1β (IL1β) is an im-
portant factor in EAE and MS [149,150], which regulates
system xc− mRNA and thereby may contribute to excito-
toxicity [151]. The glutamate transporters system xc− and
EAATs are involved in the microglial toxicity to oligoden-
drocytes [142], providing evidence for a complex interplay
between different cell types that are involved in EAE/ MS.

In addition to the many studies that revealed increased
system xc− activity in EAE, the protein expression of
EAAT1/2 in MS patients was found to be decreased in the
vicinity of cortical lesions [152]. EAE rats display an ini-
tial upregulation of EAAT1 and EAAT2 mRNAs, but re-
spective proteins do not follow this pattern [153]. This has
been confirmed in an independent EAE rat study [154]. In
mouse spinal cord from EAE mice, EAAT2 protein is less
expressed [155]. Glutamate transporters are not affected in
all neuroinflammatory models, though: in contrast to re-
sults obtained from EAE, infection with Theiler’s murine
encephalomyelitis virus (TMEV) did not modulate system
xc− expression [127].

EAAT1/2 is decreased, while system xc− is positively
associated with MS, and system xc− inhibition has been
proven to be beneficial for disease activity. These findings
highlight the important role of astrocytes in the regulation

of glutamate homeostasis through plasticity of transporter
expressions during neuroinflammation.

5. Conclusions
In this review we brigded the experimental data with

clinical data on glial glutamate transporters system xc− and
EAAT1/2. We present evidence for the described plasticity
as a consequence of the disease pathology as well as part
of the pathogenic process. We took a closer look at (tumor-
associated) epilepsy, Alzheimer’s disease, Parkinson’s dis-
ease, amyotrophic lateral sclerosis, and multiple sclerosis.

Under physiological conditions, the astroglial gluta-
mate transporters system xc− and EAAT1/2 control neu-
ronal function through pre- and postsynaptic modulation of
synaptic transmission.

For epileptic seizures induced by adjacent tumor tis-
sue, an aberrant glutamate transporter activity appears as
a causative. In contrast, the resulting glutamate levels in
epileptic patients with non-tumor related epileptic disorders
are yet unclear. It would be interesting to take a further look
at the many different pharmacological models that are used
to induce epileptic seizures with many underlying signaling
cascades.

The evidence presented in Alzheimer’s disease
showed that glial glutamate transporter plasticity can be di-
rectly induced via Amyloid-β-induced changes.

In ALS, studies showed how restoring glutamate
transporter works, strongly indicates their pathogenetic role
since those interventions proved beneficial to ameliorate
symptoms and prolong survival. Similarly, the role of glu-
tamate transporters in Parkinson’s disease may be causative
for the disease since treatment approaches directly to these
transporters were beneficial for the disease outcome. Since
multiple sclerosis is the interplay of many cell types and
molecular events that are not fully understood yet, it is more
difficult to categorize changes in glutamate transporters as
causative or consequential.

The role of glial glutamate transporter-mediated plas-
ticity is still ambiguous. The relevance of these proteins
in some brain diseases is increasing and worth for further
studies. Approaches addressing the selectivity of inducers
or inhibitors to glutamate transporters could further deepen
our knowledge of the pathophysiological processes of these
brain disorders in order to improve treatment management.
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