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Abstract

Background: The motivations for and effects of ethanol consumption vary considerably among individuals, and as such, a significant
proportion of the population is prone to substance abuse and its negative consequences in the physical, social, and psychological spheres.
In a biological context, the characterization of these phenotypes provides clues for understanding the neurological complexity associated
with ethanol abuse behavior. Therefore, the objective of this research was to characterize four ethanol preference phenotypes described
in zebrafish: Light, Heavy, Inflexible, and Negative Reinforcement. Methods: To do this, we evaluated the telomere length, mtDNA
copy number using real-time quantitative PCR (qPCR), and the activity of these antioxidant enzymes: catalase (CAT), superoxide dis-
mutase (SOD), and glutathione peroxidase (GPx) in the brain, and the interactions between these biomarkers. Changes observed in these
parameters were associated with ethanol consumption and alcohol abuse. Results: The Heavy, Inflexible, and Negative Reinforcement
phenotypes showed ethanol preference. This was particularly the case with the Inflexible phenotype, which was the group with the great-
est ethanol preference. These three phenotypes showed telomere shortening as well as high SOD/CAT and/or GPx activities, while the
Heavy phenotype also showed an increase in the mtDNA copy number. However, the Light phenotype, containing individuals without
ethanol preference, did not demonstrate any changes in the analyzed parameters even after being exposed to the drug. Additionally, the
PCA analysis showed a tendency to cluster the Light and Control groups differently from the other ethanol preference phenotypes. There
was also a negative correlation between the results of the relative telomere length and SOD and CAT activity, providing further evi-
dence of the biological relationship between these parameters. Conclusions: Our results showed differential molecular and biochemistry
patterns in individuals with ethanol preference, suggesting that the molecular and biochemical basis of alcohol abuse behavior extends
beyond its harmful physiological effects, but rather is correlated with preference phenotypes.
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1. Introduction
Alcohol use disorder (AUD) is a chronic condition

with behavioral, physiologic, and socioeconomic aspects,
characterized by compulsive alcohol intake [1]. In humans,
there are varying established patterns of alcohol consump-
tion: light drinking, heavy drinking, and AUD [2,3]. An-
imal models have been developed to better understand the
mechanisms of ethanol abuse influencing voluntary ethanol
intake [4–6] as well as ethanol preference phenotypes [7,8].
In the context of alcohol abuse, vulnerability to alcohol de-
pendence is associated with biological, psychological, so-
cial, and environmental conditions. Evidence suggests that
genomic instability and cell disorders, mainly related to

telomere shortening, mitochondrial dysfunction, and alter-
ations in the antioxidant system, are parameters associated
with alcohol abuse [9–12].

Aside from its role in accelerating physiological ag-
ing, alcohol abuse has been proposed as one of the factors
responsible for telomere shortening, which may be a bidi-
rectional relationship [13–15]. In a behavioral study, Kang
et al. (2017) [10] suggested that impulsive election of alco-
hol consumption is associated with shorter telomere length.
Other studies have also suggested that telomere shortening
is associated with behavioral changes [16] and risk factors,
such as exposure to stress and adversity in childhood, which
are also linked with mental illness [17–19].
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Telomere shortening is related to mitochondrial dys-
function and oxidative damage [20–22]. Mitochondrial
dysfunctions cause telomere shortening, while telomere
damage can lead to biosynthesis reprogramming, mito-
chondrial dysfunctions, and increased oxidative stress [23].
Shortening telomeres below a certain critical length lim-
its cell proliferation; and consequently has implications for
oncogenesis, cardiovascular disease, diabetes, liver cirrho-
sis, mental/cognitive disorders, depression, and drug abuse
[24–28].

Mitochondria dysfunction is related to ethanol abuse
and is heavily involved in the generation of oxidative stress
[29], as it produces indiscriminate amounts of reactive oxy-
gen species (ROS) that may lead to oxidative cell damage
[30]. In cellular respiration, mitochondria consume large
amounts of molecular oxygen and contribute significantly
to the production of ROS, and, at the same time, they are the
main targets of oxidative damage [31]. The number of mi-
tochondria may vary according to the cell energy demand,
or in response to stressful conditions [32,33]. The levels
of antioxidants and pro-oxidants may play a role in this ad-
justment mechanism of mitochondrial mass or the number
of mitochondrial DNA copies (mtDNA) in the cells [34].
Measurement of mtDNA content using real-time quantita-
tive PCR (qPCR) has been proposed as a method of identi-
fying biomarkers in mitochondrial dysfunction studies [35].
Associated with behavior alterations, higher mtDNA copy
numbers have been seen in individuals with major depres-
sion, depressive disorders, and anxiety [33]. High mtDNA
copy numbers have also been found in the blood of peo-
ple with head and neck squamous cell carcinoma associated
with smoking and smokeless tobacco, betel quid chewing,
and alcohol consumption [36].

Ethanol abuse promotes alterations in antioxidant en-
zyme activities, such as catalase, glutathione peroxidase,
and superoxide dismutase, that contribute to oxidative
stress, cellular disturbances, and damage [37–39]. The bal-
ance between ROS production and antioxidant defenses de-
termines the degree of cellular oxidative stress [40]. Ox-
idative stress is also associated with ethanol-induced ag-
gressive and suicidal behavior, and neuropsychiatric disor-
ders such as Alzheimer’s, schizophrenia, depression, anx-
iety, and drug/alcohol abuse [41–46]. In the brain, oxida-
tive stress induced by alcohol abuse is related to behavioral
changes associated with addiction [47].

Mitochondrial dysfunction leads to increased mito-
chondrial biogenesis and produces indiscriminate amounts
of ROS, which can cause oxidative cell damage, such as
telomere shortening [48], causing a cyclic effect involving
telomeric shortening, oxidative stress, and mitochondrial
dysfunction. With this in mind, we aimed to evaluate these
parameters in a behavioral change context using an ethanol
preference protocol.

Many research models have been used to study the ef-
fects of alcohol abuse, often aiming to identify the molecu-

lar patterns related to changes in behavior and loss of con-
trol over ethanol consumption [49–51]. Research models
that are based on behavioral studies and define ethanol pref-
erence suggest differential individual responses, indicating
phenotypic distinctions in ethanol preference [7,8].

To deepen the understanding of the relationship be-
tween behavioral phenotypes and molecular modulations
related to ethanol preference, we established a protocol us-
ing zebrafish (Danio rerio) based on the Conditioned Place
Preference test (CPP). We describe four phenotypes corre-
sponding to ethanol preference in juvenile zebrafish (Light,
Heavy, Inflexible, and Negative Reinforcement) and found
differential gene regulation in these groups associated with
ethanol abuse (drd1, drd2, grin1a, gria2a, gabbr1b, and
lrrk2) [7]. Ethanol-seeking behavior is complex; as estab-
lished in the literature, it is related to telomere shortening
and is associated with oxidative stress and mitochondrial
dysfunction. As these parameters have their own modula-
tory mechanisms, we aimed to establish ethanol preference
phenotypes in adult zebrafish and evaluate the mentioned
parameters in the brains of these animals (i.e., telomere
shortening, antioxidant enzyme activity, and mtDNA copy
number) to further examine the relationship between these
parameters and ethanol preference phenotypes.

2. Materials and Methods
2.1 Animals and Experimental Conditions

Two independent experiments were carried out using
the protocol described by Paiva for juveniles [7], however,
adults were used in this study. For Experiment 1, we used
85 wild-type, shortfin zebrafish (Danio rerio) of heteroge-
neous backgrounds and both sexes, which were obtained
from Ecofish (Minas Gerais, Brazil). Animals were 4–5
months old and presented an average weight of 0.39 grams.
For Experiment 2, we used 140 wild-type adult zebrafish
obtained from theAquatic Animal Housing ofUniversidade
Federal de Lavras (Minas Gerais, Brazil); all fish in this
group were the same age and presented an average weight
of 0.387 grams. Animals were housed in an automated sys-
tem for both experiments (Rack Hydrus, model ZEB-40-
Alesco) using polycarbonate aquariums with 2.5 L capac-
ity (11.5 × 34.5 × 15.5 cm) and a recirculation system,
under a 14:10 hour photoperiod (light:dark); the tempera-
ture maintained was 28 °C ± 1 °C with pH 7.0. All ani-
mals were fed three times a day, twice (once at 8:00 and
16:00) with commercial alcon BASIC® flake fish food (Al-
con, Camboriú, SC, Brazil) and once at 11:00 with live food
(Artemia spp.). Rearing and welfare conditions were fol-
lowed with the standards for the species and the protocol
was approved by the Ethics Committee of CEUA-UFMG
(Protocol No.64/2016, UFMG, Minas Gerais, Brazil).

2.2 Experimental Design
The two experiments were conducted according to the

protocol described by Paiva and colleagues [7], as shown in
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Fig. 1. Experimental design. After an adaptation period, the CPP test was performed on day 1 considering the established protocol:
First, Basal Preference was determined, followed by ethanol conditioning. On the day 2, the Post-conditioning Preference test was
perfomed. Lastly, After-withdrawal Preference was determined on day 17 (Modified from Paiva et al. [7] (2020)).

Fig. 1 (Ref. [7]). In Experiment 1, 75 animals were used to
define the ethanol preference phenotypes and 10 were used
for the control group, which experienced no drug exposure.
For Experiment 2, 120 animals were used to define ethanol
preference phenotypes and 20 animals were designated as
the control group. Animals were individualized and accli-
mated for seven days before the beginning of the experi-
ment, during which they were kept in the rack (ALESCO®
Indústria e Comércio Ltda, Campinas, SP, Brazil).

2.2.1 Conditioned Place Preference (CPP)
To determine ethanol preference phenotypes, we used

the protocol described [7]. 5 L (30 × 15 × 12 cm) experi-
mental tanks were used during the experiment, which had a
white bottom on one side and black circles on the other as
environmental clues [52]. Experimental tanks were isolated
to avoid interference.

Determining the basal (B) preference – Individual-
ized animals were transferred to the experimental tanks and
recorded for 10 min to determine basal preference. Basal
(B) preference was defined as the side that the animal spent
more time on.

Conditioned exposure to the ethanol – Following B
preference determination, animals were placed in the con-
ditioning tank, on the opposite side to the Basal Preference.
These tanks had the same dimensions as the ones used for
the preference test, with the same environmental clues but
with a sealed central glass divider, preventing the animal
from accessing the other side. On the least-preferred side,
each animal was exposed to 1% ethanol (Merck, Darmstadt,
Germany) for 20 minutes. Then, they were removed from
that compartment and left in a beaker with water for 5 min-
utes to remove the ethanol excess. Next, they were placed
in the compartment corresponding to the preferred side in B,
without ethanol, for 20 minutes. After conditioning on both
sides, the animalswere taken back to themaintenance tanks.

Both the water and the ethanol solution were exchanged be-
tween each animal.

Determining Post-Conditioning (PC) preference – PC
preference was determined following the same procedures
described in the B preference. This evaluation was per-
formed 24 hours after the ethanol conditioning.

Determining preference After Withdrawal (AW) – Fol-
lowing PC preference determination, the animals were kept
in the maintenance tanks for 16 days, when the AW pref-
erence was established according to the procedures previ-
ously described for B and PC preference.

2.2.2 Behavioral Assessment and Phenotyping
To establish the individual ethanol preference, 10 min

of video recording was used. The initial 2 min of film-
ing were disregarded and the following 5 min of recording
videos were analyzed using the software EthoVision XT 12
(Noldus, Wageningen, Netherlands). In the software pro-
gram, both sides of the tank were defined so that the pref-
erencce results were expressed according to the time spent
on the opposite side of B Preference (i.e., the side on wich
they were exposed to the ethanol). A hypothetical value of
50.1% was used to determine statistical differences in the
percentages of time spent on the conditioning side. Val-
ues outside the threshold were considered to be an aversion
to ethanol. Animals exhibiting freezing behavior were ex-
cluded.

2.3 Tissue Preparation for Biochemical and Molecular
Analysis

After the AW test, the animals were euthanized
with an overdose of the anesthetic benzocaine (ethyl p-
aminobenzoate, 250 mg/L) [53]. The brains of ani-
mals from Experiment 1 were dissected, immersed in
a phosphate-buffered saline solution (PBS), frozen, and
stored at –80 °C for RNA extraction. Animals of each phe-
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notype and the control group from Experiment 2 were ran-
domly divided for antioxidant enzyme activities or molecu-
lar analysis. Brains were collected and stored as described
in Experiment 1.

2.4 Total RNA Extraction
Total mRNA was extracted using ReliaPrep™ RNA

Miniprep Systems (Promega, Fitchburg, MA, USA) ac-
cording to manufacturer instructions. Quantification was
performed with a DeNovix DS-11 (DeNovix, Delaware,
Wilmington, DE, USA).

2.5 Primer Design, Reverse Transcription, and qPCR
Primers were designed as described [5]; the sequences

used are available in Supplementary Table 1. For each
sample in Experiment 1, 800 ng of total mRNA was used
for reverse transcription with oligo (dT20), primers (Prodi-
mol Biotecnologia, Belo Horizonte, Brazil), dNTP mix (10
mM), Reaction Buffer 5X (Thermo Fisher Scientific, São
Paulo, Brazil), Ribolock RNase Inhibitor (Thermo Fisher
Scientific), and Revertaid®Reverse Transcriptase (Thermo
Fisher Scientific, São Paulo, Brazil) according to manufac-
turer instructions. Target gene transcripts were quantified
with qPCR using the CFX 96TM Real-Time system (Bio-
Rad) and Kapa SYBR Fast qPCR Kit Master Mix (Kapa
Biosystems, São Paulo, Brazil). The amplification was
performed according to the following protocol: 95 °C for
3 min, 40 cycles at 95 °C for 3 s and 60 °C for 20 s.
A negative control without a sample (NTC) was tested in
all reactions. The qPCR data were analyzed with the Ct
delta-delta method. For normalization, the reference genes
eef1a1a (eukaryotic translation elongation factor 1 alpha
1a) and rpl13 (ribosomal protein L13) were used, as seen
in previous studies [54–56]. The algorithms BestKeeper
and Genorm [57,58] were used to confirm the stability of
the reference genes. The relative amount of transcripts was
calculated as described [59].

2.6 DNA Extraction
DNA was extracted from tissue samples from Experi-

ment 2 using Direct-Zol DNA (Zymo Research São Paulo,
Brazil) according to manufacturer instructions, allowing
extraction of DNA free of contaminants. The quantifi-
cation was performed on the DeNovix DS-11 (DeNovix,
Delaware, USA).

2.7 Telomere Length
64 ng of DNA were used to perform the qPCR us-

ing the CFX 96TM Real-Time system (BioRad, Hercules,
CA, USA) and QuantiNova SYBR Green RT-PCR Kit (Qi-
agen, São Paulo, Brazil). PCR amplification was per-
formed using the following protocol: 95 °C for 15 min-
utes, followed by 40 cycles of 95 °C for 15 seconds and
54 °C for 2 minutes. The negative control, without the
template DNA, was tested in all reactions. Analysis of

real-time PCR data was calculated with the Ct delta-delta
method using a reference gene (rps11 (ribosomal protein
S11)) for normalization. For telomere length, we used
the primer sequences: 5′GGTTTTTGAGGGTGAGGGT-
GAGGGTGAGGGTGA GGGT3′ (forward primer) and
5′TCCCGACTATC CCTATCCCTATCCCTATCCCTATC-
CCTA3′ (reverse primer) [60]. For rps11, we used the se-
quences: 5′CTCTGACGACACTGCCTTATG3′ (forward
primer) and 5′GAAGATGGTGGGCTGTTTCT3′ (reverse
primer) [This study].

2.8 mtDNA Copy Number

For mitochondrial DNA copy number analyses, 10 ng
of DNA were used to perform the qPCR, using the CFX
96TM Real-Time system (BioRad) and QuantiNova SYBR
Green RT-PCR Kit (Qiagen, São Paulo, Brazil). PCR am-
plification was performed according to the following pro-
tocol: 95 °C for 2 minutes, followed by 40 cycles at 95 °C
for 5 seconds and 60 °C for 10 seconds. The negative con-
trol, without the template DNA, was tested in all reactions.
Analysis of real-time PCR data was performed with the Ct
delta-delta method using a nuclear reference gene (rps11
(ribosomal protein S11)) for normalization. Primers were
designed considering the sequence of mitochondrial cox1
and atp6 genes, and were synthesized by IDT (Integrated
DNA Technologies); the sequences are listed in Table 1.

2.9 Antioxidant Defense Assays for FRAP, SOD, CAT, and
GPx Activities

Tissue homogenization – Tissue samples were homog-
enized in 200 uL of phosphate homogenization buffer (pH
7.4) on ice. The homogenate was centrifuged at 800× g for
10 min at 4 °C and protein concentrations were then mea-
sured by Qubit Protein Assay (Invitrogen, Brazil) in a Qubit
2.0 Fluorometer, following manufacturer instructions.

Total antioxidant capacity – Total antioxidant capacity
was evaluated using the ferric reducing antioxidant power
(FRAP) method [61]. Superoxide Dismutase – SOD activ-
ity (U/ug protein) was assessed by inhibiting autoxidation
of pyrogallol by SOD present in the tissue samples [62].
Catalase – CAT activity (U/mg protein) was determined
with the method described by Aebi [63]. Glutathione Per-
oxidase –GPx activity (U/mg protein) GPx test is a method
that consists of recording the decrease in NADPH [64].

2.10 Statistical Analysis

All data were analyzed for normality with the Shapiro-
Wilk test. A one-sample t-test (GraphPad Prism version 7
(GraphPad Software, Boston, MA)) was performed to de-
termine the preference, considering the hypothetical thresh-
old of 50.1%. A one-way ANOVA test (GraphPad Prism
version 7) was used to analyze molecular data and antiox-
idant enzyme activity. Pearson’s correlation coefficients
(GraphPad Prism version 7) were calculated to evaluate the
association between telomere length, mtDNA copy num-
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Table 1. Oligonucleotides used in qPCR to evaluate mt-DNA copy number in the brains of adult zebrafish submitted to CPP
test.

Target Gene description Primer forward (5′-3′) Primer reverse (5′-3′) Amplicon - pb

rps11 Ribosomal protein S11 CTCTGACGACACTGCCTTATG GAAGATGGTGGGCTGTTTCT 205
cox1 Cytochrome c oxidase subunit I ACCAGGATTCGGCATTATCTC CTCGGGTGTCTACATCCATTC 164
atp6 ATP synthase 6 CCTTATCCTCGTTGCCATACTT GTTTGTGAATCGTCCAGTCAATC 115

Table 2. Description and the number of samples (n) of each phenotypic group distinguished by the CPP test in Experiments 1
(Exp1) and 2 (Exp2).

Phenotype Description
Exp1 Exp2

n n

Light No ethanol prefence 20 27
Heavy Ethanol preference in PC preference test 20 32
Inflexible Ethanol preference in PC and AW preference tests 20 24
Negative Reinforcement Ethanol preference in AW preference test 15 23
PC, Post-Conditioned Preference; AW, After Withdrawal Preference.

ber, and antioxidant enzyme activities. The results were
expressed as the mean and standard error of the mean (±
SEM). A p-value < 0.05 was considered significant for all
tests. Using the Past 4.03 statistical software [65], the prin-
cipal component analysis (PCA) was performed to cluster
the phenotypes in relation to the analyzed parameters.

3. Results
3.1 Determination of the Phenotypes Based on Ethanol
Preference Behavior

Animals from Experiments 1 and 2 subjected to the
CPP test were classified into four phenotypes according to
their preference for the ethanol: (1) Light – animals with-
out ethanol preference (B, PC, and AW); (2) Heavy – ani-
mals with ethanol preference in PC; (3) Inflexible – animals
that preferred the conditioning side in both PC and AW; and
(4) Negative Reinforcement – animals with ethanol prefer-
ence in AW (Table 2). In Experiment 2, 14 animals showed
freezing behavior and were excluded from phenotype anal-
ysis. The behavior measures are given in Supplementary
Fig. 1.

3.2 Transcriptional Regulation of Ethanol Target
Receptors in the Brain

To validate the protocol described by Paiva et al. [7]
in juveniles, we performed an analysis of the transcripts of
ethanol target receptors in adult zebrafish brains from Ex-
periment 1. These results are shown in Supplementary
Fig. 2.

3.3 Telomere Length in the Brain of Ethanol Preference
Phenotypes

For telomere length analysis, we used a qPCR proto-
col [60]. As shown in Fig. 2, there was evidence of telom-
ere shortening (F (4.28) = 5.601) in the Heavy, Inflexible,
and Negative Reinforcement groups compared to the Light
group (p < 0.05).

Fig. 2. Relative telomere length in brains of adult zebrafish
submitted to CPP testing and distinguished by phenotypes of
ethanol preference. One-way ANOVA followed by a Tukey’s
post hoc test. Data are expressed as the mean and standard error
of the mean (± SEM). * p < 0.05. ** p < 0.005.

3.4 mtDNA Copy Number in Ethanol Preference
Phenotypes

The mtDNA copy number was analyzed by qPCR,
with a focus on the amplification of two mitochondrial
genes: atp6 and cox1. As shown in Fig. 3, an increased
mtDNA copy number (atp6 and cox1) (F (4.30) = 5.981; F
(4.31) = 3.892) was observed in the Heavy phenotype com-
pared to the control (p < 0.05) and Light phenotype (p <

0.005).

3.5 Total Antioxidant Potential, SOD, CAT, and GPx
Activity in Brains of Ethanol Preference Phenotypes

For the analysis of antioxidant status, evaluations of
the total antioxidant potential were performed using the
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Fig. 3. Relative mtDNA copy number in brains of adult zebrafish submitted to CPP testing and distinguished by ethanol prefer-
ence phenotypes. (A) Results for atp6. (B) Results for cox1. One-way ANOVA followed by a Tukey’s post hoc test. Data are expressed
as the mean and standard error of the mean (± SEM). * p < 0.05 (n = 8).

FRAPmethod in animal brains from Experiment 2. As seen
in Fig. 4A (F (4.25) = 7.084), there was a decrease in the to-
tal antioxidant capacity for the Heavy (p = 0.0016), Inflexi-
ble (p = 0.0167), and Negative Reinforcement (p = 0.0028)
phenotypes compared to the Light group.

The experiments also showed a significant increase in
SOD activity in brains (F (4.24) = 5.716) from the Heavy,
Inflexible, and Negative Reinforcement groups (Fig. 4B)
compared to the Light phenotype (p = 0.0084; p = 0.0055;
p = 0.0269, respectively), as well as in Heavy and Inflexi-
ble groups compared to the control group (p = 0.0266; p =
0.0182).

CAT activity (F(4.25) = 5.275) was higher in the In-
flexible and Negative Reinforcement groups compared to
both the control (p = 0.0176; p = 0.055) and the Light group
(p = 0.0298; p = 0.0096) (Fig. 4C).

An increase in GPx activity (F(4.23) = 5.102) was ev-
idenced in the Heavy group compared to the control (p =
0.0436) and Negative Reinforcement compared to both the
control (p = 0.0036) and Light group (p = 0.0485) (Fig. 4D).

3.6 Analysis of Clustering Phenotypes

PCA analysis of the variance of the preference data
and the molecular and biochemistry parameters analyzed
corroborated the grouping of the animals into two dimen-
sions (Fig. 5). First, determined by telomere length (TL),
there is the control group and Light phenotype, which
showed higher TL measurements. Second, there is clus-
tering by the ethanol preference phenotypes according to
CAT, SOD, and GPx results, meaning that these individuals
showed increased enzyme activity. The Heavy phenotype
was better explained by the mtDNA copy number.

3.7 Pearson’s Correlation
The results of Pearson’s Correlation (r) are shown in

Fig. 6. Based on the p-values obtained for this analysis,
there was a negative correlation when comparing telomere
length and CAT activity (p = 0.039) (Fig. 6A) or telomere
length and SOD (p = 0.004) activity (Fig. 6B). In this case,
we observed an increase in CAT and SOD enzyme activity
related the telomere shortening. There was no correlation
for the other parameters analyzed.

4. Discussion
Alcohol abuse is a complex human condition, with the

great challenge currently being understanding the mecha-
nisms that lead to loss of control over ethanol consump-
tion, which causes harm to individuals in physical, men-
tal, and social capacities. While there is evidence of differ-
ent patterns of behavior, few studies have described phe-
notypic distinctions in animal models. Our research char-
acterized four phenotypes in juvenile zebrafish (20 days
post fertilization (dpf)) as Light, Heavy, Inflexible, or
Negative Reinforcement according to their behavior, and
identified transcriptional dysregulation of genes associated
with addiction-like phenotypes (drd1, drd2, grin1a, gria2a,
gabbr1b, and lrrk2) [7]. In this study, we were also able to
validate the protocol in adult zebrafish by identifying the
same patterns in these ethanol target receptors and identify-
ing the same ethanol preference phenotypes.

As described, our protocol defines four phenotypes of
ethanol preference resulting from acute ethanol exposure
over 20 minutes and encompasses 16 days, from ethanol
conditioning to euthanasia and tissue collection. Animals
were grouped into the four phenotypes based on the behav-
ioral response to ethanol in a CPP test. Our results demon-
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Fig. 4. Biochemistry analysis of brains of adult zebrafish submitted to CPP testing and distinguished by ethanol preference
phenotypes. (A) Total antioxidant potential by the FRAP method. (B) SOD activity. (C) Catalase activity. (D) GPx activity. One-way
ANOVA followed by a Tukey’s post hoc test. Data are expressed as the mean and standard error of the mean (± SEM). * p< 0.05, ** p
< 0.005 (n = 7).

strate the effect triggered by acute ethanol exposure re-
garding phenotypic distinction, considering this effect over
time.

As for ethanol preference in adult zebrafish, telom-
ere shortening was evidenced in the Heavy, Inflexible, and
Negative Reinforcement groups. These phenotypes showed
ethanol preference in the CPP test; particularly for the In-
flexible group, which preferred the ethanol side in both PC
and AW tests. Shorter telomeres were found in a study of
early stress associated with anxiety and substance use dis-
orders in humans [33]. Our results show the same pattern of
telomere shortening in the brains of ethanol preference phe-
notypes. Our results also demonstrated a differential cellu-
lar response in telomere shortening regarding ethanol pref-
erence. One consideration for our experiment is the pheno-
typic definition using heterogenetic animals. Individual dif-
ferences in telomere length are associated with individual

differences in behavior, suggesting a possible relationship
between telomere length and higher impulsivity regarding
choices between delayed rewards, higher propensity to take
risky decisions, higher probability of smoking, higher alco-
hol consumption, higher stress reactivity, andmore neurotic
and pessimistic personality types [16]. Previous research
has also shown an association between telomere shortening
and biobehavioral symptoms [66], such as depression [28],
stress [67], and violence [68].

Our results support that telomere shortening in ethanol
preference phenotypes is a characteristic of these behav-
iors. However, Bateson and Nettle [16] present differ-
ent perspectives on the cause-and-effect relationship be-
tween telomere shortening and behavior. They claim that
there are two main hypotheses: either telomere shortening
makes individuals more prone to a certain behavior, or some
habits trigger cellular events that promote telomere shorten-
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Fig. 5. Distribution of the control and preference data and its relationship to themolecular and biochemistry parameters that were
analyzed (TL, mtDNA, CAT, SOD, and GPx). Colors indicate the control and four phenotype groupings (Light, Heavy, Inflexible, and
Negative Reinforcement). Arrows indicate the parameters analyzed. The proximity of phenotypes to each line indicate which parameters
are related to the variance of data in each phenotypic category. TL, telomere length; mtDNA, mitochondrial DNA copy number; CAT,
catalase; SOD, superoxide dismutase; GPx, glutathione peroxidase.

Fig. 6. Correlation between telomere length and the results for enzyme activity levels for (A) CAT; and (B) SOD. There is a
tendency for higher enzyme activity associated with lower telomere length and this relationship is approximately linear, as indicated by
the dotted line. Coefficients (r) were calculated by Pearson’s correlation model. CAT, catalase; SOD, superoxide dismutase.

ing. Chronic ethanol abuse is related to this latter process,
as continuous consumption of alcohol promotes functional
cell disturbances related to genomic instability [15,69]. Our
research model considers an acute form of ethanol expo-
sure, finding evidence of shortened telomeres in the brain
of animals with an ethanol preference; however, we did not
find evidence of this phenomenon in animals of the Light

phenotype compared to the control. There was no differ-
ence between the Light and the control groups in all anal-
yses that we performed, and, in regard to relative telom-
ere length, the control animals could belong to any of the
ethanol preference phenotypes. This opens the possibility
that these results characterize a predisposition to ethanol
preference, or, possibly, that ethanol triggers specific re-
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sponses in individuals with ethanol-seeking behavior. As
they are related to telomere shortening, alterations in the
mtDNA copy number and increased activity of the main
enzymes of the antioxidant system were also evaluated in
the same phenotypes.

Mitochondria play an important role in the context
of oxidative stress, which is related to drug addiction [70]
and can be induced by ethanol [29,71]. Alterations in the
mtDNA copy number have been proposed as a biomarker
of mitochondrial dysfunction [72]. In such a case, mito-
chondrial genome to nuclear genome ratio (Mt/N) values
would increase as a result of increased mitochondrial bio-
genesis [35]. Previous studies of chronic alcohol abuse do
not seem to have found differences in the mtDNA copy
number of alcoholic individuals [73,74]. However, higher
mtDNA copy numbers associated with telomere shortening
were evidenced in a study of early stress associated with
anxiety and substance use disorders [33]. In the context
of ethanol preference, we found an increased mtDNA copy
number, as well telomere shortening, in the Heavy pheno-
type.

We also found an increase in antioxidant enzyme ac-
tivities in the brains of the ethanol preference phenotypes.
Studies that indicate an increase in antioxidant enzyme ac-
tivities is probably a compensatory regulatory response to
oxidative stress [75–77], such as ethanol exposure [78,79].
Furthermore, antioxidant enzymes play an important role in
behavioral contexts, mainly related to ethanol abuse [80].
Evidence suggests that, during oxidative stress, ROS gen-
eration can function as a signal to the nucleus to limit cell
proliferation, using telomere shortening to sense damage in
the mitochondria [48]. During oxidative stress, the telom-
erase reverse transcriptase (TERT) component of telom-
erase has been shown to translocate to the mitochondria
[81,82], suggesting that TERT may protect mitochondrial
function indirectly by regulating mitochondrial biogenesis
[30]. In the Heavy phenotype group, we found evidence of
increased mtDNA copy numbers and elevated antioxidant
enzyme activities, as well telomere shortening. The Inflexi-
ble andNegative Reinforcement phenotypes showed telom-
ere shortening and increased antioxidant enzyme activities.

We analyzed the antioxidant status in the brain of
ethanol preference phenotypes, considering total antioxi-
dant potential and SOD, CAT, and GPx activities. These
enzymes are associated with antioxidant defense and repair
mechanisms against oxidative stress. Our study showed in-
creased activity of antioxidant enzymes in the Heavy, In-
flexible, and Negative Reinforcement phenotypes. Using
the FRAP method, we observed a decrease in the total an-
tioxidant potential in the brain in all ethanol preference phe-
notypes. The Heavy phenotype showed increased SOD and
GPx activities, the Inflexible phenotype showed increased
activity of SOD and CAT, and the Negative Reinforcement
phenotype demonstrated increases in SOD, CAT, and GPx.
Our results are in agreement with other studies that have

demonstrated a relationship between the imbalance of an-
tioxidant enzyme activities and behavioral patterns associ-
ated with ethanol abuse [37–39] and alcohol preference in
mice [44].

We found increases in SOD activity in the brains of
all alcohol-preferring phenotypes. The same pattern of
high SOD activity in the hippocampus was found in studies
with adolescent male rats acutely exposed to ethanol [83],
brains from chronic alcoholics [84], and serums of alcohol-
dependent patients [37]. These findings reinforce the re-
lationship between antioxidant enzyme imbalance and pro-
files of ethanol-seeking behavior.

In our study, GPx activity was higher in the Heavy and
Negative Reinforcement phenotypes. Similarly, Wu et al.
[85] observed increased GPx activity in alcohol use disor-
ders (AUD) patients and suggested that GPx levels may be
an AUD state biomarker.

Previous studies have investigated the role of CAT
in ethanol intake, as, in the brain, CAT oxidizes ethanol
in acetaldehyde, which has been proposed to be a media-
tor of some behavioral effects produced by ethanol [86].
Additionally, our results demonstrate a possible associa-
tion between high CAT activity and ethanol preference. As
shown earlier, our study found increased activity of CAT
in the Inflexible and Negative Reinforcement phenotypes.
Aragon [87] suggests that cerebral CAT may be involved
in the regulation of animal affinity for ethanol consump-
tion. Another study showed lower ingestion of ethanol in
rats treated with a CAT blocker [88], further supporting the
importance of this enzyme in ethanol consumption. Inter-
estingly, in a study of ethanol-induced conditioned place
preference (CPP) in mice, Font et al. [89] suggested that
the catalase–H2O2 system may be an important step in the
experience of positive effects from ethanol regarding con-
textual cues during the CPP development.

We present genomic and antioxidant status alterations
related to telomere shortening, mtDNA copy number, and
antioxidant status in the brains of adult zebrafish submitted
to a CPP test, distinguishing between phenotypes according
to ethanol preference. All the animals with ethanol prefer-
ence (Heavy, Inflexible, and Negative Reinforcement phe-
notypes) showed telomere shortening. The Heavy pheno-
type also showed decreased antioxidant potential, as well
as increased activity of SOD and GPx. This phenotype
also demonstrated an increased mtDNA copy number. The
Inflexible phenotype showed a lower antioxidant potential
and high activities of SOD and CAT. A decreased antiox-
idant potential was found in the Negative Reinforcement
phenotype, in addition to increased activities of SOD, CAT,
and GPx.

The three cited phenotypes correspond to animals who
showed ethanol preference in at least one phase of CPP test-
ing. On the other hand, the Light group was the only pheno-
type to not show ethanol preference. While the animals in
this phenotype were exposed to ethanol, they did not show
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any changes in telomere shortening, mtDNA copy number,
or antioxidant status. Considering the heterogenetic charac-
teristics of the animals used in our experiment and the previ-
ously discussed evidence of a relationship between genomic
instability, antioxidant status dysfunction, increased mito-
chondria biogenesis, and voluntary ethanol consumption,
we further suggest an association between telomere short-
ening, mitochondria dysfunction, and antioxidant imbal-
ance and the ethanol preference phenotypes described here.
Supporting this, a PCA analysis grouped the Light and con-
trol groups by telomere length, while the three ethanol pref-
erence phenotypes (Heavy, Inflexible, and Negative Rein-
forcement) were associated with antioxidant enzyme activ-
ity. A Pearson’s Correlation showed a negative correlation
between telomere length and SOD and CAT activities, re-
inforcing the premise that telomere shortening is associated
with an imbalance of the antioxidant system; we demon-
strate this correlation for the first time in ethanol preference
phenotypes based on acute ethanol exposure.

5. Conclusions
In conclusion, our results show an association between

genomic vulnerability and antioxidant status alterations re-
lated to ethanol preference phenotypes (Heavy, Inflexible,
and Negative Reinforcement), elucidating individual re-
sponses associated with cellular instability and behavior.
Using a model that is easy to develop, has low mainte-
nance costs, and shows results highly similar to those found
in murine models and human studies, we have shown that
there are differential responses of relative telomere short-
ening, mitochondrial biogenesis, and antioxidant enzymes
activity among ethanol preference phenotypes. This study
suggests that behavior modulation goes beyond a physio-
logical response, and involves previously existing patterns
of individual characteristics, triggered by ethanol exposure.
While our results provide important information on ethanol
preference phenotypes, this is also a newmodel for ethanol-
induced behavior studies, and further research is needed for
a thorough understanding of these phenotypes.
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