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Abstract

Background: Streptococcus mutans is a major component of dental plaque, contributing to cariogenic biofilm formation and inducing
dental caries. Attempts have recently been made to use postbiotic mediators (PMs) to prevent dental caries. This research evaluated the
antimicrobial/antibiofilm activity of PMs derived from Lactobacillus rhamnosus GG (LGG) and Lactobacillus reuteri (LR) against S.
mutans in vitro. Methods: PMs were obtained from the Lactobacilli supernatants. The minimum inhibitory concentration, minimum
bactericidal concentration, antibiofilm potential, and metabolic activity of PMs against S. mutans were evaluated using CFU/mL, scan-
ning electron microscopy, and XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. The
expression of gtfB gene as one of the most important genes involved in S. mutans biofilm formation was also measured using qRT-PCR.
Results: CFU score was reduced by both PMs, but the reduction was only significant in LGG (p = 0.02). Both PMs caused a significant
decrease in the metabolic activity of S. mutans compared with the controls (p≤ 0.002). S. mutans treated with LGG PMs exhibited more
destructive effects than LR PMs (p> 0.05). S. mutans gtfB gene expression was significantly downregulated when treated with the PMs
obtained from both LGG and LR (p = 0.01 for both). Conclusions: We showed that PMs isolated from two Lactobacillus strains inhibited
S. mutans biofilm, metabolic activity, and gtfB gene expression. Therefore, these derivatives may be a suitable biofilm-destruction agent
against S. mutants. However, the oral environment is a complex ecosystem that needs further investigation.
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1. Introduction

Tooth decay, the most common biofilm-dependent
disorder, is a major public health problem that globally af-
fects 2.3 billion adults and 530 million children worldwide
[1]. Caries is a multifactorial condition that forms from
dysbiosis of host oral microbiota [2]. Dental biofilm, or
plaque, constitutes a favorable environment for the growth
of many bacteria, among which Streptococcus mutans (S.
mutans) are known to play an important role in developing
dental caries. In addition to acidic metabolites, S. mutans
produces GtfB, GtfC, and GtfD, which are glucosyltrans-
ferase (GTF) enzymes that synthesize intracellular and ex-
tracellular polysaccharides [3,4]. They are encoded by gtfB,
gtfC, and gtfD genes, respectively. Water-insoluble glu-
cans are synthesized by the action of gtfB, during the for-
mation of extracellular polysaccharides from sucrose [5].
As a result, large amounts of insoluble glucans promote the

colonization and adherence of S. mutans to tooth surfaces,
which could ultimately increase dental plaque production
and caries [6–8].

Due to the high cost of dental treatments, caries
preventative measures are recommended to protect teeth.
However, routine methods using mechanical/chemical ap-
proaches have drawbacks, such as the increased risk of flu-
orosis and the destruction of healthy bacteria by antimi-
crobial mouthwashes, which leads to the colonization of
pathogens [9–11]. The potential to treat the oral environ-
ment and its various reservoirs using molecules of diverse
densities and concentrations for distinct purposes offers a
promising approach to modulating the host’s inflammatory
response in the oral environment [12]. This could lead
to significant improvements without the need for invasive
therapies. Because of the rising resistance to synthetic an-
timicrobials and their side effects, research on alternative
natural products like probiotic microorganisms and their
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metabolites has been recommended.
Probiotics are living microorganisms that promote

host health and immunological homeostasis when adminis-
tered appropriately [13]. They have been shown to decrease
caries by suppressing oral pathogens and altering the micro-
bial composition of dental plaque [14–16]. Also, among
their attributes are inhibition of plaque induction by free
radical scavenging and controllingmucosal permeability, in
addition to destroying pathogens through secretion of lactic
acid, hydrogen peroxide, and bacteriocins [17,18]. Probi-
otics are generally well-tolerated, but people with compro-
mised immune systems should not take them due to the pos-
sibility of infections [19]. Some of them, like Lactobacil-
lus and Bifidobacterium, are acidogenic, making them un-
suitable for treating dental caries [20,21]. Postbiotics are a
mixture of deactivated probiotic cells and their metabolites,
which deliver some of the benefits of probiotics without the
drawbacks [22]. They are suggested to suppress S. mutans
biofilms [23] and oral multispecies biofilms [24] and might
be used to create potent anticaries agents [25]. “Postbiotic
mediators” (PMs) is a relatively new term that is gaining
popularity and refers to byproducts of the metabolic activity
of probiotics. PMs extracted from various microorganisms
have been reported to prevent infection through attenuating
pathogen growth and biofilm development [25].

Various Lactobacillus strains have shown promising
effects against S. mutans in the oral cavity. But the num-
ber of studies on their PMs is relatively limited [25]. Lac-
tobacillu rhamnosus GG (LGG) and Lactobacillu reuteri
(LR) belong to the Lactobacillus genus. They have ben-
eficial effects such as good growth capacity, strong adhe-
sion ability, efficacy against pathogens, and production of
antimicrobial and anti-colonization substances that make
them attractive as probiotic strains [26,27]. The exact effect
of various lactobacilli and their byproducts and the mech-
anisms involved in their effectiveness against S. mutans is
unclear. On the other hand, the beneficial effects of post-
biotics on S. mutans have been suggested to depend upon
the specific strains of the probiotics [22,23]. The gene reg-
ulation of gtfs is crucial in S. mutans adhesion and biofilm
formation and has been the focus of many investigations
[28–31]. Therefore, the current study aims to examine the
anticaries effect of PMs derived from LGG and LR by in-
vestigating their antibiofilm effect and metabolic activity
on S. mutans and assessing the expression of the gtfB gene.

2. Materials and Methods
2.1 Bacterial Strains, Culture Media, and Growth
Conditions

Both L. rhamnosus GG (ATCC 53103) and L. reuteri
(ATCC 23272) kept in de Man, Rogosa, and Sharpe (MRS)
agar (Merck, Darmstadt, Germany). Before each test,
Lactobacillus strains were cultured in MRS broth (Merck,
Darmstadt, Germany) and placed in a CO2 incubator at 37
± 1 °C for 48 hours. S. mutans ATCC 35668 was obtained

from the Iranian Biological Resource Centre (Tehran, Iran).
Bacteria were incubated at 37 ± 1 °C in a brain heart in-
fusion (BHI) broth (Merck, Darmstadt, Germany) under
capneic conditions (4–5% of CO2) for 18 hours. Approxi-
mately 1.5 × 108 colony forming units (CFUs)/mL of test
bacteria were prepared by adding 0.5 mL of the culture to
9.5 mL of new BHI broth and incubating the tube for 4–
5 hours until S. mutans cells reached the mid-log phase of
growth. The final concentration of S. mutans was deter-
mined by spectrophotometry to be 1.5× 108 CFU/mL (op-
tical density at 600 nm: 0.08–0.13).

2.2 Postbiotic Mediators (PMs)
After the incubation time of the Lactobacillus species

was completed, centrifugation (10,000× g, 8000 rpm) was
performed for 10 minutes at 4 °C, and the supernatant was
separated from the sediment and transferred to a new tube.
All supernatants were filtered through a 0.22 µm polyether-
sulfone membrane syringe filter (Millipore, Burlington,
MA, USA), and their pHwas adjusted to physiological con-
ditions (pH 7.2–7.4) using 5 M sodium hydroxide prior to
use.

2.3 Evaluation of Antibacterial and Antibiofilm Activity
2.3.1 Determination of Minimum Inhibitory Concentration
(MIC) and Minimum Bactericidal Concentration (MBC)
of PMs

The Clinical and Laboratory Standards Institute
(CLSI) guideline [32] was used to calculate MIC andMBC.
Briefly, 100 µL of BHI broth was poured into round-bottom
96-well microplates, and 100 µL of each PMs was added to
the first well of each row at 1.56–100% [v/v] concentration.
Starting from the first well, 100 µL of the contents of each
well was transferred to the next well, and the contents of the
last well (10th) were discarded. S. mutans culture was di-
luted (1:10) in Mueller Hinton broth to give a 107 CFU/mL
suspension. In a microplate, 5 µL of this suspension was
added to 100 µL of the PM solutions at 1:2 dilutions to give
a final suspension of bacteria around 5 × 105 CFU/mL in
two-fold dilutions of PMs. The plate was then incubated for
24 hours at 37 °C in the presence of 5% CO2, and the MIC
was defined as the lowest concentration of PMs at which
no growth was observed. A positive control (wells contain-
ing bacterial suspension and nutrient media, devoid of PMs)
and a negative control (wells containing PMs and nutrient
media, devoid of bacterial suspension) were also used.

Sub-culturing broth dilutions determined the MBC of
PMs at or above the MIC that inhibits the growth of S. mu-
tans on BHI agar (Merck, Darmstadt, Germany). It was
defined as the lowest concentration of an antimicrobial that
caused at least 99.999% (3-log reduction) killing of the ini-
tial inoculum. The tests were repeated at least three times.
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2.3.2 Determination of the Biofilm Destruction Effect of
PMs

Two hundred µL of S. mutans suspension at a concen-
tration of 1.5 × 108 CFU/mL was added to each well of
a flat-bottom 96-well microplate and was incubated at 37
°C with 5% CO2 for 48 hours to form a microbial biofilm.
After aspirating the suspension and washing the wells three
times with sterile phosphate-buffered saline (pH 7.4), the
2× MIC of each PM (100 µL) was added into each well,
and the microplate was incubated at 37 °C. After 24 hours,
the bacterial biofilmwas scraped from the bottom of the mi-
croplate, followed by dilution plating to determine CFU/mL
[33]. All tests were repeated at least three times.

2.3.3 Microscopic Visualization of Biofilm

Scanning electron microscopy (SEM, Zeiss, EVO 40,
Jena, Germany) was used for the structural analysis of the
PM-treated biofilms. S. mutans biofilm was allowed to de-
velop on the surface of the sectioned teeth. Three intact
permanent human premolar that was previously extracted
due to orthodontics were selected. Informed consent was
obtained from each donors. The teeth were preserved in dis-
tilled water at 37 °C until the experiment. Before the opera-
tion, the teeth were scaled by hand and cleaned using a fine-
grain pumice-water slurry (Dental AG Ltda, São Paulo, SP,
Brazil) and Robinson bristle brushes (Labor Dental Ltda,
São Paulo, SP, Brazil) in the low-speed handpiece for the
30 s. Using a micromotor handpiece, each tooth was cut
in longitudinal sections with a diamond disc. Before treat-
ment, sectioned teeth were autoclaving at 121 °C, 15 lbs psi
for 30 minutes, followed by treatment with 2×MIC of the
PMs. After the incubation period, the biofilm on the teeth
was fixed with 2.5% glutaraldehyde, dehydrated through a
series of 50%, 60%, 70%, 80%, 90%, and 2× 100% ethanol
solutions, and coated with a thin film of palladium-gold
(Gatan 682PECS, Gatan, Pleasanton, CA, USA) for visu-
alization [34].

2.3.4 Evaluation of Metabolic Activity Using XTT
Reduction Assay

The XTT (2,3-(2-methoxy-4-nitro-5-sulphophenyl)-
5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) re-
duction assay (XTT Kit; Roche Applied Science, Indi-
anapolis, IN, USA) was used to measure the metabolic ac-
tivity of S. mutans, according to the manufacturer’s instruc-
tions. Briefly, 100 µL of S. mutans suspension (1.5 × 108
CFU/mL) was added to the wells of a flat-bottom 96-well
microplate and incubated at 37 °C for 24 hours, followed
by treatment with 1/2× MIC doses of each PM. This con-
centration was to specifically study the effects of the PMs
on metabolic activity and to avoid cell death-related effects
brought about by MIC and high concentrations. After 24
hours, 50 µL of the XTT solution was added to each well,
and the microplate was incubated in the dark at 37 °C for
two hours. Absorbance was detected spectrophotometri-

cally by a microplate reader at 490 nm [35].

2.4 Quantification of gtfb Gene Using Quantitative
Real-Time Polymerase Chain Reaction (qRT-PCR)

Immediately after treating S. mutans with 1/2× MIC
doses of PMs, total RNAs were extracted using the super
RNA extraction kit (AnaCell, Tehran, Iran). After remov-
ing any remaining genomic DNA using RNase-free DNase
I treatment, total RNA (150 ng) was reverse transcribed in
a 10 µL cDNA reaction volume using the RevertAid First
Strand cDNA Synthesis Kit following the manufacturer’s
instructions. The specific primers related to gtfB and 16S
rRNA internal control genes are listed in Table 1 [36]. Dis-
tilled water served as the negative control. A LightCycler®
96 System (Roche Diagnostics, Indianapolis, IN, USA) was
used to perform amplification. The obtained Ct (Cycle
threshold) values of the target genes were normalized to
the 16S rRNA housekeeping gene, and the 2−∆∆CT method
was used to calculate fold changes (Livak and Schmittgen)
method [37].

Table 1. Primers of target and housekeeping genes used in
this study.

Gene Sequence (5′-3′) Size

gtfB
Forward TGTTGTTACTGCTAATGAAGAA

103 bp
Reverse GCTACTGATTGTCGTTACTG

16S rRNA
Forward GCAGAAGGGGAGAGTGGAAT

182 bp
Reverse GGCCTAACACCTAGCACTCA

2.5 Statistical Analysis
All tests were repeated at least thrice, and data were

analyzed using one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s HSD (honestly significant difference)
tests. All results were presented as mean ± standard de-
viation, and p-values less than 0.05 were considered signif-
icant.

3. Results
3.1 MIC and MBC of the PMs

To obtain the lowest concentration of PMs that in-
hibited the growth of S. mutans, serial dilutions of PMs
were utilized. No turbidity at concentrations of more than
25% (v/v) in both PMs from LGG and LR was seen, which
showed regarded as the MIC value. Also, in both PMs,
there was no growth of S. mutans on BHI agar at concen-
trations above 25% (v/v), which confirms as MBC value
(MICPMs =MBCPMs, concentrations ofmore than 25% (v/v)
in both PMs from LGG and LR).

3.2 Biofilm Destruction of S. mutans by PMs
CFU/mL count was used to assess the potential in-

hibitory effect of the PMs on S. mutans biofilm (Fig. 1) and
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showed values of 3.2± 0.38× 107, 2.04± 0.29× 107, and
2.77± 0.41× 107 in controls, LGG-, and LR- PMs, respec-
tively. Based on these findings, both PMs caused biofilm
destruction compared to controls; however, destruction was
significant in the LGG group (p = 0.02) but not in the LR
group (p = 0.39).

Fig. 1. Changes in S. mutans colony forming unit treated with
postbiotic metabolites. *significant difference at p < 0.05.

3.3 SEM Analysis
SEM images (Fig. 2) demonstrated fewer microorgan-

isms and smaller microcolonies on the surface when PMs
interacted with S. mutans, suggesting the destruction of S.
mutans biofilm. In line with our CFU/mL counts, LGG
PMs had a greater effect on the biofilm compared to the
LR PMs.

Fig. 2. Scanning electron microscopy images of S. mutans
biofilms treated with postbiotic metabolites (Scale bar = 10
µm; Mag = 1.00 KX).

3.4 Inhibitory Effect of PMs on S. mutans Metabolic
Activity

The XTT reduction assay was employed to measure
the metabolic activity of S. mutans biofilms (Fig. 3). The
absorbance values of the control, LGG PMs and LR PMs
were 1.56, 0.72, and 0.93, respectively. The PMs from
LGG and LR groups showed significant reductions in the
metabolic activity of S. mutans compared to the control (p =
0.0001 and p = 0.002, respectively). These results indicate
that PMs have the capacity to inhibit S. mutans metabolic
activity.

Fig. 3. The mean absorbance values of S. mutans metabolic
activity based on the XTT reduction assay. *significant differ-
ence at p = 0.002; **significant difference at p = 0.0001. Error
bars display standard deviations of the means.

3.5 Effect PMs on S. mutans gtfb Gene Expression

The effect of PMs derived from LGG and LR on the
expression of the S. mutans gtfB gene was examined using
qRT-PCR and presented as fold change using the 2−∆∆Ct

method. According to our findings (Fig. 4), treatment with
the LGG and LR PMs resulted in 92% and 90% decrease in
gtfB gene expression, respectively (p = 0.01 for both com-
parisons).

4. Discussion
Lactobacillus spp. probiotics inhibit dental caries by

generating hydrogen peroxide, organic acids, or antimicro-
bial peptides [25,38–40]. However, low culture viability
and susceptibility to environmental conditions limit their
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Fig. 4. The expression of gtfB gene in the control and PMs
derived from LGG and LR. **significant difference at p< 0.01.

application in functional products, hence, the increasing in-
terest in postbiotics. PMs are substances produced or re-
leased during the metabolic activity of microorganisms and
are superior to probiotics because of their clear chemical
structures, safety dose parameters, and longer shelf life.
They have exhibited the potential to prevent caries by in-
hibiting pathogens’ growth and biofilm formation [25,41].
Applying purified byproducts or cellular components of
probiotics for therapeutic investigations focusing on a cer-
tain disease would help understand the primary molecular
mechanisms related to each molecule [42]. To further intro-
duce viable options for possible use in caries control, we in-
vestigated the inhibitory activity of PMs derived from LGG
and LR against S. mutans.

Our MIC and MBC results showed that the effec-
tive bactericidal concentration of PMs derived from both
bacteria against S. mutans was 25% (v/v), which confirms
their antibacterial potential against S.mutans. Based on the
biofilm assay (Fig. 1), the CFU value in both PMs was
lower than the controls, and the LGG PMs exhibited lower
counts than those extracted from LR. These data indicate
that PMs produced by LGG were more effective in reduc-
ing the number of S. mutans (CFU/mL) and had higher an-
timicrobial activity. SEM micrographs also showed a sig-
nificant reduction of S. mutans biofilm in the PMs of both
bacteria. Consistent with the results of the CFU counts, the
LGG PMs showed a better inhibitory effect compared to
the LR PMs. The biofilm-reducing activity of postbiotics
is crucial for dental caries prevention.

Different factors are responsible for the various an-
timicrobial, antibiofilm, and anti-adherence activities of
pro/postbiotics, including multiple strains of Lactobacilli
and/or their PBs [25]. These factors can be byproducts

or cellular components of live microorganisms or their
dead/inactivated forms. Examples include biosurfactants,
lipoteichoic acid, cell-free supernatant etc. [25]. According
to former studies, biosurfactants significantly suppressed
S. mutans biofilm [31,43], lipoteichoic acids showed an-
ticaries properties [23,24], metabolites of L. fermentum
TcUESC01 had anti-adherence and bactericidal activities
against S. mutans planktonic cells [44], and organic acids
demonstrated growth-inhibiting effects on S. mutans [25].
In agreement with our results, many studies have shown
that the cell-free supernatant obtained from numerous Lac-
tobacillus strains, including L. reuteri ATCC 23272, L.
rhamnosus [30], L. rhamnosus HN001 [45], and L. reuteri
AN417 [46] exhibited antibacterial activities and caused a
significant decrease in the levels of S. mutans biofilms. In
contrast to our findings, Chen et al. [47] reported that viable
L. reuteri suppressed the cariogenic effects of multispecies
biofilms, but the cell-free supernatant was not as effective.
This conflict may be explained by the different biofilms
used in the studies: we employed a S. mutans monospecies
biofilm, while they applied S. mutans, L. rhamnosus and
Actinomyces naeslundii multispecies biofilms in their re-
search.

The XTT results obtained in the present study demon-
strated that PMs fromLGG and LR significantly suppressed
the metabolic activity of S. mutanswhich decreased its abil-
ity to form biofilms (Fig. 3). The S. mutans samples treated
with LGG PMs showed a higher metabolic activity reduc-
tion than LR. Our XTT findings were strongly confirmed by
the CFU quantitative test results, which assess biofilms. A
previous study suggested that decreases in cell metabolism
may also reduce the synthesis of extracellular matrix mate-
rial [48]. In line with our observations and using the XTT
assay, Srivastava et al. [49] observed an 89% reduction in
the activity of S. mutans following initial incubation with L.
plantarum supernatant. They also reported 33% inhibition
of S. mutans biofilm after 12 h treatment [49]. Similarly,
L. reuteri and S. oligofermentans PMs have been suggested
to decrease the survival and metabolic activity of S. mutans
[50].

The glucosyltransferase gtfB gene encodes the GtfB
enzymes involved in forming insoluble extracellular glu-
cans in S. mutans, which is the major polymeric matrix of
biofilms [38,51]. This gene also regulates bacterial adhe-
sion to the tooth surface, aggregation and coaggregation
of the bacterial cells, and the integrity and stability of the
biofilm structure. Therefore, its suppression may be as-
sociated with reduced biofilm/plaque formation and, ulti-
mately, caries control [4,5]. We employed qRT-PCR to
examine the expression of gtfB in S. mutans. It showed
that the coculture of this bacteria with the PMs from both
LGG and LR significantly down-regulated the expression
level of gtfB (Fig. 4). This was in agreement with several
other coculture studies using S. mutans and multiple Lac-
tobacilli strains, including LGG [6,38,52], and their PMs,
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including LR PMs [3,8,25,29–31,49,53], who showed sig-
nificant suppression of glucosyltransferase-encoding genes
gtfB, gtfC, and/or gtfD.

To investigate the antimicrobial effects of PMs de-
rived from two reference strains, we evaluated S. mutants,
the main component of dental plaque responsible for caus-
ing tooth decay. However, the dynamic oral cavity contains
many more species which could be involved in forming dif-
ferent microbial communities. Furthermore, there is great
variability in biofilm formation and content among individ-
uals with tooth decay. Therefore, it is suggested that fu-
ture studies address this limitation and, in addition to testing
other strains, conduct clinical studies to confirm the results
reported in the current investigation. Also, evaluating the
PMs of Lactobacilli isolated from dairy and digestive sam-
ples can offer further information on the role of postbiotics
in the control of dental caries.

5. Conclusions
In conclusion, this study demonstrated the antimicro-

bial and antibiofilm properties of probiotic-derived PMs
from LGG and LR strains against S. mutans. Our find-
ings showed that MIC and MBC values were achieved at
concentrations above 25% (v/v) for both PMs, suggesting
their potential as effective antimicrobial agents. Biofilm
destruction was observed in both PMs. However, destruc-
tion was significant in the LGG group. SEM analysis sup-
ported these findings, revealing fewer microorganisms and
smaller microcolonies in the presence of PMs. Both PMs
also significantly reduced the metabolic activity of S. mu-
tans, as indicated by the XTT reduction assay. Moreover,
treatment with LGG and LR PMs resulted in a substantial
decrease in gtfB gene expression, which plays a crucial role
in S. mutans biofilm formation. Overall, our results sug-
gest that PMs from LGG and LR strains have promising
potential as a natural alternative for preventing dental caries
caused by S. mutans. However, further in vivo studies and
clinical trials are needed to evaluate the efficacy and safety
of PMs in oral environments.
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