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Abstract

This paper is dedicated to the memory of Oleg B. Ptitsyn (1929-1999) and presents an answer to his question: “What is the role of
conserved non-functional residues in protein folding?”. This answer follows from the experimental works of three labs. The role of
non-functional but conserved residues of apomyoglobin (apoMb) in the formation of the native protein fold in the molten globule state
has been experimentally revealed. This research proves that the non-functional but conserved residues of apoMb are necessary for the
formation and maintenance of the correct topological arrangement of the main elements in the apoMb secondary structure already in the
early folding intermediate.
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1. Introduction
The discovery of conserved but non-functional

residues in c-type cytochromes and globins posed the is-
sue regarding their possible role in protein folding [1,2]. It
has been hypothesized [1–3] that such conserved residues
play a key role in the early stages of the process of protein
folding. In this review, we present verification of this hy-
pothesis using the experiments on apomyoglobin (apoMb)
folding.

It is well known that most of the native protein struc-
tures are characterized by a fixed native topology of the
protein chain and rigid native positions of all or nearly all
amino acid residues in this chain [4–8]. The native protein
structure can be experimentally determined by X-ray crys-
tallography or high-resolution electron cryo-microscopy of
protein crystals, or the nuclear magnetic resonance (NMR)
spectroscopy of proteins in solution; all thesemethods show
the positions of all or nearly all protein atoms.

The protein topology is determined by the native ar-
rangement of the main elements of the secondary struc-
ture of the protein chain. The main elements of the holo-
globin secondary structure are A, B, E, F, G, and H he-
lices (Fig. 1A, Ref. [8,9]), though helix F is disordered
in apo-globins, i.e., in the absence of the heme [9]. These
helices are connected by non-covalent contacts. The most
conserved close contacts (except those directly involved in
the binding of the heme, the functional group of a globin)
exist between A, G, and H helices of globins [1,2,10];

these helices form a π-like structure (Fig. 1B,C, Ref. [1,
10]), and the contacts between them glue together the N-
ends and C-ends of the globin chain. Thus, these con-
served (or virtually—by≥70% [1]—conserved, see Fig. 1D
(Ref. [1])) hydrophobic—aliphatic or aromatic—residues
and contacts between them play a very important role in
protein folding, but atwhat stage of the folding process they
come into play was unclear until recently.

2. Conserved Residues and a Pathway of
ApoMb Folding

Shakhnovich, Abkevich, and Ptitsyn put forward a
seminal idea about the special role performed by conserved
but non-functional residues in the formation of protein
structure and especially its folding nucleus [3]. Later, this
idea was developed and expanded in the theoretical works
by Shakhnovich’s group et al. [11–15] and Ptitsyn & Ting
[1]. The latter study reported that in each of 728 globin se-
quences, there are 6 conserved non-functional residues lo-
calized in a complex of A, G, H helices. Then it was already
known that these helices form at the early stage of apoMb
folding and are rather stable in the equilibriummolten glob-
ule of apoMb [16,17], which allowed the assumption that in
this state these three helices are tightly packed with one an-
other. However, the exact folding steps where they form,
and pack together were elucidated only over the next two
decades (see below).
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Fig. 1. Conserved amino acid residues in globins. (A) The structure of a globin consisting of two crossed layers of three α-helices
each. The A, E, F helices (lettered by their positions in the protein chain) form the upper layer, and H, G, B helices form the lower layer.
The small C, D helices (of 1–2 turns each) are not shown because they are present not in all globins. Bold letters indicate helices A,
G, and H, which have intriguing conserved but “non-functional” contacts with each other. A cavity in the bottom of the upper layer of
helices houses the heme (Adapted with permission from Finkelstein AV, Protein Physics. A Course of Lectures. 2nd edn.; published by
Academic Press, An Imprint of Elsevier Science, 2016 [8]; helix F is disordered in the absence of heme [9]). (B) A cluster of the most
conserved “non-functional” residues and contacts [1,10] is located at the interface of A, G, H helices (while the conserved “functional”
residues [1] in the heme-containing region are not shown here); the helices A, G, H form a π-like topology. In this picture, the amino
acid residue positions are numbered following their places in A, G, H helices; the residue names and numbers correspond to those in the
sperm whale apomyoglobin (apoMb) structure 5MBN presented in the Protein Data Bank (PDB). The thick red bar shows the strongest
(20 atom-atom contacts) and the most conserved residue-residue contact between helices A and H [1]; the thin red bars show the weaker
(8–15 atom-atom contacts) interactions between the conserved residues of helices A, G, and H [1,10]. Adapted with permission from
Ptitsyn OB, Non-functional conserved residues in globins and their possible role as a folding nucleus; published by Elsevier, 1999 [1].
(C) Analogous cluster of the most conserved or virtually conserved “non-functional” side chains and contacts in human hemoglobin B
(PDB code: 3HHBB) [1] on the background od schematically presented helices A, G, H; the drawing from the laboratory archive of O.B.
Ptitsyn. Adapted with permission from Ptitsyn OB, Non-functional conserved residues in globins and their possible role as a folding
nucleus; published by Elsevier, 1999 [1]. (D) Alignment of six representative globin sequences (out of 728 ones examined in [1]). The
PDB code of protein structure is in the first column. The conserved or virtually conserved non-functional residues singled out by Ptitsyn
[1] are encircled in red; the singled out [1] conserved or virtually conserved functional residues are encircled in green; and two completely
conserved functional residues (CD1 and F8) are in italics. Adapted with permission from Ptitsyn OB, Non-functional conserved residues
in globins and their possible role as a folding nucleus; published by Elsevier, 1999 [1].

It should be noted that similar conserved clusters
of non-functional residues were found also in c-type cy-
tochromes [1,18], where their interactions likewise glue to-

gether N- and C-terminal α-helices. Similarly to A, G, H
helices in globins, in cytochrome c, the N- and C-terminal
helices form at the earliest stage of folding of this protein,
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remain rather stable in themolten globule state [19–21], and
are closely packed with one another when they are in the
molten globule.

It is noteworthy that the results obtained by Musto et
al. [10] using site-directed mutants of Aplysia limachine
apoMb (distantly related to mammalian myoglobins) agree
with results obtained for the sperm whale apoMb, and they
clearly show that the conserved but non-functional position
H8 is involved in stabilization of the main folding interme-
diate in both these proteins. The residue occupying this H8
position thus plays a very important role: it is evolutionarily
conserved, as a large hydrophobic residue, in all the globin
family, from invertebrates to fish and mammals. These re-
sults strongly support the statement that the cluster formed
by the A, G, H helices is an important element for the main-
tenance of the proper folding pathway of different globins.

The papers [22,23] from Wright’s laboratory at The
Scripps Research Institute, USA, describe, for a set of mu-
tants, the hydrogen exchange pulse-labeling kinetic experi-
ments with the NMR detection. They have shown that helix
H forms contacts with residues of helices G and A already
at the stage of formation of a molten globule, when other
helices (B, C, D, E, F) apparently have not yet formed, at
least at acidic pH [24–26]. This stage yields an ensemble
of metastable compact intermediates with a native-like ar-
rangement of helices A, B, E, G, H. Though, there is evi-
dence for a small shift of helix H in these burst-phase inter-
mediates, as compared to its location in the native protein
or the equilibrium molten globule. This shift, by approxi-
mately one turn of the helix H towards its N-end, maximizes
hydrophobic contact of helices H and G. The folding, in ex-
periments, was caused by a very fast pH jump (pH2.2 →
pH6.0) monitored by stopped-flow circular dichroism and
fluorescence measurements.

It was only the technique of kinetic measurements
with continuous-flow capillary mixing, developed in
Roder’s lab at Fox Chase Cancer Center, USA, that allowed
investigating very rapid, microsecond-long folding events
[24–27] occurring in apoMB, some other proteins, and their
mutants. It made clear how fast the A-G-H complex of he-
lices forms and the contacts of which residues connect these
helices. It has been found that the initial free energy barrier
is overcome during the protein chain compaction, and the
resulting loosely packed folding intermediate accumulates
before the main rate-limiting step in the formation of the na-
tive tertiary structure. Molecular compaction and helix for-
mation (seemingly associated with a conformational search
for the correct tertiary contacts [28]) occur within the first
few hundred microseconds of initiating the apoMb folding.

Kinetic studies of the molten globule state formation
in apoMb and its mutants shed light on the early stages of
protein folding [27]. It was confirmed that conserved “non-
functional” residues, theoretically discovered by Ptitsyn,
play an essential role mainly at the stage of formation of
the apoMb molten globule, albeit they certainly contribute

to the apoMb native structure stability too. The contacts
between these conserved non-functional residues keep the
correct mutual position of A, G, H helices already during
the formation of the molten globule state. Later, their inter-
action provides the fixation of the correct (native) topology
of apoMb [27,29].

It is known that the reason for the conservation of spe-
cific protein features—such as specific amino acid residues
or their interacting pairs, residue conformations, etc.—in a
certain position within the given protein structure is their
strong stabilization of this structure precisely by existing
in this position [8,30,31]; this results from the natural se-
lection of sequences that stabilize the given protein struc-
ture [8,31]. Thus, equivalent parts of the structure of simi-
lar protein folds must consist of the same or similar amino
acid residues, which leads to the conservation of even “non-
functional” amino acid residues and their interacting pairs.
It is not out of place mentioning that Fig. 1B presents a good
illustration of the principle of consistency [32–34] of the
short-range (intra-helical) and long-range (inter-helical) in-
teractions, which leads to a significant stabilization of pro-
tein structure.

It is worth noting that the modern deep learning-based
approaches to predicting the protein structures from amino
acid sequences of their chains (AlphaFold, etc.) [35–38]
are largely based on identifying similar contacts of amino
acid residues both in the protein whose spatial structure is
to be predicted and in already known protein structures—in
other words, these approaches amply use the conservation
of non-functional amino acid residues.

3. Conclusions
Studying the involvement of non-functional but con-

served amino acid residues of apoMb in the process of its
folding has led to a deeper understanding of how the topol-
ogy of the native protein is formed.

Resulting from the joint work of three laboratories:
ours, at the Institute of Protein Research, Russia; Wright’s,
at The Scripps Research Institute, USA; and Roder’s, at
the Fox Chase Cancer Center, USA, the pathway of forma-
tion of the native topology in apoMb has been first demon-
strated, with the elucidation of the key role of “conserved
non-functional residues” in this process [27,29].
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