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Abstract

Objective: The F-box protein (FBXO) family plays a key role in the malignant progression of tumors. However, the biological functions
and clinical value of the FBXO family in liver cancer remain unclear. Our study comprehensively assessed the clinical value of the
FBXO family in hepatocellular carcinoma (HCC) and constructed a novel signature based on the FBXO family to predict prognosis and
guide precision immunotherapy. Methods: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC)
databases were utilized to investigate the expression characteristics and prognostic value of the FBXO family in HCC. A predictive
model based on the FBXO family using TCGA database; and its predictive ability was validated using the ICGC database. Further
analyses revealed that this predictive model can independently predict the overall survival (OS) rate of patients with HCC. We further
analyzed the association of this predictive model with signaling pathways, clinical pathological features, somatic mutations, and immune
therapy responses. Finally, we validated the biological functions of cyclin F (CCNF) through in vitro experiments. Results: A predictive
model involving three genes (CCNF, FBXO43, and FBXO45) was constructed, effectively identifying high and low-risk patients with
differences in OS, clinicopathological characteristics, somatic mutations, and immune cell infiltration status. Additionally, knock-down
of CCNF in HCC cell lines reduced cell proliferation in vitro, suggesting that CCNF may be a potential therapeutic target for HCC.
Conclusions: The predictive model based on the FBXO family can effectively predict OS and the immune therapy response in HCC.
Additionally, CCNF is a potential therapeutic target for HCC.
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1. Introduction

According to the 2020 cancer statistics from theWorld
Organization for Research on Cancer, hepatocellular carci-
noma (HCC) is the fifth most common cancer globally and
the second leading cause of cancer-related deaths in males
[1]. For early-stage HCC patients, surgical resection re-
mains the primary treatment choice; however, more than
70% of patients experience recurrence after surgical treat-
ment [2]. Early-stage HCC typically presents without no-
ticeable symptoms, contributing to its covert onset. Con-
sequently, most HCC patients present with symptoms at an
advanced stage of disease, rendering them unsuitable for
surgical treatment [3,4]. Despite substantial efforts over
the past few decades to improve the screening, diagnosis,
and treatment of HCC, only 9% of HCC patients survive for
more than 5 years [5]. Immune checkpoint inhibitors have
emerged as a novel therapeutic approach for liver cancer
and have shown some effectiveness in the clinical treatment
of liver cancer patients; however, this treatment method has
proven beneficial for only a minority of patients in clinical

practice [6]. Therefore, it is essential to identify precise di-
agnostic and prognostic biomarkers for HCC.

The ubiquitin proteasome system is a highly selec-
tive proteolytic system that controls the protein degrada-
tion process and plays an important role in cancer develop-
ment [7]. F-box (FBXO) proteins are the core component
of the S phase kinase-associated protein 1-cullin 1-FBXO
E3 ubiquitin ligase family [8]. The FBXO family, which
regulates numerous cellular biological processes and sig-
naling pathways linked to malignancies, holds great signif-
icance [9]. For example, FBXO1 is involved in DNA re-
pair and genome stability [10]. FBXO5 stabilizes substrates
to regulate the cell cycle [11]. FBXO28 may exert tumor-
promoting effects on breast cancer via the ubiquitination
of Myc143, inducing transcription. Nevertheless, the value
and biological function of the FBXO family in HCC remain
unclear and require further elucidation.

Within the FBXO family, FBXO1, FBXO18,
FBXO23, and FBXO29 are also known as cyclin F
(CCNF), F-box DNA helicase 1, Tetraspanin-17 and
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F-box/WD repeat-containing protein 8, respectively. In
this study, we established a predictive model based on
the FBXO family through comprehensive bioinformatics
analysis, and its accuracy and reliability were internally
and externally validated. Additionally, we evaluated the
diagnostic and prognostic value of this model. Finally, we
validated the biological functions of CCNF. Our results
indicate that the predictive model based on the FBXO
family is instrumental in improving personalized prognosis
prediction and precise immunotherapy. Furthermore,
cyclin F was identified as a potential therapeutic target for
HCC.

2. Materials and Methods
2.1 Data Collection and HCC Sample Acquisition

High-throughput transcriptome sequencing mRNA
expression matrix and corresponding clinicopathological
information of HCC patients were obtained from Interna-
tional Cancer Genome Consortium (ICGC) (https://dcc.ic
gc.org/) website and The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) [12]. For TCGA dataset,
371 HCC patients were utilized as the training cohort. The
validation cohort, consisting of 231 Japanese patients with
HCC, was derived from the ICGC dataset. eight fresh HCC
tissues were collected from the First Affiliated Hospital
of Zhengzhou University for analysis. All patients with
HCC included in this study were initially diagnosed with
HCC for the first time and did not receive any treatment
before surgery. They were all pathologically diagnosed
with HCC, provided written informed consent, allowing us
to obtain clinical samples. This study obtained approval
from the Ethics Committee of the First Affiliated Hospi-
tal of Zhengzhou University. All samples were stored in a
low-temperature freezer at –80 °C.

2.2 Analysis of FBXO Family Expression Data
We analyzed the gene expression matrix of the FBXO

family in 371 HCC tumor samples and their corresponding
liver tissues using the Gene Expression Profiling Interactive
Analysis (GEPIA) database [13]. The “maftools” software
was employed to assess and present themutation data of dif-
ferent groups, with each gene mutation depicted using wa-
terfall charts. To evaluate immune cell enrichment scores,
the single-sample gene set enrichment analysis (ssGSEA)
approach was employed, facilitated by the “Gene Set Vari-
ation Analysis” R package (v1.40.1). Spearman’s analysis
was utilized to assess the relationship between the model
and immunological infiltration, and the findings were visu-
alized using lollipop charts. A comparison was made be-
tween the model and immunological checkpoint data. Tu-
mor Immune Dysfunction and Exclusion (TIDE) analysis
is used to predict the efficacy of immunotherapy in HCC
patients [14].

2.3 Functional Analysis

We utilized the “clusterProfiler” R package (v4.2.2)
to conduct GSEA with the aim of identifying potential bio-
logical roles and signaling pathways among different sub-
groups. Pathways with p value< 0.05 were considered sig-
nificantly enriched.

2.4 Development and Validation of the FBXO Prognostic
Model

The “DESeq2” R program was utilized initially to an-
alyze the mRNA expression matrix from TCGA dataset.
If the genes met the following criteria, they were consid-
ered differentially expressed genes (DEGs): |fold change|
>1.5 and adjusted p < 0.05. Univariate Cox regression
analysis was employed to identify the predictive genes. A
risk score based on the FBXO family was evaluated based
on the expression levels of overall survival (OS)-related
FBXO genes, which were included in the multiple regres-
sion model. The regression coefficient (β) was used to
quantify the impact of these genes on the risk score (RS) =
expression of FBXO45 × 0.2609 + expression of FBXO43
× 0.3369 + expression of CCNF × 0.3369.

2.5 5-Ethynyl-2′-deoxyuridine (EdU) Cell Proliferation
Assay

The EdU cell proliferation assay was conducted us-
ing an EdU assay kit (Abbkine, Wuhan, China) following
the manufacturer’s protocol. Cells were seeded in 96-well
plates at a density of 3 × 103 cells per well. The next day,
cells were treated with 10 µM EdU and incubated for 2
h. Subsequently, the cells were fixed, permeabilized, and
incubated with 150 µL Click-iT reaction mixture for 30
min. Cell visualization was performed by fluorescence mi-
croscopy.

2.6 Colony Formation Assay and the Cell Counting Kit-8
Assay

The Cell Counting Kit-8 (CCK-8) assay, which mea-
sures cell proliferation, was performed using a CCK-8 kit
(CK04; Dojindo Molecular Technologies, Inc., Rockville,
MD, USA). For HCC cell culture, 3 × 103 cells per well
were seeded in 96-well plates. Each well received 10 µL
CCK-8 solution and was incubated for 2 h, after which the
absorbance was measured. Additionally, 1 × 103 HCC
cells were seeded into 12- or 24-well plates. After 10 days
of incubation, the media was removed and the cells were
fixed in 4% paraformaldehyde (C8; Solarbio Life Science,
Beijing, China) for 30 min, followed by staining with a
0.1% crystal violet solution.

2.7 Quantitative Real-Time PCR (qRT-PCR) and Western
Blotting (WB)

Total RNA was extracted from HCC tissues
(CW3166; CoWin Biosciences, Cambridge, MA, USA)
following standard protocols [15]. Then the extracted total
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Fig. 1. Flowchart for this study. TCGA, The Cancer Genome Atlas; FBXO, F-box protein; OS, overall survival; ICGC, International
Cancer Genome Consortium; COX, cox proportional hazards regression; CCK8, cell counting kit-8; EDU, 5-ethynyl-2’-deoxyuridine;
KEGG, kyoto encyclopedia of genes and genomes; GO, gene ontology; CCNF, cyclin F.

mRNAs were reversely transcribed using HiScript III RT
SuperMix (Vazyme, Nanjing, China). qRT-PCR was car-
ried out on the QuantStudio3 Real-Time PCR System using
the YBR qPCR Master Mix (Vazyme). GAPDH was em-
ployed for standard normalization. The primer sequences
utilized for amplification are listed in Supplementary
Table 1. Western Blotting was performed as previously
described [16]. Primary antibodies against CCNF (864429)
was acquired from Zenbio. Antibodies against GAPDH
(60004-1-Ig) was obtained from Proteintech.

2.8 Cell Culture and Small Interfering RNA Transfection

Human HCC cell lines (HepG2, Huh7, MHCC-97H,
SMMC-7721) were obtained from the Chinese Academy
of Sciences (Shanghai, China) and cultured in Dulbecco’s
Modified Eagle Medium at 37 °C in a humid atmosphere
of 95% air and 5% CO2. All cell lines were validated
by short tandem repeat (STR) profiling and tested nega-
tive for mycoplasma. Small interfering RNA (siRNA) tar-
get sequences for CCNF were as follows: si-CCNF, sense:

5′-TCAGGCCAGGAAGTCATGTTT-3′; negative control
(NC), sense: 5′- UUCUCCGAACGUGUCACGUTT-3′.
The efficiency of siRNA was evaluated by qPCR.

2.9 Statistical Analyses

Statistical analyses were performed using the R pro-
gram (version 4.1.1, https://www.r-project.org). Group dif-
ferences were evaluated using either analysis of variance
or the Student’s t-test. Cox proportional hazards regression
analysis was employed to identify risk factors, and p< 0.05
was considered statistically significant.

3. Results
3.1 Construction of the FBXO Prognostic Model

We created a flowchart to outline the main approach
of this study (Fig. 1). The study included a total of 50
FBXO family members, with 26 genes identified as DEGs
between HCC and normal liver tissues (Fig. 2A). Subse-
quent univariate analysis identified eight prognosis-related
genes in the TCGA database and five genes in the ICGC
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Fig. 2. Identification of key genes in the FBXO family. (A) A venn diagram showed that 26 abnormal expressed FBXO family in
TCGA dataset. (B,C) Univariate Cox regression analysis of OS proved that several hub FBXO family were prognostic biomarkers in
TCGA (B) and ICGC (C) datasets. (D) A Venn diagram reveals that CCNF, FBXO43, and FBXO45 are key prognostic genes. (E–G)
FBXO43, CCNF, and FBXO45 are re highly expressed in HCC. (H–J) High expression of CCNF, FBXO43 or FBXO45 is associated with
poor prognosis in HCC patients. HCC, hepatocellular carcinoma. *p < 0.05.
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Fig. 3. Survival analysis of this model based on TCGA dataset. (A) Relationship between RS and survival status in HCC patients.
(B) PCA plots of the high and low-RS groups. (C) Patients with high-RS had poor OS than low-RS group. (D) ROC curves of RS for
predicting survival of patients with HCC. RS, risk score; PCA, Principal Component Analysis; ROC, Receiver Operating Characteristic.

database. Among them, CCNF, FBXO43, and FBXO45
genes showed significant associations with the prognosis of
HCC patients in both databases (TCGAdatabase: FBXO45:
p = 7.988 × 10−5, HR = 1.780 (1.336–2.371); FBXO43:
p = 1.360 × 10−4, HR = 1.625 (1.266–2.086); CCNF:
p = 3.063 × 10−6, HR = 1.588 (1.307–1.928); ICGC
database: FBXO45: p = 4.992× 10−5, HR = 2.784 (1.697–
4.566); FBXO43: p = 2.360 × 10−3, HR = 1.893 (1.254–
2.857); CCNF: p = 3.458 × 10−5, HR = 2.055 (1.461–
2.890); Fig. 2B–D). We further conducted visual analysis

of the abnormal expression and prognostic correlation of
the FBXO43, FBXO45, and CCNF using the online tools
GEPIA in HCC (Fig. 2E–J). Due to the independent cor-
relation of CCNF, FBXO45, and FBXO43 expression with
OS in both databases, we selected CCNF, FBXO45, and
FBXO43 to construct a predictive model. The risk score
(RS) was calculated for each HCC patient based on the for-
mula mentioned above. Using the median RS as the thresh-
old, TCGAcohort was stratified into the highRS group con-
sisting of 185 patients and the low RS group comprising
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186 patients (Fig. 3A). As shown in Fig. 3C, HCC patients
in the high RS group had shorter OS than those in the low
RS group (log-rank test, p < 0.001, HR = 2.718 (1.809–
4.085)). Higher risk scores were correlated with shorter
survival time (Fig. 3A). The area under the curve (AUC)
values for 1-, 2-, and 3-year OS were 0.719, 0.672, and
0.656, respectively (Fig. 3D). Principal component analy-
sis (PCA) demonstrated a clear separation of patients into
two subgroups (Fig. 3B).

3.2 Prognostic Model Validation in the ICGC Dataset
To further validate the accuracy of the predictive

model, the ICGC cohort was included for model validation.
(Fig. 4A). Consistent with the results of TCGA database,
patients in the high RS group exhibited poorer OS (log-
rank test, p< 0.001, HR = 4.962 (2.444–10.074)) (Fig. 4C).
The AUC values for 1-, 2-, and 3-year OS of RS in the
ICGC database were 0.744, 0.704, and 0.725, respectively
(Fig. 4D). These results demonstrate the reliability of the RS
in predicting the OS of HCC patients. Additionally, PCA
revealed distinct patient clustering in the two subgroups
(Fig. 4B).

3.3 Correlations between the RS and Clinical
Characteristics

We analyzed the relationship between RS and clin-
icopathological parameters. As shown in Table 1, high-
risk patients exhibited significantly advanced tumor-node-
metastasis (TNM) staging (p = 0.016), poorer histologi-
cal differentiation (p < 0.001), older age (p = 0.013), and
higher alpha-fetoprotein (AFP) levels (p = 0.001). These
findings suggest a tendency for high-risk patients to have
unfavorable clinical characteristics.

We further conducted univariate analysis in TCGA co-
hort, including RS, age, sex, gender, TNM staging, tumor
status, AFP, and vascular invasion. The results showed
that TNM stage (HR = 2.449 (1.689–3.549), p < 0.05),
tumor status (HR = 2.346 (1.610–3.419), p < 0.05), and
RS (HR = 2.718 (1.809–4.085), p < 0.05) were associated
with OS (Fig. 5A). Multivariate analysis further verified
the independent correlation of RS with OS (HR = 2.327
(1.073–5.047), p = 0.033) (Fig. 5B). Univariate analysis in
the ICGC database further revealed that TNM stage (HR =
2.492 (1.351–4.599), p < 0.001), RS (HR = 4.962 (2.444–
10.074), p = 0.001), and sex (HR = 0.502 (0.268–0.940), p
= 0.031) were closely associated with the OS of HCC pa-
tients (Fig. 5C). Multivariate analysis also indicated that RS
(HR = 4.866 (2.365–10.011), p < 0.001) was an indepen-
dent biomarker for HCC (Fig. 5D). Therefore, our research
findings indicate that the model based on the FBXO family
was independently correlated with the OS of HCC patients.

Table 1. Correlation between RS and clinicopathological
characteristics of HCC patients*.

Characteristics N RSlow RShigh p value

Age (years) 0.013
<60 169 73 96
≥60 201 113 88
NA 1

Gender <0.001
Female 195 130 65
Male 176 56 120

Grade <0.001
I+II 232 141 91
III+IV 134 42 92
NA

TNM stage 0.016
I+ II 257 138 119
III+ IV 90 35 55
NA 13

AFP
<60 213 128 85 <0.001
≥60 65 15 50
NA 93

*Data from TCGA dataset. TNM, tumor-
nodemetastasis.

3.4 Somatic Mutation Landscape in Different Subgroups
Based on the RS

The “maftools” tool was used to study the differ-
ences in somatic mutation landscapes between the high
RS and low RS groups. The somatic mutation landscape
between subgroups is visually represented using waterfall
plots (Fig. 6A,B). In the low RS group, the top six mutated
genes were catenin beta 1 (CTNNB1), titin (TTN), albumin
(ALB), mucin 16 (MUC16), tumor protein p53 (TP53), and
piccolo presynaptic cytomatrix protein (PCLO), whereas in
the high RS group, the top six mutated genes were TP53,
TTN, CTNNB1, MUC16, low-density lipoprotein receptor-
related protein 1B, and ryanodine receptor 2 (Fig. 6A,B).
Additionally, when comparing gene alterations in the high
RS and low RS groups, it was observed that the mutation
frequency of TP53 and retinoblastoma protein genes was
higher in the high RS group (Fig. 6C).

3.5 RS Predicts the Immune Landscape and
Immunotherapy Responses

We employed ssGSEA to calculate the enrichment
scores for 24 immune cell types, estimating the relative
abundance of cell infiltration in the HCCmicroenvironment
(Fig. 7A). As shown in Fig. 7A and Supplementary Table
2, eosinophils (r = –0.419, p = 1.93 × 10−17), neutrophils
(R = –0.254, p = 2.59 × 10−6), CD56 bright natural killer
cells (R = –0.196, p = 8.41× 10−5), type 1 helper T cells (R
= –0.21, p = 5.49× 10−5), effector memory CD8 T cells (R
= –0.156, p = 0.006), mast cells (R = –0.11, p = 0.021), ac-
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Fig. 4. Verification of this model prognostic significance based on the ICGC dataset. (A) Relationship between RS and survival
status in HCC patients. (B) PCA plot of the high and low RS groups. (C) Survival analysis between high and low RS groups. (D) ROC
curves of RS for predicting survival of patients with HCC.

tivated CD8 T cells (R = –0.150, p = 0.043), and CD56dim
natural killer cells (R = –0.051, p = 0.043) were negatively
correlated with RS. These findings suggest that high RS pa-
tients exhibit an immunosuppressive phenotype.

Fig. 7B shows that immune checkpoint molecules,
including CD274, hepatitis A virus cellular receptor 2,
lymphocyte activation gene 3, V-set immunoregulatory re-
ceptor, B- and T-lymphocyte attenuator, and T cell im-
munoreceptor with immunoglobulin and tyrosine-based in-
hibitory motif domain [17], were upregulated in the high-
risk group. Furthermore, we conducted TIDE analysis
and found that the high-risk group exhibited a signifi-
cantly higher proportion of immunologically nonrespon-

sive individuals (64.9%), along with elevated TIDE (p <

1.5 × 10−13) and dysfunction scores (p < 6.1 × 10−11)
(Fig. 7C,D). This suggests that the high-risk group might
be more prone to immune escape and less responsive to im-
munotherapy.

3.6 Enriched Pathways and Functions between High- and
Low- RS Groups

Supplementary Fig. 1B shows the 20 genes with the
most significant differences between the high- and low-risk
groups. To investigate the molecular mechanism of FBXO-
mediated HCC development, we conducted Gene Ontology
(GO) enrichment analysis and GSEA. GO analysis indi-
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Fig. 5. Relation between the RS and clinical parameters (A–D). The TCGA and ICGC datasets both demonstrated that RS was a
reliable prognostic biomarker.

cated that FBXOs may play a crucial role in the mitochon-
drial matrix and organic anion transmembrane transporter
activity (Supplementary Fig. 1C). Through GSEA, we ex-
plored the differences in biological mechanisms and cancer-
related pathways between the subgroups. Supplementary
Fig. 1D highlights the five pathways with the most notice-
able inconsistencies. Notably, the cell cycle was signifi-
cantly enriched in the high RS group.

3.7 RT-PCR Validation of Key Genes in HCC Tissues
To further evaluate the correlation between the key

genes of the FBXO family and HCC, we collected 8 pairs of
HCC and adjacent normal liver tissues, and their expression
levels were detected by qRT-PCR. The results showed a sig-
nificant increase in the expression of CCNF, FBXO43, and
FBXO45 in HCC compared to adjacent normal liver tissues
(Fig. 8).

3.8 Knockdown of CCNF Suppresses the Proliferation
of HCC

FBXO45 andFBXO43 can promote themalignant pro-
gression of HCC [18–21]. However, the biological func-
tion of CCNF in HCC remains unclear. We first detected
the expression levels of CCNF in four HCC cell lines by
qPCR. The results revealed the high expression ofCCNF in
Huh7 and HepG2 cells (Fig. 9A). To investigate the role of
CCNF in HCC cell lines, we successfully transfected Huh7
and HepG2 with si-CCNF to knock down CCNF expres-

sion, confirmed by qPCR (Fig. 9B) and western blotting
(Fig. 9C). Compared to the NC group, transfection of Huh7
and HepG2 cells with si-CCNF resulted in reduced prolif-
eration (Fig. 9D–F) and colony-forming ability (Fig. 9G) (p
< 0.05). These findings suggest that CCNF promotes the
malignant development of HCC.

3.9 Genes Co-Expressed with CCNF in HCC and
Functional Enrichment Analysis

In this study, we utilized cBioPortal and LinkedOmics
online tools to screen the top 200 co-expressed genes with
CCNF. As depicted in the Venn diagram in Fig. 10A, we
obtained 166 overlapping genes. Subsequent GO enrich-
ment analysis indicated that CCNF may play a specific
role in processes such as nuclear division, DNA replica-
tion, spindle assembly, and DNA replication origin binding
(Fig. 10B). Additionally, Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis suggested the crucial involve-
ment ofCCNF in the cell cycle, DNA replication, and cellu-
lar senescence (Fig. 10C). These results indicate thatCCNF
may play a significant role in the development of HCC.

We employed a protein–protein interaction (PPI) net-
work of 166 co-expressed genes with CCNF and identified
key modules (Supplementary Fig. 2). Using cytoHubba
in Cytoscape, we identified three hub genes closely associ-
ated with CCNF: cell division cycle protein 20 (CDC20),
polo-like kinase 1 (PLK1), and cyclin-dependent kinase
1 (CDK1) (Fig. 10D). Further analysis using the GEPIA
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Fig. 6. Somatic Mutation Landscape in Different Subgroups Based on the RS. (A,B) Waterfall plots reveal the information about
mutations in each HCC patient sample in the high and low RS groups. (C) Top 6 mutant genes displayed compared high or low RS group.
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Fig. 7. The role of RS in immune responses in HCC. (A) Relationship between RS and 28 types of immune cells. (B) The relationships
between the RS and various immune checkpoints. (C) TIDE analysis predicts the sensitivity of patients in high and low-RS groups to
immunotherapy. (D) The difference in TIDE and Exclusion scores between high and low-RS groups. *p < 0.05, **p < 0.01, ***p <

0.001.

dataset (Fig. 10E) revealed a correlation between CCNF
and these three central genes in HCC patients. Patients
with higher levels of these hub genes had a poorer prognosis
(Fig. 10F). These findings collectively suggest that CCNF,
CDC20, PLK1, and CDK1 may collaboratively contribute
to the malignant progression of HCC.

4. Discussion

The advancement of bioinformatics tools allows re-
searchers to identify reliable biological markers and build
reliable cancer prognosis prediction signatures based on

gene families. For instance, Fan et al. [22] developed a
high-precision prognosis model based on the chemokine-
and chemokine receptor gene family for predicting the clin-
ical prognosis of lung adenocarcinoma patients. Yang et al.
[23] incorporated lamin family genes into an HCC prog-
nosis model. These signatures exhibit a favorable prog-
nostic value for the OS of patients. TNM and Barcelona
Clinic Liver Cancer stage are utilized to categorize HCC
patients into different groups for corresponding treatments
(e.g., surgery, radiation, immunotherapy). However, these
methods are insufficient for providing individual prognostic
predictions for patients [24,25]. Recent research indicates
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Fig. 8. Validation of CCNF, FBXO43, and FNXO45 expression levels in HCC tissues and normal liver tissues by qRT-PCR. (A–C)
Box plots showing the expression levels of CCNF, FBXO43, and FBXO45 in HCC and normal liver tissues. Non-tumor: adjacent normal
liver tissues (n = 8); tumor: HCC (n = 8). **p < 0.01. qRT-PCR, Quantitative Real-Time PCR.

that FBXO family members play a crucial role in tumor
progression [18,26,27]. Nevertheless, the clinical value of
FBXO family remains unclear. Therefore, we investigated
the value of the FBXO family in predicting HCC prognosis
and immune therapy responses.

We utilized bioinformatics tools to identify hub genes
within the FBXO family and constructed a predictive model
using hub genes (CCNF, FBXO45, and FBXO43). The
model effectively identified high- and low-risk patients
with differences in OS, clinicopathological characteristics,
somatic mutations, and immune cell infiltration status. Fi-
nally, we investigated the biological function of CCNF in
HCC cells, revealingCCNF as a potential therapeutic target
for HCC.

Our study revealed that CCNF, FBXO45, and
FBXO43 are reliable biomarkers associated with adverse
clinical outcomes in HCC. CCNF plays a key role in reg-
ulating various cellular processes, including maintaining
genome stability, centrosome replication, DNA replication,
and repair [10]. Studies suggest that the reduction of CCNF
promotes cell senescence by CDK1 [28]. However, the bi-
ological functions of CCNF in HCC are still unclear. Our
study found that CCNF is overexpressed in HCC, serving
as an adverse prognostic factor for the disease. Targeting
CCNF may be a promising approach for treating HCC. Ad-
ditionally, we identified a gene cluster composed of PLK1,
CDK1, andCDC20, which are significantly associated with
CCNF. These genes may collaborate to promote the malig-
nant progression of HCC.

FBXO43, a member of the F-box protein family [29],
has been associated with a poor prognosis when overex-
pressed in HCC [30]. Studies suggest that FBXO43 dele-
tion can suppress p53’ proteasomal degradation and reduce
ubiquitin-conjugating enzyme E2C expression, thereby
preventing HCC cells from proliferating and invading sur-
rounding tissues [19]. FBXO45, functioning as an E3 ligase
substrate recognition subunit, has been implicated in vari-

ous human diseases including inflammation, malignancy,
and nervous system disorders [27]. Abnormal expression
of FBXO45 has been associated with poor outcomes for pa-
tients [27]. A reduction of FBXO45 consistently leads to
the accumulation of p73 and eventually induces the death
of affected cells [26]. However, other research suggests
that FBXO45 may block the epithelial–mesenchymal tran-
sition by targeting the transcription factors responsible for
its initiation [31]. In summary, these findings indicate the
potential of the FBXO family as a novel therapeutic target
for HCC.

In our study, the analysis of somatic mutations in the
high RS and low RS groups revealed that TP53 gene muta-
tions were more common in the high RS group. TP53 is a
crucial tumor suppressor gene, and mutations in the TP53
gene can reduce the anticancer capability of the p53 pro-
tein while conferring oncogenic properties [32]. TP53 mu-
tations impact the anti-tumor immune response [33]. There-
fore, for the high RS group, a more effective treatment strat-
egy may involve directly targeting the mutated TP53 and
restoring its wild-type function to inhibit the malignant pro-
gression of HCC [32].

The abundance of immune cell infiltration in HCC
of the high-risk group was found to be lower compared
to the low-risk group, indicating potential immunosuppres-
sion in these patients. Presently, immunotherapy has signif-
icantly improved the prognosis of liver cancer patients by
enhancing the immune system. Clinically, immunotherapy
drugs primarily target immune checkpoints for effective
treatment, and routine assessment of immune checkpoints
helps determine the suitability of patients for immunother-
apy [34]. Additionally, the analysis revealed increased ex-
pression levels of immune checkpoint molecules, includ-
ing CD274, HAVCR2, LAG3, VISIR, BTLA, and TIGIT, in
high-risk liver cancer patients. These immune checkpoints
are co-inhibitory receptors, and their high expression sug-
gests T-cell dysfunction or exhaustion phenotypes and neg-
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Fig. 9. The knockdown of CCNF inhibit the proliferation of HCC in vitro. (A) The expression levels of CCNF in four human HCC
cell lines. (B,C) CCNF expression levels in control and siCCNF groups of HCC cell lines were detected using qRT-PCR (B) andWestern
blotting (C). (D–G) Knockdown of CCNF inhibit the proliferation of HCC cells in vitro, scale bars, 100 µm. *p < 0.05, **p < 0.01.
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Fig. 10. PPI Network and bioinformatics Analysis of CCNF. (A) Intersection of genes that were got via the LinkedOmics and the
cBioPortal database. (B,C) The GO and KEGG analysis were employed for predicted the functional of the CCNF and 166 co-expressed
genes. (D) The hub-genes were distinguished via Cytoscape. (E) Correlation between 3 hub-genes and CCNF expression. (F) survival
analyses of hub-genes in HCC.
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ative regulation of anti-tumor responses [35]. Studies have
shown significant therapeutic effects of these co-inhibitory
receptors in the treatment of certain cancers [36]. Given the
correlation between RS and these immune checkpoints, sig-
nature based on the FBXO family can be a promising tool to
help identify liver cancer patients suitable for immunother-
apy.

Presently, immunotherapy has significantly improved
the prognosis of liver cancer patients by enhancing the im-
mune system [23]. However, due to individual variations,
the effectiveness of immunotherapy also varies among dif-
ferent populations. Therefore, it is crucial to determine
which populations are more likely to benefit from im-
munotherapy. We evaluated the tumor immune microen-
vironment in TCGA cohort. The abundance of immune
cell infiltration in HCC of the high-risk group was found
to be lower compared to the low-risk group, indicating the
potential immunosuppression in these patients. Clinically,
immunotherapy drugs primarily target immune checkpoints
for effective treatment, and routine assessment of immune
checkpoints helps determine the suitability of patients for
immunotherapy [34]. Through further TIDE analysis, we
found that the TIDE and exclusion scores were signifi-
cantly elevated in the high-risk group. The high-risk group
exhibited a notably higher proportion of immunologically
nonresponsive individuals, suggesting a greater propen-
sity for immune escape and reduced responsiveness to im-
munotherapy. By contrast, the low-risk group appeared
more suitable for immunotherapy [37]. Given the correla-
tion between RS and the immunotherapy response, a signa-
ture based on the FBXO family could be a promising tool to
help identify liver cancer patients suitable for immunother-
apy.

This study had some limitations. First, external vali-
dation of themodel through clinical trials is needed, and this
study lacked a well-designed validation. Second, direct in-
teractions between the FBXO family and immune cell infil-
tration need further clarification through more experiments.
Third, further foundational experiments are needed to in-
vestigate the potential mechanisms by which CCNF pro-
motes the progression of HCC.

5. Conclusions
The predictive model based on the FBXO family can

effectively predict OS and the immune therapy response in
HCC. Additionally, CCNF is a potential therapeutic target
for HCC.
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