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Abstract

Background: Breast cancer (BC) ranks as the most prevalent malignancy affecting women globally, with apoptosis playing a pivotal
role in its pathological progression. Despite the crucial role of apoptosis in BC development, there is limited research exploring the
relationship between BC prognosis and apoptosis-related genes (ARGs). Therefore, this study aimed to establish a BC-specific risk
model centered on apoptosis-related factors, presenting a novel approach for predicting prognosis and immune responses in BC patients.
Methods: Utilizing data from The Cancer Gene Atlas (TCGA), Cox regression analysis was employed to identify differentially prog-
nostic ARGs and construct prognostic models. The accuracy and clinical relevance of the model, along with its efficacy in predicting
immunotherapy outcomes, were evaluated using independent datasets, Receiver Operator Characteristic (ROC) curves, and nomogram.
Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)analyses were used to predict potential me-
chanical pathways. The CellMiner database is used to assess drug sensitivity of model genes. Results: A survival risk model comprising
eight prognostically relevant apoptotic genes (PMAIP1, TP534IP1, TUBA3D, TUBAIC, BCL241, EMPI1, GSN, F2) was established
based on BC patient samples from TCGA. Calibration curves validated the ROC curve and nomogram, demonstrating excellent accu-
racy and clinical utility. In samples from the Gene Expression Omnibus (GEO) datasets and immunotherapy groups, the low-risk group
(LRG) demonstrated enhanced immune cell infiltration and improved immunotherapy responses. Model genes also displayed positive
associations with sensitivity to multiple drugs, including vemurafenib, dabrafenib, PD-98059, and palbociclib. Conclusions: This study
successfully developed and validated a prognostic model based on ARGs, offering new insights into prognosis and immune response
prediction in BC patients. These findings hold promise as valuable references for future research endeavors in this field.
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1. Introduction through endogenous and exogenous pathways mediated by
cysteine aspartate, which effectively maintains homeosta-
sis in the organism [4]. The theory that apoptosis may act
as a cancer barrier was first proposed in 1972 when Kerr et
al. [5] identified hormone-dependent tumors after massive
apoptosis of tumor cells following hormone withdrawal.
Since then, promotion of cancer programmed cell death has
been a goal of clinical cancer therapy. Most current anti-
cancer drugs utilize the apoptotic pathway to trigger cancer
cell death, but resistance can result from upregulation of
anti-apoptotic genes or inactivation of oncogenes and de-
fects in signaling pathways in cancer cells. That is why one
of the tumor characteristics is evasion of apoptosis [6].
Normal breast tissue development relies on a delicate

Based on data from the American Cancer Society, in
2024, breast cancer (BC) will account for 32% of all new
cancer cases in women and remain the leading cause of
cancer-related deaths for women [1]. Conventional treat-
ment options for BC include surgery, chemotherapy, radi-
ation and personalized treatment regimens based on BC’s
molecular classification. However, despite these treatment
options, the mortality rate of patients with BC remains
40%—-60% in some countries, indicating its poor prognosis
[2]. Some reports predict that by 2040, there will be more
than 3 million new diagnosed cases of BC and 1 million
deaths from BC worldwide [3].

Apoptosis is a programmed cell suicide death and
is usually involved in the processes of development and
senescence. Apoptosis is genetically regulated and occurs

balance between cell apoptosis and proliferation, but apop-
tosis anomaly and cell hyperproliferation lead to carcino-
genesis [7]. Chemotherapy, endocrine therapy, and radio-
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Fig. 1. Research process. GEO, gene expression omnibus.

therapy are primary treatment modalities for BC, all capa-
ble of inducing apoptosis to eliminate cancer cells. Dox-
orubicin (Adriamycin®) is an antitumor agent widely used
in chemotherapy for breast cancer. Doxorubicin can induce
apoptosis and cell cycle arrest by inhibiting topoisomerase
II mediated DNA damage [8]. The novel camptothecin
derivative CPT211 activates the P53-mediated apoptotic
pathway in MCF-7 cells, leading to apoptosis [9]. Nev-
ertheless, in 2024, overcoming therapeutic resistance re-
sulting from the evasion of apoptosis remains a formidable
challenge in the treatment of BC [10,11]. Moreover, there
are few studies on the relationship between apoptosis-
related genes (ARGs) and the breast.

Therefore, it is crucial to explore new prognostic
markers for BC and to build an efficient prognostic model
to determine patient survival and treatment response. In
this study, we constructed a prognostic risk model based on
ARGs, which was able to efficiently predict the prognosis

and treatment response of BC patients. These results may
become a valuable reference in the future.

2. Materials and Methods
2.1 Data Collection

The expressed gene RNA sequencing (RNA-seq)
datasets and corresponding clinical data for BC were ex-
tracted from The Cancer Gene Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) for breast tumor and normal
breast tissue samples. The models were validated by down-
loading GSE42568 and GSE88770 datasets from Gene Ex-
pression Omnibus (GEO) database (https://www.ncbi.nlm
.nih.gov/gds/). 268 ARGs were obtained from Kyoto En-
cyclopedia of Genes and Genomes (KEGQ) using the key-
word Apoptosis-homo sapiens: hsa04210 pathway (https:
/Iwww.kegg.jp/entry/hsa04210) and previous related liter-
ature [12,13]. CellMiner was utilized to retrieve RNA-seq
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expression data and compound activity information for the
developmental therapeutics program (DTP) NCI-60 dataset

[14] (Fig. 1).

2.2 Differential ARG and Functional Analyses

ARGs differentially expressed in BC were identified
using the “limma” package (version 3.14) in R software
(version 4.1.1, R Foundation for Statistical Computing,
Vienna, Austria). “clusterProfiler” in R Gene Ontology
(GO) and KEGG pathway analyses were performed using
[13,15-17]. The heatmap, ggpubr, and ggplot packages
were used to visualize the genes.

2.3 Screening for Prognosis-Related Genes and Model
Construction

Using univariate and multivariate Cox regression, the
model was constructed by identifying apoptotic genes as-
sociated with BC prognosis. Eight apoptotic genes that
were significantly associated with prognosis were finally
retained. Risk scores for all patients were calculated as fol-
lows: Risk score =Y (Coef; x Expr;)(n, Expr;, and
Coef; represented gene number, level of gene expression,
and Coefficient values calculated from multiple Cox regres-
sion analysis, respectively). A median risk score was used
to categorize patients into high- risk group (HRG) and low-
risk group (LRG).

2.4 Immunological Analysis of High- and Low-Risk Group

Based on the CIBERSORT algorithm, 22 immune
cells were identified in each BC specimen and the sum of
the composition of each immune cell was equal to 1 [18].
The levels of infiltration of different immune cells and mul-
tiple immune pathway scores were analyzed using single
sample gene enrichment analysis (ssGSEA) in the “GSVA”
R package (version 3.14) [19]. Subsequently, the immune
pathways of the two groups were then examined.

2.5 Immune Targets and Immunotherapy Response
Prediction

Immunotherapy targets commonly used in clin-
ical immunotherapy were used to assess the sen-
sitivity of the HRG to immunotherapy. A co-
hort of advanced renal hyaline cell carcinoma im-
munotherapy treated with PD-/ blockade was included

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499153/),

excluding patients with incomplete responses; finally, 311
patients were included in the analysis.

2.6 Predictive Power and Independence of Prognostic
Models

Age, stage, tumor size (T), lymph node status (N),
metastasis (M), and risk scores were evaluated in terms
of their prognostic value through univariate and multivari-
ate Cox regression analyses in the ’survival’ R package.
(https://cran.r-project.org/web/packages/survival). Based
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on Kaplan-Meier (K-M) analysis and log-rank test, over-
all survival (OS) was compared between the two groups.
A time-dependent Receiver Operator Characteristic (ROC)
curve analysis was performed using the “timeROC” pack-
age (https://cran.r-project.org/web/packages/timeROC).

2.7 Nomogram and GEO Dataset Validation Model

A clinical nomogram was generated using the “rms”
R package (https://cran.R-project.org/package=rms) to pre-
dict individual survival. In order to assess the agreement
between actual and predicted survival, calibration curves
were used. Using external GEO data, the predictive power
of the risk model was validated.

2.8 Drug Sensitivity Analysis of Model Genes

Gene expression data and the Z-scores for drug sen-
sitivity were downloaded from Cell Miner (National Can-
cer Institute) for 60 different tumor cell lines and included
23,808 gene expression profiles and 352 drugs approved by
the FDA or in clinical trials [14]. The relationship between
the model genes and drug treatment response was inves-
tigated. Pearson’s correlation coefficients between genes
and drugs were calculated and screened for statistical sig-
nificance at p < 0.01.

2.9 Immunohistochemical (IHC) Staining

Sections of BC tissue and adjacent tissue were embed-
ded in paraffin and fixed in formalin. Sections were de-
waxed after baking at 65 °C for 1 h, passed through a gra-
dient alcohol series (Absolute ethanol, 90% ethanol, 80%
ethanol, and 70% ethanol), rehydrated and washed. The
paraffin-embedded sections were boiled in an antigen re-
pair solution for 10 min for antigen repair at a temper-
ature of 96-98 degrees and then incubated with the fol-
lowing primary antibodies TUBA1C (1:50; D123443; San-
gon Biotech, Shanghai, China), BCL2A1 (1:50; D220158;
Sangon Biotech), TUBA3D (1:100; D110022; Sangon
Biotech), EMP1 (1:100; D162994; Sangon Biotech, F2
(1:100; A00044; Boster Bio, Pleasanton, CA, USA),
GSN (1:50; D160423; Sangon Biotech), PMAIP1 (1:100;
A9801; ABclonal, Woburn, MA, USA), TP53AIP1 (1:100;
D262005; Sangon Biotech) overnight at 4 °C. The sec-
ondary antibodies at 37 °C for 30 min. Furthermore, sam-
ples were back stained with hematoxylin, dehydrated with
an ethanol-xylene series, and covered for 30 minutes with
neutral balm (Biosharp; BL704A). Gene staining intensity
was rated as follows: no staining (negative), 0; light yellow
(weakly positive), 1; brownish-yellow (positive), 2; and tan
brown (strongly negative), 3. The final score of each gene
was determined by a qualified pathologist blinded to the
study to determine its expression as low or high.

2.10 Statistics

Our statistical analyses were performed using R soft-
ware (version 4.1.1, R Foundation for Statistical Comput-
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Fig. 2. Analysis of apoptosis-related genes (ARGs) and functions differentially expressed in breast cancer (BC) and normal tissues.

(A,B) Volcano and box line plots of differentially expressed apoptosis-associated genes (p < 0.05). (C,D) Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Ontology (GO) pathway analysis.

ing, Vienna, Austria), the Perl language for processing the
data matrix, and GSEAA4.1 for analyzing the KEGG enrich-
ment pathway in the two groups in GEO. p < 0.05 was con-
sidered statistically significant.

3. Results
3.1 Screening for Differentially Expressed ARGs

The expression of 268 ARGs obtained from the KEGG
pathway and previous literature was in 1096 breast tu-
mor samples and 112 non-tumor breast tissue samples in
TCGA, using the limma package. 74 differential ARGs
were screened based on false discovery rate <0.05, and
Log fold change >1, and 29 down-regulated and 45 up-
regulated genes were obtained (Fig. 2A,B).

3.2 KEGG and GO Analyses of the Differentially
Expressed ARG

In the KEGG pathway enrichment analysis of
ARGs, five categories of related pathways were identified
(Fig. 2C). Apoptosis pathways, TNF signaling pathways,
mitogen-activated protein kinase (MAPK) signaling path-
ways, NOD-like receptor signaling pathways, and NOD-
regulatory pathways were enriched. In addition, ARGs
were enriched in breast cancer-related pathways. In the GO
analysis (Fig. 2D), endogenous and exogenous apoptosis-

related pathways and apoptosis regulatory processes were
enriched in biological processes (BP), immune T cell ac-
tivation and interleukocyte adhesion. Molecular functions
(MF) were enriched for protein heterodimeric activity and
cytokine receptor binding.

3.3 Establishment and Evaluation of Prognostic Models
for Prognosis-Related ARGs

From the 74 different ARGs, 17 were identified as be-
ing related to prognosis through univariate Cox analysis.
Furthermore, a multivariate analysis was performed to eight
ARGs significantly associated with prognosis, and the ex-
pression coefficients of 8 independent risk genes were cal-
culated using multivariate Cox regression ratios. The fol-
lowing formula was developed to calculate the prognosis of
each patient with BC using the eight genes:

Risk score = (—0.18513 x expression level of PMAIP1)
+ (—1.08828 x expression level of TP53AIP1)
+ (—0.12899 X expression level of TUBA3D)
+ (0.381992 x expression level of TU BA1C)
+ (—0.3809 x expression level of BCL2A1)
+ (0.446263 x expression level of EMP1)
+ (—0.31589 x expression level of GSN)
+ (2.312882 X expression level of F2)

With the increasing number of fatalities, the risk score
increased (Fig. 3D,E). K-M survival analysis found signifi-
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distribution of BC patients. (F) Forest plot of multivariate Cox regression analysis. (G) Calibration curve checking the accuracy of the

model. (H) Nomogram predicts survival in BC Patients.

cant OS in the LRG compared to the HRG (Fig. 3B). For the
area under the curve (AUC) at 3,5, and 10 years, the survival
time-dependent ROC curve predictive model showed excel-
lent results with values of 0.73, 0.736, and 0.783 (Fig. 3A).

3.4 Independent Predictive Power of the Model and
Nomogram

Cox analyses were conducted on age, staging, and T,
tumor size; N, lymph node status; M, metastasis (TNM) as
univariate and multivariate variables. Both clinical vari-
ables could be used as predictors in the univariate Cox
regression analysis (Fig. 3C); however, the multifactorial
Cox regression analysis showed that age (hazard ratio [HR]
1.029 [1.014-1.046] p < 0.01) and risk score (HR 1.160
[1.111-1.212] p < 0.01) can be used as independent predic-
tors of clinical outcomes (Fig. 3F). Furthermore, a nomo-
gram was created through multivariate Cox analysis to pre-
dict the 3, 5, and 10-year overall survival rates based on the
eight model genes. Our calibration curves verify the accu-
racy of the nomograms (Fig. 3G,H).
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3.5 GEO Dataset Validation with GSEA

A new expression matrix was obtained by combin-
ing the GSE42568 (104 BC specimens) and GSE88770
(117 BC specimens) datasets to validate model accuracy.
Heatmaps of ARGs (Fig. 4A) showed LRG and HRG for
patients with BC based on risk scores; as the risk score in-
creased, the mortality rate also increased (Fig. 4B). Accord-
ing to the K-M curves (Fig. 4C), survival rates were sig-
nificantly higher in the LRG, whereas the modeled AUC
values at 3,5, and 10 years were 0.795,0.748, and 0.753, re-
spectively (Fig. 4D). In the LRG, immune pathways were
enriched (Fig. 4E).

3.6 Analysis of Immune Infiltration and 13
Immune-Related Pathways

To better understand their immunological differences,
we performed CIBERSORT, ssGSEA, and immune-related
pathway analysis. According to CIBERSORT analysis, the
LRG had significantly higher levels of plasma cells, CD8 T
cells, activated CD4 memory T cells, activated natural killer
(NK) cells, T-cells regulatory (T regs), and 70T (Fig. 5A).
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The expression of immune cells in 28 was analyzed via ss-
GSEA (Fig. 5B). Overall, the levels of different immune
cells were typically elevated in the LRG. For example, the
LRG enriched its immune function, for instance, by enhanc-
ing its NK cell, NK T-cell and activated CD4 T, CD8 T and
B-cell. Regarding the 13 immune-related pathway scores,
the LRG had higher scores (Fig. 5C).

3.7 Evaluation of Sensitivity to Immunotherapy

To assess the sensitivity of the risk models to immune
checkpoints, we used commonly used immune checkpoint
targets in the two groups to verify CD274 (PD-L1), CTLAA4,
PDCDI, and PDCDILG2 (PD-L2) expression (Fig. 6A—
D,G). A PD-1 blocking treatment cohort, employed to ver-
ify the immunotherapy response of the model, revealed that
longer life in the LRG (Fig. 6E). and a higher immunother-
apy response than the HRG (Fig. 6F). These data indicate
the excellent response of this model to immunotherapy.

3.8 Drug Sensitivity Analysis

Interestingly (Fig. 7), with an increase gene expres-
sion, both GSN and BCL2A1 showed a strong correlation
with vemurafenib, dabrafenib, and PD-98059. PMAIPI
showed a strong correlation with palbociclib. These results
indicate that these genes are sensitive to these drugs; how-
ever, EMPI and GSN were negatively correlated with pal-
bociclib but also to oxaliplatin, which indicated the emer-
gence of drug resistance with high expression of this gene.
EMP] was resistant to dexrazoxane.

3.9 Gene Expression in BC and Adjacent Tissues

Immunohistochemistry (IHC) techniques were used to
test expression levels of risk model genes in BC tissues and

adjacent tissues. Our findings validated the predicted re-
sults (Fig. 8) that PMAIPI, TUBA3D, TUBAIC, F2, and
BCL2A1 were highly expressed in BC tissues, however,
GSN, EMP1, and TP53AIP1 expression showed contrast-
ing results.

4. Discussion

Despite significant technological, imaging, pathology,
and early detection advancements, BC remains the most
prevalent tumor with high mortality rates among women.
The poor prognosis of BC is largely attributed to local and
distant metastases. Apoptosis, a critical process in can-
cer development, is a primary target of non-surgical cancer
therapies, and evasion of apoptosis is a recognized char-
acteristic of nearly all cancer cells [20,21]. Therefore, we
developed a prognostic risk model for apoptosis with good
predictive properties. The model can be used to guide
the treatment and management of BC patients and improve
their survival.

In this study, 268 ARGs were identified, of which 74
were differentially expressed in BC. The analysis of ARGs
in KEGG shows a strong enrichment in the apoptotic path-
way, as well as in both endogenous and exogenous path-
ways related to apoptosis. GO analysis suggested the acti-
vation of immune T-cells and adhesion in leukocytes. The
activation of immune T-cells caused antitumor effects on
BC cells, and higher T-cell levels were associated with a
better prognosis [22].

Eight of 74 ARGs, viz. PMAIPI, TP53AIPI,
TUBA3D, TUBAIC, BCL241, EMPI, GSN and F2, were
screened to construct a prognostic risk model. In our risk
model for apoptosis-related genes, the AUC at 3, 5, and 10
years showed an increasing trend from 0.73 to 0.783. In the
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data validation set, it was found that the AUC could reach
as high as 0.796, which illustrated the good predictive per-
formance of our model. Combining risk scores and clinical
risk factors to construct nomogram, the calibration curves
affirmed the validity of the model. It provides an accurate
tool for predicting 3-, 5-, and 10-years survival in BC pa-
tients.

TUBAIC was highly expressed in both HRG and tu-
mor tissues, while the remaining seven genes were rela-
tively highly expressed in the LRG, but GSN, TP534IP1
and EMPI were more highly expressed in normal breast
tissues. Specifically, higher TUBA1C expression predicted
poorer patient outcomes, while higher GSN, TP534IP1 and
EMP] expression was associated with better outcomes.
This suggests that GSN, TP53A41P1 and EMP 1 may function
as oncogenes in BC, while TUBA1C may be the oncogene.
In gliomas, TUBA1C was positively correlated with B-cell,
CDS8 T+ cell, and CD4 T-cell infiltration, and high expres-
sion of TUBAIC accelerated tumor progression through
tumor-infiltrating cells [23]. It has been reported that in
BC, low GSN expression predicts a poorer prognosis and
that GSN is positively correlated with immune cell expres-
sion, which is essential in anti-tumor immune cell infiltra-
tion [24]. For TP53A4IP1, it has been shown in a study to be
anovel oncogene in BC and may become a new therapeutic
target in the future [25]. Sun ef al. [26] suggest that Low
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EMP1 expression is associated with lymph node metastasis
and low survival rates. These are consistent with the results
of our study.

In contrast, a high BCL2A 1 expression in BC promotes
tumor cell resistance to chemotherapeutic agents and in-
hibits the apoptosis of tumor cells, the prognosis for pa-
tients with BC expressing high levels of BCL2A1 is usu-
ally poorer [27,28]. We found that BCL2A41 was highly ex-
pressed in BC and higher in the LRG, suggesting that BC
patients with higher expression could show better survival
advantage. This is consistent with the validation results of
Dai et al. [29]. We hypothesize that it may be caused by the
association of BCL2A1 with immune response and immune
cells. Furthermore, PMAIPI, the only pro-apoptotic pro-
tein in the BCL2 family, enhances the sensitivity of cancer
cells to chemotherapeutic drugs by inducing apoptosis [30];
its downregulation in triple-negative BC implies worse OS
and distant metastasis-free survival [31]. PMAIP1 has been
previously reported as a predictor of survival in BC [32].

Gene set enrichment analysis (GSEA) enrichment
analysis revealed stronger immune pathways in the LRG.
On further analysis, significant differences were found be-
tween the two groups in the type of immune cell infiltra-
tion and immune pathways. The LRG had high propor-
tions of CD8 T-cells, T cells activated CD4 memory T-cells,
and natural killer (NK) cells. According to previous re-
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ports that in most cancers, the degree of tumor infiltration of
lymphocytes is correlated with prognosis, and T-cells and
NK cells can activate granzyme-activated apoptotic path-
ways [33,34]. Further, we included a cohort of advanced
renal clear cell carcinoma treated with immunotherapy us-
ing a PD-1 blocker to validate the model’s effect on im-
munotherapy, and found that the LRG responded better to
immunotherapy and had a longer survival time. The study
noted an increased response to PD-1 in BC with higher lev-
els of CD8 T- cells [35]. Recent studies have shown higher
recurrence free survival in patients with high immune cell
infiltration in her2 positive and triple negative BC [36,37].
These surface that the LRG in our model has excellent im-
munogenicity and better immunotherapy response.

According to some studies, multidrug resistant genes
limit chemotherapeutic drug effectiveness due to a reduced
expression of oncogenes and an inhibition of apoptosis
[38,39]. Researchers have discovered that natural com-
pounds may be useful in treating cancer, such as berber-
ine and apigenin derivatives, which promote apoptosis in
cancer cells [40,41]. In addition, there are studies that sug-
gest natural compounds can improve patients’ survival rates
when used along with conventional chemotherapy [11]. In
order to investigate the drug sensitivity of the model genes,
we decided to conduct a drug sensitivity analysis. In this
study, RNA expression and drug data from Cell Miner were
downloaded to analyze drug sensitivity against eight model
genes, wherein GSN and BCL2A I exhibited strong sensitiv-
ity to vemurafenib, dabrafenib, and PD-98059. The above-
mentioned three drugs are MAPK kinase (MEK) inhibitors
and have been widely used in the treatment of melanoma,
thyroid cancer, and non-small cell lung cancer with excel-
lent clinical outcomes [42—45]. During clinical trials, pal-
bociclib, an oral CDK4/6 inhibitor, showed good clinical
efficacy in patients with advanced BC that was hormone
receptor-positive (HR+) [46]. Our results showed that the
sensitivity of PMAIP] to palbociclib was positively corre-
lated in the model; however, EMP1 and GSN showed resis-
tance to palbociclib as their expression increased. Dexra-
zoxane is the sole medication sanctioned by the FDA to
manage cardiotoxicity caused by anthracyclines, which are
the primary chemotherapy drugs used for various cancers
[47]. However, resistance to dexrazoxane increases with
the increase of EMPI expression, suggesting that patients
with cancer with high EMP1 expression should be carefully
c treated with anthracyclines. Some of the above drugs, al-
though well reported in BC, have model genes that are sen-
sitive to them, which can provide an additional option for
patients.

5. Conclusions

In summary, we constructed a prognostic model based
on the identification of ARGs, effectively predicting the
survival outcomes of BC patients. Validation using inde-
pendent datasets confirmed the model’s accuracy and clin-
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ical relevance, while validation in immunotherapy cohorts
demonstrated its efficacy in predicting treatment response.
Additionally, drug sensitivity analysis identified relevant
therapeutic options. This study offers promising new tools
for prognostication and predicting immune responses in BC
patients, aiding medical decision-making and enabling per-
sonalized therapeutic interventions.
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