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Abstract

Background: Aerobic glycolysis and the cell cycle are well-established tumor hallmarks. Understanding their relationship could help
to unravel the pathogenic mechanisms of breast cancer (BC) and suggest potential new strategies for treatment. Methods: Glycolysis-
related genes (GRGs) were downloaded from the Reactome database and screened using univariate Cox analysis. The consensus clus-
tering method was employed to identify a glycolytic activity signature (GAS) using the Gene Expression Omnibus (GEO) dataset. A
nomogram risk prediction model was constructed using coefficients from univariate Cox analysis. Immune cell infiltration was evaluated
using single-sample gene set enrichment analysis (ssGSEA) and the ESTIMATE algorithm. Gene co-expression modules were created
using weighted correlation network analysis (WGCNA) to identify hub genes. Gene expression in three BC cell lines was quantified
using Quantitative Reverse Transcriptase Polymera (qRT-PCR). Single-cell RNA sequencing (scRNA-seq) data was used to examine
the relationship between GAS and hub genes. The sensitivity of different groups to cell cycle-related clinical drugs was also examined.
Results: BC with high GAS (HGAS) showed high tumor grade and recurrence rate. HGAS was a prognostic indicator of worse overall
survival (OS) in BC patients. HGAS BC showed more abundant immune cells and significantly higher expression of immunomodu-
lators compared to BC with low GAS (LGAS). HGAS BC also showed enhanced cell cycle pathway, with high mRNA and protein
expression levels of Cyclin B2 (CCNB2), a key component of the cell cycle pathway. Importantly, scRNA-seq analysis revealed that
elevated CCNB2 expression was positively correlated with HGAS in triple-negative BC (TNBC). This was validated in clinical samples
from TNBC patients. High expression of CCNB2 was found in three BC cell lines, and was also an indicator of poor prognosis. HGAS
BC showed high sensitivity to several cell cycle-related clinical drugs, with 9 of these also showing activity in BC with high CCNB2
expression. Conclusions: HGAS was associated with enhanced cell cycle pathway and immune activity in BC. These results suggest
that CCNB2 is a potential key therapeutic target in BC patients.
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1. Introduction

Energy metabolic reprogramming is a well-
established tumor hallmark, including in breast cancer
(BC) [1]. One of the major alterations is that tumor cells
use aerobic glycolysis as a common glucose metabolism
pathway [1,2]. During this process, glucose serves as a
substrate and is catalyzed by a series of enzymes to gener-
ate lactate. Despite its low efficiency for ATP generation,
aerobic glycolysis can enhance tumor cell survival under
difficult conditions by increasing biosynthesis, inhibiting
apoptosis, and producing signaling metabolites [3,4]. For
example, one of the glycolytic metabolites, methylglyoxal,
has been shown to facilitate BC metastasis by activating
the MEK/ERK/SMAD1 cascade [5]. Moreover, two
potent scavengers of methylglyoxal can reverse the effects

on metastasis. The glycolytic pathway is therefore an
attractive target for therapeutic intervention in tumor cells,
and inhibition of key components of this pathway can
significantly impede cell proliferation and metastasis.
Phosphoglycerate kinase 1 (PGK1) is one such represen-
tative target, and its inhibition results in the suppression
of tumor growth and metastasis [6]. Aerobic glycolysis
can therefore be used as a potential targeted therapeutic
strategy to hinder the growth of various tumors through
drug treatment [7].

Enhanced cell cycle is another hallmark of cancer,
with Cyclin D-CDK4/6 (CDK4/6) being critical regulators
of the cell cycle [8]. Their deregulation contributes to un-
controlled cell proliferation through multiple mechanisms,
including the activation of signaling pathways (FGFR
or PI3K/AKT/mTOR), epithelial-mesenchymal transition,

https://www.imrpress.com/journal/FBL
https://doi.org/10.31083/j.fbl2908308
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8560-5751
https://orcid.org/0000-0002-2887-8013


and the immune response. Currently, the U.S. Food and
Drug Administration (FDA) has approved several CDK4/6-
targeting clinical drugs for the treatment of hormone
receptor-positive (HR+) and HER2-negative metastatic BC
[8,9], including palbociclib, ribociclib and abemaciclib.
These can be used to design new treatment strategies for the
improvement of patient outcomes. Importantly, the avail-
able evidence indicates a close relationship between the cell
cycle and aerobic glycolysis in tumor cells. Inhibition of
aerobic glycolysis can effectively cause cell cycle arrest and
apoptosis in BC cells [10,11]. For example, the inhibition
of PFKFB3 increases cell death during mitosis, suggesting
that the survival of mitotic-arrested cells is limited by their
metabolic requirements [12]. Furthermore, knockdown of
muscle pyruvate kinase (PK) significantly inhibits cell pro-
liferation and migration, reduces S phase, and induces G2
phase cell cycle arrest in triple-negative BC cell lines [13].
However, the exact relationship between glycolytic activity
and regulation of the cell cycle in BC remains elusive.

In the present study, we developed a glycolytic activ-
ity signature (GAS) by using a consensus clustering method
and screening for glycolysis-related genes (GRGs). We
found that BCs with high GAS (HGAS) were associated
with high tumor grade and immune infiltration. Cell cy-
cle pathways were markedly enhanced in BCs with HGAS,
indicating that glycolytic activity is closely related to the
cell cycle. In addition, Cyclin B2 (CCNB2) was identified
as a potential therapeutic target for BC patients. Overall,
this study provides novel insights into the development and
treatment of BC.

2. Materials and Methods
2.1 Data Download and Processing

Three bulk RNA sequencing datasets (GSE1456,
GSE7390, GSE86166) and a single-cell sequencing dataset
(GSE161529) were extracted from the Gene Expression
Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/g
eo/). Corresponding clinical information was obtained
from the easyGEO website (https://tau.cmmt.ubc.ca/eVIT
TA/easyGEO/). GSE1456 (GPL96, 159 samples) [14] and
GSE7390 (GPL96, 198 samples) [15] were combined and
used as the training set, while GSE86166 (GPL15048, 366
samples) [16] was used to validate the risk model. Among
which, 126 of 159 patients have received tamoxifen and its
combination in GSE1456 cohort. Patients in GSE7390 and
GSE86166 cohorts have not received neoadjuvant therapy.
Data preprocessing was conducted as described previously
[17–19], and R package “limma” (version 3.56.2) was used
to remove batch effects. GRGs were obtained from the Re-
actome database (https://reactome.org/).

Dataset GSE161529 was downloaded from GEO and
analyzed using the R package “Seurat” (version 5.0.3).
Each gene was expressed in at least three cells. The num-
ber of expressed genes in cells was between 300 and 6000.
Filters were applied with mitochondrial genes >20%, ri-

bosomal genes <3%, and hemoglobin genes >0.1%. The
gene expression matrix was normalized, and the top 2000
most variable genes were identified and used as input for
subsequent principal component analysis (PCA). Data was
clustered by the FindClusters function (resolution = 0.5).
Finally, the cell clusters were annotated based on markers
from CellMarker2.0 (https://bio.tools/cellmarker_2.0) [20]
. Differential marker genes for cell types were identified
by the “FindAllMarkers” function (logFC = 0.25, min.pct
= 0.25, p < 0.05). The R package “AUCell” (version
1.26.0) [21] was used to calculate GAS expression enrich-
ment scores in single cells.

2.2 Consensus Clustering
The R package “ConsensusClusterPlus” (version

1.66.0) was used to determine members in the dataset and
the number of possible clusters. At each iteration, 80%
of the samples are subsampled and each subsample is di-
vided into k groups (maximum k = 6) by the k-means al-
gorithm based on Euclidean distance. This process was re-
peated 1000 times. Subsequently, the cumulative distribu-
tion function (CDF) curve was used to identify the optimal
number of clusters.

2.3 Construction of the GAS-Related Prognostic Model
Univariate Cox analysis was used to identify the GAS

and to calculate regression coefficients. Genes with p <

0.05 were used to develop risk scores. Overall survival
(OS) and relapse free survival (RFS) were evaluated us-
ing the R package “survminer” (version 0.4.9). The risk
score was calculated based on the formula: risk score =
coef (gene1)× expr (gene1) + coef (gene2)× expr (gene2)
+…+ coef (geneN) × expr (geneN). Patients were divided
into high- and low-risk groups according to the median risk
score. The R package “timeROC” (version 0.4) was used
to perform time-dependent receiver operating characteristic
(ROC) curve analysis. This model was validated using the
GSE86166 cohort.

2.4 Analysis of Immune Infiltration
Single-sample Gene Set Enrichment Analysis (ss-

GSEA) was used to evaluate the abundance of immune
cell infiltrate in each group. Differences in the expression
of immune-inhibitory and immune-stimulatory proteins be-
tween HGAS and low GAS (LGAS) was calculated and vi-
sualized using the R package “ggplot2” (version 3.5.0).

2.5 Weighted Gene Co-Expression Analysis (WGCNA)
WGCNA was performed as described in a previous

study [19]. The optimal soft power threshold (β = 6) was
then calculated to construct a scale-free network. The mod-
ule characteristic genes and clinical traits were correlated,
together with the gene significance (GS) of genes in the
main module. Hub genes were identified based on GS>0.5
and module membership (MM) >0.8.
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Table 1. The clinical characteristics of high glycolytic activity signature (HGAS) and low glycolytic activity signature (LGAS)
breast cancer (BC) groups.

Characteristic Level HGSA LGSA p

n 131 212

Grade (%) <0.0001
G1 11 (8.40) 47 (22.17)
G2 30 (22.90) 111 (52.36)
G3 90 (68.70) 54 (25.47)

Survival status (%) 0.0002
Alive 81 (61.83) 171 (80.66)
Dead 50 (38.17) 41 (19.34)

Survival time (%) 0.0003
≤3 years 19 (14.50) 10 (4.72)
>3 years ≤5 years 18 (13.74) 13 (6.13)
>5 years ≤10 years 57 (43.51) 101 (47.64)
>10 years 37 (28.24) 88 (41.51)

Recurrence status (%) 0.0028
No recurrence 69 (52.67) 147 (69.34)
Recurrence 62 (47.33) 65 (30.66)

Recurrence time (%) 0.0001
≤3 years 38 (29.01) 22 (10.38)
>3 years ≤5 years 12 (9.16) 24 (11.32)
>5 years ≤10 years 55 (41.98) 95 (44.81)
>10 years 26 (19.85) 71 (33.49)

2.6 Functional and Pathway Enrichment Analysis
Gene Ontology (GO) enrichment and Kyoto En-

cyclopedia of Genes and Genomes (KEGG) analy-
sis of hub genes were performed using the R pack-
age “clusterProfiler” (version 4.10.1). Analysis of
protein-protein interaction (PPI) was performed using the
GENEMANIA (https://genemania.org/) database. The
“c2.cp.kegg.v2023.1.Hs.symbols.gmt” gene set was ob-
tained from the Molecular Signature Database (https://
www.gsea-msigdb.org/gsea/msigdb) and inter-group dif-
ferences were analyzed. Gene set enrichment analysis was
performed using the R package “GSVA” (version 1.50.1)
[22].

2.7 Cell Culture
The normal breast epithelial cell line MCF-10A

and three human BC cell lines (MDA-MB-231, MCF-
7, BT474) were obtained from Procell (Wuhan, Hubei,
China). All cell lines were validated by STR profiling and
tested negative for mycoplasma. The MCF-10A, MDA-
MB-231 and MCF-7 cell lines were cultured as described
previously by our group [18]. BT474 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM; Procell,
Wuhan, China) supplemented with 10% fetal bovine serum
(FBS; Procell, China), and 1% penicillin and streptomycin
(Solarbio, Shanghai, China). All cells were kept at 37 °C in
a humidified atmosphere containing 5% CO2.

2.8 Quantitative Reverse Transcriptase Polymerase Chain
Reaction (qRT-PCR)

Total RNA was extracted from cell lines using
TransZol reagent (TransGen, Beijing, China) according
to the manufacturer’s instructions. The primer sequences
were: CCNB2, CAACCCACCAAAACAACA (for-
ward), AGAGCAAGGCATCAGAAA (reverse); GAPDH,
GCACCGTCAAGGCTGAGAAC (forward), TGGT-
GAAGACGCCAGTGGA (reverse). Among which, the
relative expression levels of mRNA were calculated by
the 2−∆∆Ct method, and GAPDH was used as an internal
control.

2.9 Specimen Collection and Immunohistochemistry
Tissue samples from two triple-negative BC (TNBC)

patients who did not undergo neoadjuvant therapy were col-
lected from the First Affiliated Hospital of Nanchang Uni-
versity. Immunohistochemistry was performed using the
mouse monoclonal anti-CCNB2 (1:500 dilution, Abcam,
Cambridge, UK) antibody as described previously [23]. All
experiments were performed in compliance with the rele-
vant regulations. Ethics approval was obtained from the
Medical Research Ethics Committee of the First Affiliated
Hospital of Nanchang University [Grant no. (2023) CDY-
FYYLK (04-036)]. Patients provided written informed
consent.
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Fig. 1. Identification of HGAS in BC. (A) Venn diagram. (B) Consensus score matrix of all samples when k = 2. (C) The principal
component analysis (PCA) map. (D) Heatmap of mRNA expression levels of glycolysis genes shows distinct clustering of samples into
HGAS and LGAS, the red font represents upregulation and blue font represents downregulation. (E) Kaplan–Meier analysis showing
OS and RFS of the two clusters of BC patients. *p < 0.05, **p < 0.01, ****p < 0.0001; ns, not significant. HGAS, high glycolytic
activity signature (GAS); LGAS, low GAS; BC, breast cancer; OS, overall survival; RFS, relapse free survival.

2.10 Drug Sensitivity Analysis
Drug response data was obtained from the Genomics

of Drug Sensitivity in Cancer database (https://www.canc
errxgene.org/). The R package “oncoPredict” (version 0.2)
[24] was used to analyze drug sensitivity in HGAS and
LGAS groups, which were compared using the Wilcoxon
rank sum test.

2.11 Statistical Analysis
All statistical analyses were performed using R lan-

guage (version 4.3.1). Statistical differences between two
groups were evaluated using the Wilcoxon test. p < 0.05
was considered statistically significant, and all statistical
tests were two-sided.

3. Results
3.1 Identification of the Glycolytic Activity Signature
(GAS) in BC

After removing batch effects, a total of 85 gly-
colytic genes were initially identified from a combined
dataset (Supplementary Fig. 1A,B, Fig. 1A), of which
21 were then selected using univariate Cox analysis
(Supplementary Fig. 1C, Supplementary Table 1). Con-
sensus clustering analysis revealed that BC patients could
be divided into two clusters based on the best parameter (k =
2) (Fig. 1B,C, Supplementary Fig. 1D). Heatmap analysis
showed that 15 of the 21 glycolytic genes were upregulated
in cluster 1, which was thus defined as HGAS. In addition,
4 of the 21 glycolytic genes were downregulated in clus-
ter 2, which was defined as LGAS (Fig. 1D). BC patients in
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Fig. 2. Construction and validation of a Glycolytic Activity Signature (GAS) risk model. Distributions of OS status, OS and risk
score in the training set (A) and test set (F). Kaplan-Meier analysis of OS in the training set (B) and test set (G). Receiver operating
characteristic (ROC) curve for 3-year, 5-year and 10-year survival in the training set (C) and test set (H). Nomogram developed by inte-
grating the signature risk-score with the clinicopathologic features in the training set (D) and test set (I). Calibration curves of nomogram
for predicting overall survival at 3-year, 5-year and 10-years in the training set (E) and test set (J). ID, identity document; OS, overall
survival; AUC, area under the curve.

the HGAS group had significantly worse RFS and OS com-
pared to the LGAS group (Fig. 1E). In addition, BC patients
in the HGAS group showed higher tumor grade and a higher
death and recurrence rate (Table 1).

We next constructed a prognostic risk model using the
coefficient (Supplementary Table 1) by univariate Cox
analysis. This was used to assess GAS as a predictor of
OS. The model showed that BC patients in the high-risk
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Fig. 3. Immune response comparison between theHGAS andLGASBCgroups. (A) Immune cell infiltration. (B) Immunemodulator
molecules. (C)Differences in scores for infiltrating immune cells. (D)Differences in scores for immune-related functions. (E) Correlation
between glycolysis-related genes (GRGs) and immune cells in HGAS group. (F) Pathway enrichment analysis in the two groups. *p <

0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. ns, no significance; KEGG, Kyoto Encyclopedia of Genes and Genomes.

group had significantly worse OS than those in the low-risk
group (Fig. 2A,B). The predictive performance of the risk
score for OSwas evaluated by time-dependent ROC curves.
The area under the curve (AUC) was 0.78 at 1-year, 0.69 at
3-years, and 0.66 at 5-years (Fig. 2C). The nomogram re-
vealed that the risk score contributed more to the prognosis
than clinical features (Fig. 2D,E). Similar results were ob-
tained using the validation dataset (Fig. 2F–J). Collectively,
these results indicate that the prognostic risk model devel-
oped here was an excellent factor in predicting OS.

3.2 Immune Response in the HGAS and LGAS Groups

The immune microenvironment is known to signifi-
cantly affect therapeutic effects and prognosis of BC. We
therefore compared the immune response between HGAS
and LGAS groups using several different immune analy-
ses. The ESTIMATE analysis showed that BC in the HGAS
group had a lower stromal score and a higher immune score
compared to BC from the LGAS group (Supplementary
Fig. 2). Single-sample gene set enrichment analysis (ss-
GSEA) results also showed the HGAS group had a rela-
tively high immune status compared to the LGAS group
(Fig. 3A), consistent with the ESTIMATE results. Eigh-
teen of 22 immune cell types showed relatively higher in-
filtration in the HGAS group compared to LGAS group, in-
cluding regulatory T cells, myeloid derived suppressor cells
(MDSCs) and so on. Four of 22 immune cell types showed
relatively lower infiltration in the HGAS group, including
plasmacytoid dendritic cells, macrophages, eosinophils and
mast cells.

The HGAS and LGAS BC groups were also com-
pared in terms of their immunomodulator expression level
(antigen presentation, cell adhesion, co-inhibitors, co-

stimulators, ligands, receptors, etc.). Most immunomod-
ulators were expressed at higher levels in the HGAS group,
with the exception of selectin P (SELP), nectin cell adhe-
sion molecule 2 (PVRL2), C-X-C motif chemokine ligand
12 (CXCL12) and endothelin receptor type B (EDNRB)
(Fig. 3B). In addition, ssGSEA enrichment scores were sig-
nificantly greater in the HGAS group, with the exception of
mast cells and Th2 cells (Fig. 3C). Similarly, the HGAS
group showed enrichment for inflammatory conditions,
checkpoints, cytolytic exertion, T cell co-inhibition, T cell
co-stimulation, para-inflammation, and type 1-related IFN
reactions. HGAS BC also showed higher immune function
scores for major histocompatibility complex (MHC) class
I, Antigen-presenting cells (APC) co-inhibition, APC co-
stimulation, chemokine receptor (CCR), and human leuko-
cyte antigen (HLA) (Fig. 3D). Thus, the correlations be-
tween GRGs and infiltrated immune cell types in HGAS
group were analyzed (Fig. 3E). GRGs showed higher posi-
tively correlation with most immune cells, myeloid-derived
suppressor cell (MDSC) in particularly (Fig. 3E).

Pathway enrichment analysis was used to reveal func-
tional differences between the two groups (Fig. 3F). Almost
all pathways were upregulated in HGAS BC compared to
LGASBC, includingmetabolism pathways such as the pen-
tose phosphate pathway and methionine metabolism. Of
note, the cell cycle pathway was significantly increased in
the HGAS group (Fig. 3F), suggesting that it could be in-
duced by high glycolytic activity in tumor cells.

3.3 Identification of GAS-Related Genes

To further explore the relationship between high gly-
colytic activity and the cell cycle, we first analyzed GAS-
related genes by constructing co-expression modules using
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Fig. 4. Construction of co-expression modules using WGCNA in GEO data. (A) Heatmap depicting the topological overlap matrix
among genes based on co-expression modules. (B) Clustering dendrograms of genes with dissimilarity based on topological overlap,
together with assigned module colors. (C) Relationships of modules with GAS and grade traits. (D,F) Correlations between blue modules
and GAS and grade traits. (E,G) Candidate genes in the blue module related to both traits. (H) Hub genes. WGCNA, weighted correlation
network analysis; GEO, Gene Expression Omnibus.

WGCNA. All candidate genes were clustered and divided
into 16 modules according to the best soft threshold (β =
4) with a cutoff R2 value of 0.92 (Fig. 4A,B, Supplemen-
tary Fig. 3A–C). Tumor grade was used as a key trait to
identify GAS-related genes (Fig. 4C). The blue module was
found to be most closely related to GAS (r = –0.64, p = 4×
10−40) and tumor grade (r = 0.57, p = 8× 10−31), and was
therefore identified as the best module for further analysis.
Subsequently, 22 and 19 genes were identified based on an
MM >0.8 and GS >0.5 (Fig. 4D–G), respectively. Ulti-
mately, 17 intersected genes were identified as hub genes
for additional analysis (Fig. 4H).

3.4 Functional Analysis of GAS-Related Genes

GO enrichment and pathway enrichment analysis
were performed to explore the potential function of GAS-
related genes. GO analysis indicated that various biological
processes were enriched, especially cell cycle-related pro-
cesses such as regulation of the metaphase/anaphase tran-
sition and the mitotic phase transition (Fig. 5A). For cellu-
lar component ontology, many genes were mapped into the
chromosomal region spindle. For molecular function, the
genes were primarily mapped into cyclin-dependent protein
serine/threonine kinase regulator activity and ATP hydrol-
ysis activity (Fig. 5A). Importantly, pathway enrichment
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Fig. 5. Functional analysis and key gene of the cell cycle. (A) Gene Ontology (GO) analysis of hub genes. (B) Pathway enrichment
analysis of hub genes. (C) Pathways of cell cycle-related hub genes. (D) Protein-protein interactions. BP, Biological process; CC, cellular
component; MF, Molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

analysis revealed significant enrichment for the cell cycle
and cellular senescence (Fig. 5B). Functional analysis of
GAS-related genes therefore highlighted the importance of
the cell cycle, suggesting potential roles for glycolytic ac-
tivity and the cell cycle in the regulation of BC progression.
GAS-regulated genes were then mapped to the cell cycle
(Fig. 5C). Four GAS-related genes were found to be asso-
ciated with the cell cycle, with CCNB2 participating in the
most pathways (Fig. 5B,C). Moreover, PPI results indicated
that CCNB2 interacts with many of the key regulatory pro-
teins in the cell cycle (Fig. 5D). Collectively, these findings
suggest that CCNB2 is a core factor linking the cell cycle
with glycolytic activity in BC.

3.5 CCNB2 Expression Analysis and Prognostic
Significance

We next explored the functions of CCNB2 in BC. El-
evated CCNB2 expression was observed in BC tissue com-
pared to normal breast tissue in the The Cancer Genome
Atlas (TCGA)-BRCA and GSE16228 cohorts (Fig. 6A,B).
This high expression level was then validated in three BC

cell lines (Fig. 6C). CCNB2 protein was also highly ex-
pressed in BC patients (Fig. 6D). In addition, the results
showed that CCNB2 was a potential prognostic factor, with
high expression being associated with significantly worse
OS and RFS in BC patients (Fig. 6E,F).

3.6 scRNA-seq Reveals an Association between High
Glycolytic Activity and CCNB2 Expression in TNBC

The relationship between high glycolytic activity and
CCNB2 expression was further investigated using scRNA-
seq data. First, ineligible cells were filtered out to yield
46046 core cells (normal, 9376; Her2, 10934; luminalA/B,
10232; TNBC, 15504) for subsequent analysis of different
tumor cell subtypes and normal samples (Supplementary
Fig. 4). Fifteen cell clusters were finally identified
(Fig. 7A, Supplementary Fig. 5B–D). High CCNB2 ex-
pression was observed in proliferating cells in the TNBC
subtype (Fig. 7B). Importantly, proliferating cells were the
primary cell type in TNBC samples (Fig. 7C). Increased ex-
pression of CCNB2 was also observed in TNBC patients
(Fig. 7D). A high AUC value was also observed for the
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Fig. 6. Cyclin B2 (CCNB2) expression analysis and prognostic significance. CCNB2 expression in the TCGA cohort (A), in
GSE16228 (B), and in BC lines (C); Immunohistochemistry analysis of CCNB2 expression in breast normal and tumor tissue based
on the Human Protein Atlas (HPA). Images available from v23.0.proteinatlas.org (D); Kaplan–Meier analysis of OS (E) and RFS (F)
in BC patients according to CCNB2 expression. *p < 0.05, ****p < 0.0001. BRCA, Breast invasive carcinoma; TCGA, The Cancer
Genome Atlas.

21 HGAS-related genes in proliferating cells in the TNBC
subtype (Fig. 7E). These results highlight the close link be-
tween elevated glycolytic activity and CCNB2 expression.

3.7 CCNB2 is a Potential Therapeutic Target
Since CCNB2 can potentially interact with a vari-

ety of cell cycle-related proteins, we further investigated
the sensitivity of cell cycle-related clinical drugs in rela-
tion to GAS and CCNB2. In all, BC patients in HGAS
group were more sensitive to 13 cell cycle-related clinical
drugs due to the lower half-maximal inhibitory concentra-
tion (IC50) score, including dinaciclib, ribociclib, camp-
tothecin, vinblastine, cytarabine, docetaxel, fluorouracil,
paclitaxel, irinotecan, gemcitabine, topotecan, teniposide
and vinorelbine (Fig. 8A). Among them, BC patients in the
high CCNB2 expression group were more sensitive to 9 cell
cycle-related clinical drugs due to the lower IC50 score, in-
cluding dinacicilib, ribocicilib, vinblastine, docetaxel, flu-
orouracil, paclitaxel, gemcitabine, teniposide and vinorel-
bine (Fig. 8B). The drug score (IC50) of each of the 9 cell
cycle-related clinical drugs showed a significant negative
correlation with CCNB2 expression (Fig. 8C). Collectively,
these findings suggest that these 9medicationsmay bemore
effective in patients with higher HGAS levels and CCNB2
expression.

4. Discussion
An adequate supply of energy and biosynthetic inter-

mediates are required for tumor initiation, development and
metastasis. Aerobic glycolysis is a well-established feature
of energy metabolism in tumor cells. The current study
found that 21 key enzymes in the glycolytic pathway could
divide BC patients into two clusters. Many of these en-
zymes were upregulated in the HGAS group, thus implicat-
ing enhanced glycolytic activity in BC. Some key glycolytic
enzymes have already been associated with the progres-
sion of BC, including PGK1 [6,25], PGAM1 [26], ENO1
[27], and GAPDH [28]. These genes also show signifi-
cant prognostic value in BC patients [25,27,29]. The GAS
is also composed of these genes and showed similar prog-
nostic value in BC patients, with HGAS being associated
with worse OS. In addition, the nomogram model showed
the GAS has high prognostic accuracy for OS, suggesting
it may be a potential prognostic factor in BC patients.

Importantly, functional analysis revealed that HGAS
was associated with highly expressed cell cycle pathways in
BC, indicating a regulatory relationship between glycolytic
activity and the cell cycle. A previous study reported that al-
teration of metabolic pathways in tumor cells occurs in syn-
chrony with cell cycle progression and division [30]. The
glycolysis pathway is connected with cell cycle progression
by reciprocal activation of metabolic enzymes and cell reg-
ulators. For example, in many cancer types the nuclear con-
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Fig. 7. Single-cell clustering analysis. (A) Results of cell annotation. (B) Uniform Manifold Approximation and Projection (UMAP)
plots showing the expression of CCNB2 in different cell clusters. (C) Cell types in different samples. (D) Immunohistochemistry for
CCNB2 expression in normal and tumor tissue from triple-negative BC (TNBC) patients. Scale bar: 80 µm. (E) AUC value for glycolytic
activity in different cell types. CAFs, cancer-associated fibroblasts; HER2, Human epidermalgrowth factor receptor-2; ER, estrogen
receptor.
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Fig. 8. The IC50 score of cell cycle drugs. Drug score (IC50) in HGAS and LGAS BC groups (A), and in CCNB2 low- and high-level
groups (B); (C) Correlation between CCNB2 expression and drug score (IC50) to cell cycle drugs. The lower the drug score (IC50, the
number in Y-axis) is, the higher sensitivity of the patients to the drug under the condition of high-level GAS or CCNB2. *p < 0.05, **p
< 0.01, ***p < 0.001 and ****p < 0.0001. IC50, half-maximal inhibitory concentration. ns, no significance.

centration of GAPDH increases from the S phase to G2/M,
indicating a periodical translocation to the nucleus to over-
see cell cycle regulators [30]. Studies have also suggested
that upregulated GAPDH facilitates cell cycle progression
by advancing the cyclin B-CDK1 peak [31] and delaying
the degradation of telomerase [32]. Collectively, the results
of the present study highlight the importance of enhanced
glycolysis to the cell cycle in cancer cells. A possible ex-
planation is that glycolysis temporarily provides sufficient
energy for the cell cycle process. Of note was our obser-
vation that immune cell abundance and the immune score
were significantly higher in HGAS BC than in LGAS BC,
particularly the MDSCs, which was a key factor in promot-
ing BC progress via variously inhibitory ways [33]. Im-

portantly, elevated expression of immune checkpoints was
also found in the HGAS group. Previous studies reported
that glycolytic activity in diverse cancer types was often
correlated with active immune signatures and high PD-L1
expression [34,35]. Increasing evidence also suggests that
tumor glycolysis plays a key role in instigating immuno-
suppressive networks that are critical for immune evasion
by cancer cells [36]. The nuanced relationship observed in
the present study between glycolysis and immune cell abun-
dance or immune checkpoint gene expression concurs with
the findings of other researchers who reported that glycol-
ysis enables immune evasion by tumor cells [35,37]. How-
ever, the specific regulatory mechanisms involved remain
unclear and require further experimental studies.
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The present study also identified a key cell cycle
marker, CCNB2, through the exploration of GAS in BC.
CCNB2 is a known prognostic marker in BC, with high ex-
pression being associated with poor OS [38–40] and shorter
RFS [23]. Our study confirmed the presence of increased
CCNB2 mRNA and protein expression levels in BC. More-
over, CCNB2 upregulation was reported to facilitate lym-
phovascular invasion in BC patients [41]. Inhibition of
CCNB2 in BC cell lines was also shown to contribute to
G2/M arrest and to the inhibition of palbociclib-resistant
BC cell growth [42]. In addition, BC patients in HGAS
group were more sensitive to 13 cell cycle drugs, while
those with high CCNB2 expression were more sensitive to
9 of the drugs. This evidence may also contribute to guid-
ing chemotherapy and targeted therapies for BC, TNBC in
particularly. Unfortunately, the relationship between these
drugs and CCNB2 remains unclear. Nevertheless, CCNB2
may be a potential therapeutic target in BC patients.

In summary, HGASwas associated with enhanced cell
cycle pathway and immune activity in BC, suggesting that
glycolysis contributes to BC progression through cell cycle
or immune-related targets. Meanwhile, CCNB2 may serve
as a key therapeutic target.

5. Conclusions
In conclusion, HGAS is associated with worse OS in

BC patients and can thus be used as a prognostic indicator
in this cancer type. HGAS is also associated with high im-
mune activity and a strongly enhanced cell cycle pathway
in BC. Elevated CCNB2 expression is positively correlated
with HGAS in TNBC and is associated with poor patient
prognosis. CCNB2 may therefore be a key therapeutic tar-
get in future work.
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