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Abstract

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD),
which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via
the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism,
particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced
by the aadat (kat2) gene-encodedmitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of
deleting the KYN enzyme gene. Methods: In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion,
memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-
type mice. Results: Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension,
anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in
the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid,
and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase
were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice
displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in
KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole
pathway metabolite. Conclusions: This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely
linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the
development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more
effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.

Keywords: post-traumatic stress disorder (PTSD); depression; anxiety; tryptophan; kynurenine; microbiota; oxidative stress; transgenic
mice; translational medical research; CRISPR/Cas9

1. Introduction
The interaction between memory and emotion in-

volves a complex interplay of neural, cognitive, and physi-
ological processes involving the amygdala, hippocampus,
and prefrontal cortex [1–6]. Orderly function at multi-
layered levels is essential tomaintaining soundmental well-
being [7–10]. The reciprocal interaction between cogni-

tive function and affective states can significantly impact
each other. Cognitive impairment can lead to affective dis-
turbances, triggering emotional responses such as frustra-
tion, anxiety, and stress, particularly when individuals feel
a loss of control over their cognitive abilities [11]. Simi-
larly, emotional disturbances such as depression and anxi-
ety can influencememory function, increasing vulnerability
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to cognitive challenges [12–15]. This intricate bidirectional
link between cognition and emotions can lead to changes
in brain structure, function, behavior, lifestyle, and neu-
rotransmitter systems [15–17]. Memory impairment and
emotional disturbance are associated with a wide range of
systematic diseases and neuropsychiatric disorders such as
Alzheimer’s disease (AD), Parkinson’s disease, traumatic
brain injury, major depressive disorder (MDD), and post-
traumatic stress disorder (PTSD) [18–26].

The serotonergic nervous system plays an important
role in regulating mood, anxiety, and cognition [27–30].
Serotonin (5-hydroxytryptamine, 5-HT) is involved in cog-
nitive processes such as attention, learning, and memory
[31–34]. Studies indicate that 5-HT enhances long-term
memory consolidation and improves cognitive flexibility,
which is the ability to switch between different cogni-
tive tasks or mental sets [35–44]. 5-HT is implicated in
regulating mood and anxiety, influencing cognitive func-
tion [45,46]. Mental illnesses like MDD, eating disorders,
obsessive-compulsive disorder, schizophrenia (SCZ), and
PTSD are associated with dysregulation of 5-HT [47–52].
Selective serotonin reuptake inhibitors (SSRIs) are com-
monly used for these conditions, targeting the serotoner-
gic nervous system [53–55]. Furthermore, abnormalities
in the serotonergic system also affect norepinephrine and
dopamine [56–58].

The complex interplay of tryptophan (Trp)-
kynurenine (KYN) and 5-HT metabolism is crucial
for comprehending the pathogenesis of mental illnesses
[59,60]. The Trp-KYN metabolic system, closely asso-
ciated with 5-HT metabolism, plays a pivotal role in the
production of prooxidants and antioxidants, regulation of
the immune system, and the balance between neurotoxi-
city and neuroprotection [61,62]. Approximately 2% of
L-Trp undergoes metabolism through the 5-HT metabolic
pathway; however, over 90% of Trp is catabolized through
the KYN route, which safely to say that it governs Trp
metabolism (Fig. 1a,b, Ref. [63–83]) [84]. Various factors,
including stress, inflammation, and the gut microbiome,
influence this system [85–88]. Dysregulation of the KYN
route has been linked to mental health conditions such
as MDD, SCZ, and AD [89]. About 5% of dietary Trp
is converted by gut bacteria, like E. coli and Clostrid-
ium sporogenes, into indole and its derivatives (e.g.,
indole-3-acetic acid, indoxyl sulfate) (Fig. 1c) [63,90–98].
Disruptions in this pathway are linked to gastrointestinal
and liver conditions (e.g., colorectal cancer, irritable
bowel syndrome, non-alcoholic fatty liver disease, hepatic
encephalopathy) and affect brain neurotransmitters and
communication via the vagus nerve [64,95,99–109]. The
gut microbial indole pathway is increasingly recognized
for its role in mental health disorders like depression,
anxiety, autism, SCZ, and AD [103,110–116].

However, the understanding of the interplay between
Trp-KYN, 5-HT, and indole metabolism in the patho-

genesis of mental illnesses remains limited. Kynurenine
aminotransferases (KATs) are members of the pyridoxal-
5′-phosphate-dependent enzyme family involved in the
KYN metabolic pathway. The KYN metabolism is re-
sponsible for the conversion of L-KYN to kynurenic
acid (KYNA), an antioxidant and neuroprotective metabo-
lite with implications for various central nervous sys-
tem (CNS) diseases [73,117,118]. Among the KAT en-
zymes, kynurenine/alpha-aminoadipate aminotransferase
(KAT/AadAT, aka KAT II) is a mitochondrial enzyme en-
coded in the gene aadat (kat2) [119]. KAT II is considered
to play the most important role among the four isozymes
in the cellular environment due to its highest enzymatic ac-
tivity close to the physiological pH. Thus, KAT II plays a
prominent role in KYNA production in the human brain and
is considered a crucial target for managing CNS disorders
[120].

Preclinical research has significantly contributed to
our understanding of mental illnesses by elucidating the un-
derlying pathomechanisms and identifying potential thera-
peutic targets [121–129]. Researchers have employed pre-
clinical animal models to examine the causes and effects
of mental disorders, thereby attaining a comprehensive un-
derstanding of their underlying pathology [130–137]. In
vitro models, such as cell cultures and organoids, have fa-
cilitated the investigation of complex molecular pathways
linked to mental disorders [138–141]. Animal models,
along with other in vivo models, have been instrumental
in studying the behavioral, cognitive, and physiological
dimensions of mental disorders [142–148]. These mod-
els allow researchers to simulate disease conditions, as-
sess symptomatology, and evaluate the efficacy of poten-
tial interventions [148,149]. Transgenic animals are vital
in biomedical research, enabling the replication of human
conditions through gene deletion or the introduction of al-
tered genes into their genome [150]. These animals offer
indispensable insights into human diseases, facilitating the
exploration of disease mechanisms, experimentation with
potential treatments, and assessment of therapeutic effec-
tiveness [151–155]. Moreover, they offer crucial insights
into changes in structure and imaging techniques in clinical
cases [156–175]. Preclinical and clinical research collabo-
ratively contribute to innovative therapeutics and personal-
ized medicine [176–182].

This study involved manipulating the gene kat2 in
mice to create a knockout (kat2-/-) model, allowing us to
observe the behavioral consequences of KAT II deficiency.
By focusing on negative valence in emotional domain,
memory acquisition, and motor function, we aimed to gain
insights into the role of KAT II in these specific behav-
ioral domains in young adult kat2-/- mice. Furthermore,
we assess the levels of Trp and its metabolites in three dis-
tinct metabolic pathways in both plasma and urine samples,
the enzyme activities of Trp metabolism, and the oxidative
stress and excitotoxicity indices of KYN metabolites, with
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Fig. 1. Tryptophan (Trp) metabolism. (a) The serotonin (5-HT) pathway: A fraction exceeding 2% of L-Trp is metabolized within
the 5-HT pathway. The rate-limiting enzyme tryptophan hydroxylase 1 and 2 (TPH1, TPH2) converts Trp to 5-hydroxytryptophan
(5-HTP), which is then decarboxylated by aromatic L-amino acid decarboxylase (AADC) to 5-HT. 5-HT is oxidized by monoamine
oxidase A and B (MAO A, MAO B) in different tissues to 5-hydroxyindoleacetaldehyde (5-HIAL), which is subsequently further ox-
idized to 5-hydroxyindoleacetic acid (5-HIAA) by aldehyde dehydrogenase (ALDH) or reduced to 5-hydroxytryptophol (5-HTOL) by
alcohol dehydrogenase (ADH). 5-HIAA is the main metabolite and a marker of serotonergic activity, whereas 5-HTOL is a minor path-
way of 5-HT degradation [65]. On the other hand, 5-HT synthetizes melatonin (MEL, N-acetyl-5-methoxytryptamine). First, 5-HT
is converted into N-acetylserotonin (NAS) by arylalkylamine N-acetyltransferase (AANAT), then hydroxyindole-O-methyltransferase
(HIOMT) transform MEL [66–69]. (b) The kynurenine (KYN) pathway: More than 90% of Trp enters the KYN pathway, which pro-
duces a variety of biomolecules. The primary metabolites include N-formyl-L-kynurenine (NFK), KYN, kynurenic acid (KYNA), an-
thranilic acid (AA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid (QA),
picolinic acid (PA), and nicotinamide adenine dinucleotide (NAD+). These metabolites are produced through the catalytic actions of
various enzymes, namely tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenases (IDOs), kynurenine formamidase (KFA),
kynurenine 3-monooxygenase (KMO), kynurenine aminotransferases (KATs), kynureninase (KYNU), 3-hydroxyanthranilate oxidase
(3-HAO), quinolinate phosphoribosyl transferase (QPRT) [70], nicotinamide mononucleotide adenylyltransferase (NMNAT) [71], NAD
synthetase [72], amino-β-carboxymuconate-semialdehyde-decarboxylase (ACMSD) and 2-aminomuconic-6-semialdehyde dehydroge-
nase (AMSD) [73–75]. KYNA is subsequently metabolized by the gut microbiome to quinaldic acid (QAA) and 8-hydroxyquinaldic
acid [76]. 8-hydroxyquinaldic acid can be dehydroxylated from XA [77,78]. (c) The gut microbial indole pyruvate pathway: The
metabolism of Trp is accomplished through four distinct pathways, which include the indoxyl sulfate pathway, the indole-3-acetamide
(IAM) pathway, the tryptamine pathway, and the indole-3-propionic acid (IPA) pathway. The pyridoxal phosphate-dependent trypto-
phanase (TNA) enzyme serves as the rate-limiting component of the indoxyl sulfate pathway. Its primary function is to facilitate the
transformation of Trp into indole, which is passing through the gut epithelium, then hydroxylated into 3-hydroxyindole (indoxyl) and
ultimately transformed into indoxyl sulfate (INS) by p450 cytochrome and sulfanate in the liver [79]. In the IAM pathway, tryptophan-
2-monooxygenase (TMO) catalyzes the conversion of Trp to IAM. This is followed by the conversion of IAM to indole-3-acetic acid
(IAA) by indole-3-acetamide hydrolase (IaaH), which can then be further metabolized into indole-3-aldehyde (IAld) or decarboxyl-
ized into 3-methylindole (skatole) [63,80]. Tryptophan decarboxylase (TrD) catalyzes the conversion of Trp to tryptamine by amino
acid decarboxylase (AAD), which subsequently undergoes conversion into indole-3-acetaldehyde (IAAld) [81]. IAAld can be further
converted into IAA by indole-3-acetaldehyde dehydrogenase (AldA). It is also worth noting that IAAld can be reversibly converted into
indole-3-ethanol (tryptophol) by IAD reductase and tryptophol dehydrogenase [82]. The transformation of Trp into indole-3-pyruvic acid
(IPyA) is catalyzed by aromatic amino acid aminotransferase (ArAT), resulting in the formation of either tryptamine, or indole-3-lactic
acid (ILA) by phenyllactate dehydrogenase (fldH), then 3-indoleacrylic acid (IA) by phenyllactate dehydratase (fldBC), and ultimately
IPA by acyl-coenzim A dehydrogenase (acdA) [64,82,83]. Black arrows: the host pathways, yellow arrows: the gut microbiome path-
ways. AA, anthranilic acid; acdA, acyl-coenzim A dehydrogenase; AAD, amino acid decarboxylase; AADC, aromatic L-amino acid de-
carboxylase; AANAT, arylalkylamine N-acetyltransferase; ACMSD, amino-β-carboxymuconate-semialdehyde-decarboxylase; ADH,
alcohol dehydrogenase; AldA, indole-3-acetaldehyde dehydrogenase; ALDH, aldehyde dehydrogenase; AMSD, 2-aminomuconic-6-
semialdehyde dehydrogenase; ArAT, aromatic amino acid aminotransferase; decar., decarboxylation; dehyd., dehydroxylation; fldBC,
phenyllactate dehydratase; fldH, phenyllactate dehydrogenase; 3-HAA, 3-hydroxyanthranilic acid; 3-HAO, 3-hydroxyanthranilate ox-
idase; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HIAL, 5-hydroxyindoleacetaldehyde; HIOMT, hydroxyindole-O-methyltransferase; 3-
HK, 3-hydroxykynurenine; 5-HT, serotonin/5-hydroxytryptamine; 5-HTOL, 5-hydroxytryptophol; 5-HTP, 5-hydroxytryptophan; hyd.,
hydroxylation; IA, 3-indoleacrylic acid; IAA, indole-3-acetic acid; IaaH, indole-3-acetamide hydrolase; IAAld, indole -3-acetaldehyde;
IAld, indole-3-aldehyde; IAA, indole-3-acetic acid; IAM, indole-3-acetamide; IDOs, indoleamine 2,3-dioxygenases 1 and 2; ILA,
indole-3-lactic acid; INS, indoxyl sulfate; IPA, indole-3-propionate; IPyA, indole-3-pyruvic acid; KAT III, kynurenine aminotrans-
ferase III/cysteine conjugate beta-lyase 2; KATs, kynurenine aminotransferases; KFA, kynurenine formamidase; KMO, kynurenine
3-monooxygenase; KYN, kynurenine; KYNA, kynurenic acid; KYNU, kynureninase; MAO A, monoamine oxidase A; MAO B,
monoamine oxidase B; MEL, melatonin/N-acetyl-5-methoxytryptamine; NAAD, nicotinic acid adenine dinucleotide; NAD+, nicoti-
namide adenine dinucleotide; NAS, N-acetylserotonin; NFK, N-formyl-L-kynurenine; NMN, nicotinic acid mononucleotide; NMNAT,
nicotinamide mononucleotide adenylyltransferase; PA, picolinic acid; QA, quinolinic acid; QAA, quinaldic acid; QPRT, quinolinate
phosphoribosyl transferase; TDO, tryptophan-2,3-dioxygenase; TMO, tryptophan-2-monooxygenase; TNA, tryptophanase; TrD, tryp-
tophan decarboxylase; Trp, tryptophan; TPH1/2, tryptophan hydroxylase 1 and 2; XA, xanthurenic acid; ?, unknown. The figure was
created with Scientific Image and Illustration Software Biorender.
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the aim of elucidating the Trp metabolic profiles that un-
derlie the behavioral phenotype. This research contributes
to our understanding of the genetic factors influencing be-
haviors related to emotional valence, memory, and motor
function and Trp catabolism.

2. Materials and Methods
CRISPR/Cas9 was applied on C57BL/6N and CD1

(ICR; Institute for Cancer Reseach)mice to generate knock-
out kat2-/- mice, and Taqman allelic discrimination was
used to prove that the gene had been deleted. The emo-
tional domain, including depression-like and anxiety-like
behaviors, was evaluated with the modified forced swim
test (FST), tail suspension test (TST), elevated plus maze
(EPM) test, open field (OF) test, and light dark box (LDB)
test; the cognitive domain was evaluated with the passive
avoidance test (PAT); and the motor domain was evaluated
with the OF test. Furthermore, the levels of Trp and its ma-
jor metabolites, as well as enzyme activities in plasma and
urine samples, were determined, and oxidative stress and
excitotoxicity indices were calculated.

2.1 Ethical Approval
Animal experiments were conducted humanely in ac-

cordance with the Regulations for Animal Experiments of
Kyushu University and the Fundamental Guidelines for
Proper Conduct of Animal Experiments and Related Ac-
tivities in Academic Research Institutions governed by the
Ministry of Education, Culture, Sports, Science, and Tech-
nology of Japan, and with the approval of the Institu-
tional Animal Experiment Committees of Kyushu Univer-
sity (A29-338-1 (2018), A19-090-1 (2019)). The Depart-
ment of Nature Conservation of the Ministry of Agricul-
ture has authorized us to use genetically modified organ-
isms in a closed system of the second security isolation level
(TMF/43-20/2015). The import of genetically modified an-
imals has been approved by the Department of Biodiver-
sity and Gene Conservation of the Ministry of Agriculture
(BGMF/37-5/2020). In accordance with the guidelines of
the 8th Edition of the Guide for the Care and Use of Labo-
ratory Animals, the Use of Animals in Research of the In-
ternational Association for the Study of Pain, and the direc-
tive of the European Economic Community (2010/63/EU),
the experiments conducted in this study received ethi-
cal approval from two committees. The Scientific Ethics
Committee for Animal Research of the Protection of An-
imals Advisory Board (XI./95/2020, CS/I01/170-4/2022)
and the Committee of Animal Research at the University
of Szeged (I-74-10/2019, I-74-1/2022) both approved the
experiments. Furthermore, Directive 2010/63/EU on the
protection of animals used for scientific purposes provides
guidance for the ethical evaluation of animal use proposals.
The directive allows individual institutions to make deter-
minations based on the recommendations of their ethical re-
view committees. These ethical guidelines and regulations

ensure that the experiments conducted on animals adhere
to the highest standards of animal welfare and scientific in-
tegrity. The approval from the Scientific Ethics Committee
for Animal Research of the Protection of Animals Advi-
sory Board and the Committee of Animal Research at the
University of Szeged demonstrates that the study was con-
ducted in compliance with these ethical principles and reg-
ulations.

2.2 Animals
C57BL/6N and CD1 (ICR) mice were purchased from

Japan SLC, Inc. (Hamamatsu, Japan) and Charles River
Laboratories International, Inc. (Yokohama, Japan), re-
spectively, in order to generate kat2-/- mice utilizing the
CRISPR/Cas9 technique. After genetic modifications,
breeding, and transport from Japan to Hungary, the animals
were housed in groups of 4–5 in polycarbonate cages (530
cm2 floor space) under pathogen-free conditions in the An-
imal House of the Department of Neurology, University of
Szeged, maintained at 24 ± 1 °C and 45–55% relative hu-
midity under a 12:12-h light:dark cycle. Throughout the
duration of the investigation, mice had unrestricted access
to standard rodent food and water.

The deletion was introduced into the KATs gene us-
ing the CRISPR/Cas9 method. The single guide RNAs
(sgRNA) were selected using the CRISPRdirect software
[183]. Artificially synthesized sgRNA were purchased
from FASMAC (Atsugi, Japan). The 8–12 weeks old fe-
male C57BL/6N mice were injected with pregnant mare
serum gonadotropin (PMSG) and human chorionic go-
nadotropin (hCG) with a 48-h interval, and mated with 8–
20 weeks old male C57BL/6N mice. The fertilized one-
cell embryos were collected from the oviducts. Then, 25
ng/µL of the sgRNA and 75 ng/µL Guide-it™ Recombi-
nant Cas9 protein (TaKaRa, Kusatsu, Japan) were injected
into the cytoplasm of these one-cell-stage embryos. The in-
jected two-cell embryos were then transferred into pseudo-
pregnant ICRmice (Fig. 2) anesthetized with a combination
anesthetic (M/M/B: 0.3/4/5) [184] prepared with 0.3 mg/ kg
of medetomidine, 4.0 mg/kg of midazolam, and 5.0 mg/kg
of butorphanol by intraperitoneal injection.

The kat2-/- mouse line expresses a carboxy-terminal
truncated polypeptide consisting of the first 47 amino acids
of the intact KAT II with a 2-nucleotide deletion (CCDS
nucleotide sequence 32–33) in the mRNA.

2.3 DNA Extraction and Sequencing
Genomic DNA of tails collected from mice was ex-

tracted using NucleoSpin Tissue (MACHEREY-NAGEL
GmbH&Co, KG, Düren, Germany). Each targeted frag-
ment around the sgRNA targeting site from the extracted
genomic DNA as a part of the KATs genes was amplified
with TAKARAExTaq (Takara Bio, Kusatsu, Japan) and the
1st primers pair and subsequentlywith 2nd primers pair (Ta-
ble 1). The polymerase chain reaction (PCR) product was
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Fig. 2. Generation of the knockout kat2-/- mice. Female C57BL/6Nmice were treated with pregnant mare serum gonadotropin (PMSG)
and human chorionic gonadotropin (hCG) with a 48-hour interval between administrations, then mated with male C57BL/6Nmice. From
the oviducts, fertilized one-cell embryos were collected and injected with single guide RNA (sgRNA) and Guide-itTM Recombinant Cas9
protein. At the two-cell stage, the embryos were transferred into pseudopregnant Institute for Cancer Research (ICR) mice. PMSG,
pregnant mare serum gonadotropin; hCG, human chorionic gonadotropin; sgRNA, single guide RNA. The figure was created with
Scientific Image and Illustration Software Biorender.
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Table 1. Properties of sgRNA, primers and KAT gene.
Name of sgRNA Sequence

M-KAT II-2
GTTCCTCACTGCAACGAGCCguuuuagagcuagaaauagcaaguu-
aaaaaaggcuaguccguuaucaacuugaaaaaguggcacggacucggugcuuuu

Name of primer Sequence
M-KAT II_1st_F CCCTCTGTGGATGGACTTTG
M-KAT II_1st_R TTGAAAGATGTGCCTCATGC
M-KAT II_2nd_F GGATGGACTTTGTCCCTTCT
M-KAT II_2nd_R ATGTGCCTCATGCTTGGCCC
Name of KAT gene Transcript ID CCDS CCDS Nucleotide Sequence
Aadat-201 ENSMUST00000079472.4 CCDS22320 32–33 (2 nucleotide deletion)

sgRNA, single guide RNA; KAT, kynurenine aminotransferase; KAT II, aminoadipate aminotransferase;
CCDS, Consensus Coding Sequence.

purified with a Fast Gene Gel/PCR Extraction Kit (Nippon
Genetics Co., Ltd., Tokyo, Japan), and the PCR products
were purified by agarose gel electrophoresis and Monarch
Gel Extraction Kit (NEW ENGLAND BioLabs Inc., Ip-
swich, MA, USA). Then, the PCR products were sequenced
with M-KAT II_2nd_R (Table 1).

2.4 Western Blotting

For Western blotting, tissue extracts from the liver (20
mg) of the knockout and wild-type (WT) mice were pre-
pared by the Total Protein Extraction Kit for Animal Cul-
tured Cells and Tissues (Invent Biotechnologies, Plymouth,
MN, USA) according to the manufacturer’s instructions.
Subsequently, the tissue extracts were passed through Pro-
tein G HP SpinTrapTM (Cytiva, Buckinghamshire, UK) to
remove immunoglobulin G. 14 µL of each sample were
mixed with 7 µL of SDS Blue Loading Buffer (New
England BioLabs Inc.) and separated on a 12% SDS-
polyacrylamide gel. Subsequently, the protein was trans-
ferred to the membranes. The membranes were blocked
and incubated with anti-human KAT II rabbit polyclonal
antibody (1:500, Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA) at room temperature for 2 h, fol-
lowed by combination with alkaline phosphatase-labeled
secondary goat anti-rabbit immunoglobulin G (IgG) FC an-
tibody (1:10,000, Sigma-Aldrich Co. LLC, St. Louis, MO,
USA) at room temperature for 2 h, followed by visualiza-
tion of dystrophin and utrophin usingWestern Blue® Stabi-
lized Substrate for Alkaline Phosphatase (Promega, Madi-
son, WI, USA). The Multicolor Protein Ladder (10–315
kDa) from Nippon Gene Co., Ltd. (Tokyo, Japan) was used
as a molecular weight marker for western blotting, allowing
visualization and size estimation of target proteins.

2.5 Phenotype Analysis with Modified SHIRPA Test

The 8–48 weeks old male and female mice mated
in August 2023 and became pregnant about three to four
weeks later. The RIKEN (The Institute of Physical
and Chemical Research) modified SHIRPA (SmithKline

Beecham, Harwell, Imperial College, Royal London Hos-
pital, phenotype assessment) test was conducted to ascer-
tain the comprehensive phenotypic traits of the mutant ro-
dents. The assessment included the evaluation of diverse
behaviors and physical attributes such as motion, bowel
movements, urination, locomotor activity, startle response,
tactile escape, pinna reflex, trunk curling, limb grasping,
contact-righting reflex, grip strength, wire maneuver test,
corneal reflex, toe pinching, and overall appearance. The
animals were also monitored for vocalization, aggression,
head bobbing, jumping, circling, retropulsion, grooming,
and tail-wagging [185,186]. The experiment was captured
on video using a camera (Basler ace Classic acA1300 -
60gm, Basler AG, Ahrensburg, Germany) and software
(EthoVision XT14, Noldus Information Technology BV,
Wageningen, the Netherlands).

2.6 Behavioral Tests
The 8–48 weeks old male and female mice mated be-

tween April 2021 and April 2022 and became pregnant ap-
proximately three to four weeks later. 8-week-old male
C57BL/6N and kat2-/- mice (n = 10–13) were tested. In
order to make the results comparable, all behavioral exper-
iments were performed between 8 a.m. and 12 p.m. The
animals were transferred to the laboratory, where the mea-
surements were made, one hour before the start of the ex-
periment, thus they had time to acclimatize to the environ-
mental conditions.

2.6.1 Modified Forced Swim Test (FST)
The modified FST was performed as reported previ-

ously. The mice were placed individually in a glass cylin-
der of 12 cm in diameter and 30 cm in height. Water (25± 1
°C) was filled to a height of 20 cm. Freshwater was used for
each mouse. A 15-min pretest was carried out 24 hours be-
fore the 3-min test session. A time-sampling technique was
conducted to count the duration of time spent with climb-
ing, swimming, and immobility [187,188].
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2.6.2 Tail Suspension Test (TST)
The mice were placed in a 28× 28× 23.5 cm wooden

box with three side walls and a clip hanging from the top of
the box. The animals were suspended by their tails from
the base to the middle two-thirds using a clip and allowed
to hang for 6minutes. Wemeasure the duration of immobil-
ity. A cotton swab was pre-attached to the clip’s interior to
prevent the mice’s tails from injuring or severely restricting
blood circulation. If the animal is able to climb or falls off
the clip, it is removed from the experiment and its results
are discarded [189,190]. The experiment was captured on
video using a camera (Basler ace Classic acA1300 -60gm,
Basler AG, Ahrensburg, Germany) and software (EthoVi-
sion XT14, Noldus Information Technology BV, Wagenin-
gen, the Netherlands).

2.6.3 Elevated Plus Maze (EPM) Test
The animals were positioned in a plus-shaped appara-

tus with four arms measuring 35 × 10 cm. Two of the op-
posite arms are open, while the other two are closed, form-
ing an angle of 90 degrees. The open arms have no side
walls, while the closed arms have walls that are 20 cm tall.
The entire apparatus is situated 50 cm off the ground. The
device is surrounded by a screen that does not display any
visual signals. The mouse was placed in the device’s cen-
ter with its nose facing an open arm and allowed it to ex-
plore for 5 minutes. We measure the time spent in each part
(open arms, closed arms, and central part). The experiment
was captured on video using a camera (Basler ace Classic
acA1300 -60gm, Basler AG, Ahrensburg, Germany) and
software (EthoVision XT14, Noldus Information Technol-
ogy BV, Wageningen, the Netherlands). Between each an-
imal, the apparatus was disinfected with 70% ethanol and
left exposed to the air for 5 minutes [191,192].

2.6.4 Light Dark Box (LDB) Test
The LDB apparatus is comprised of larger illuminated

(2/3 of the box) and smaller dark (1/3 of the box) compart-
ments that are connected by a 5× 5 cm door. The length of
time a mouse spent in the lighted compartment during the
5-minute session was determined 5 seconds after a mouse
was placed in the bright area. After each session, the box
was cleaned with 70% ethanol and allowed to air for 5 min-
utes [192–194].

2.6.5 Passive Avoidance Test (PAT)
Each mouse was individually placed in a box contain-

ing two apparatuses with distinct lighting. The animals be-
gan in the bright compartment and had 5 minutes to pass
through the 5 × 5 cm door into the dark, smaller portion of
the box. As soon as the animals entered the dark compart-
ment, they received a 0.3 mA electroshock through their
paws, and the door shut. After 10 seconds, the animals
were removed, and the experiment was repeated 24 hours
later. Those animals that did not enter the dark area within

5 minutes during the pre-testing phase were omitted from
the measurement. The box was cleaned with 70% ethanol
and left to air for 5 minutes between mice [195].

2.6.6 Open Field (OF) Test

A standard table lamp illuminated the center of the
48 × 40 cm OF box, while the Conducta 1.0 system (Ex-
perimetria Ltd., Budapest, Hungary) monitored themouse’s
movements. Each mouse was placed individually in the
center of the box. Ambulation distance, time spent in the
center zone, and number of entries to the center zone were
measured for 10 minutes. After each session, the box was
wiped down with 70% ethanol and allowed to for 5 minutes
[196,197].

Throughout the experiment, the animals’ general
physical condition was constantly assessed using a scoring
scale, which included body weight, appearance and over-
all condition, respiration, mobility, and the presence of ba-
sic reflexes. Humane endpoints were determined using the
scales. If any animal reached the required score for with-
drawal from the behavioral assessments, it was euthanized
via transcardial perfusion under isoflurane anesthesia, ef-
fectively terminating its participation in the evaluation.

2.7 Ultra-High-Performance Liquid Chromatography with
Tandem Mass Spectrometry

The 8–48 weeks old male and female mice mated
in August 2023 and became pregnant about three to four
weeks later. The urine samples were collected before
anesthesia, and were immediately stored at –80°C after
the sample collection. For plasma collection, the mice
were anesthetized with 2% isoflurane, and after expos-
ing their chest, blood samples were taken from the left
heart ventricle using a syringe into Eppendorf tubes con-
taining disodium ethylenediaminetetraacetate dihydrate.
Plasma was separated by centrifugation (10,300 rpm for
10 minutes at 4 °C). The supernatant plasma samples
were pipetted into new Eppendorf tubes. The samples
were stored at –80 °C until use. The animals were per-
fused with artificial cerebrospinal fluid for 5 minutes to re-
move additional organs for later use. Trp and its metabo-
lites were measured in plasma and urine using previ-
ously published protocols [198,199] using ultra-high per-
formance liquid chromatography-tandem mass spectrom-
etry (UHPLC-MS/MS). Picolinic acid multiple reaction
monitoring (MRM) showed a change from 124.0 to 106.0
over 1.21 minutes, with 75 V acting as the declustering po-
tential and 13 V acting as the collision energy. All reagents
and chemicals were of analytical or liquid chromatography–
mass spectrometry grade. Trp and its metabolites, and
their deuterated forms: d4-serotonin, d5-tryptophan, d4-
kynurenine, d5-kynurenic acid, d4-xanthurenic acid, d5-
5-hydroxyindole-acetic acid, d3-3-hydroxyanthranilic acid,
d4-picolinic acid, and d3-quinolinic acid were purchased
from Toronto Research Chemicals (Toronto, ON, Canada).
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d3-3-hydroxykynurenine was obtained from Buchem B.
V. (Apeldoorn, The Netherlands). Acetonitrile (ACN)
was provided by Molar Chemicals (Halásztelek, Hungary).
Methanol (MeOH) was purchased from LGC Standards
(Wesel, Germany). Formic acid (FA) and water were ob-
tained from VWRChemicals (Monroeville, PA, USA). The
UHPLC-MS/MS system consisted of a PerkinElmer Flexar
UHPLC system (two FX-10 binary pumps, solvent man-
ager, autosampler and thermostatic oven; all PerkinElmer
Inc. (Waltham, MA, USA)), coupled to an AB SCIEX
QTRAP 5500 MS/MS triple quadrupole mass spectrometer
and controlled by Analyst 1.7.1 software (both AB Sciex,
Framingham, MA, USA).

2.8 The Enzyme Activities of Tryptophan (Trp) Metabolism
The enzyme activities of each Trp metabolism were

determined by dividing the concentration of the product by
the concentration of the substrate.

2.9 Oxidative Stress and Excitotoxicity Indices
The oxidative stress index was calculated as the ratios

of putative prooxidant metabolite 3-hydroxykynurenine (3-
HK) concentrations to the sums of putative antioxidant
metabolite concentrations (KYNA, anthranilic acid (AA),
and xanthurenic acid (XA)) (Eqn. 1) [200–202].

Oxidative stress index = [3 − Hydroxykynurenine]/

{[Kynurenic acid] + [Anthranilic acid] + [Xanthurenic acid]}
(1)

The excitotoxicity index is calculated by dividing the
concentration of N-methyl-D-aspartate (NMDA) receptor
agonist quinolinic acid (QA) by that of NMDA receptor an-
tagonist KYNA (Eqn. 2) [203–205].

Excitotoxicity index = [Quinolinic acid]/[Kynurenic acid]
(2)

2.10 Statistical Analysis
We used IBM SPSS Statistics 28.0.0.0 (IBM SPSS

statistics, Chicago, IL, USA) for the statistical analysis. The
Shapiro–Wilk test was used to determine the distribution of
data. In addition, we used a Q-Q plot to find out if two sets
of data come from the same distribution. Our data followed
a normal distribution. One-way ANOVA test was used to
evaluate the results of the behavioral tests and neurochem-
ical measurements followed by the Tamhane post hoc test.
Values p < 0.05 were considered statistically significant.
Our data are reported as means± SD for all parameters and
groups.

3. Results
3.1 DNA Sequence Analysis and Western Blot

To generate knockout mice of kat2 gene, 25 ng/µL
of sgRNA and 75 ng/µL Cas9 protein were injected into

the cytoplasm of the one-cell-stage embryos. Sequenc-
ing analyses with their founder mice showed that various
deletions and/or insertions were introduced in the target se-
quence. One of the founders was selected and established
the homozygous mouse line for further analyses. KAT II
knockout mouse line expresses a carboxy-terminal trun-
cated polypeptide consisting of the first 47 amino acids of
the intact KAT II with 2 nucleotides deletion (CCDS nu-
cleotide sequence 32–33) in the mRNA. Western blotting
with antibodies against KAT II revealed that the band with
approximately 50-kDa supposed to be KAT II was not de-
tected in the knockout mice, while it was detected in the
wild-type (WT) counterparts (Fig. 3).

3.2 Phenotype Analysis with SHIRPA Protocol
We did not detect any significant differences between

the knockout mice and their wild-type counterparts.

3.3 Behavioral Tests
3.3.1 Forced Swim Test (FST)

The immobility time was significantly longer and the
swimming time was significantly shorter in kat2-/- mice
than in WT mice (Fig. 4a,b; Table 2). There were no sig-
nificant differences in climbing time (Table 2).

3.3.2 Open Field (OF) Test
The ambulation distance of the kat2-/- mice was sig-

nificantly shorter in the first 10-minute timeframe than that
of their WT counterparts (Fig. 4c; Table 2). The number of
jumps was significantly fewer in the kat2-/- mice than that
of their WT counterparts (Fig. 4d; Table 2). There were
significantly fewer entries into the center and corner zones
compared to their WT counterparts (Fig. 4e; Table 2).

3.3.3 Other Behavioral Tests
There were no statistically significant distinctions ob-

served between the transgenic mice and their WT counter-
parts in TST, PAT, EPM test, and LDB test (Table 2).

3.4 Ultra-High-Performance Liquid Chromatography with
Tandem Mass Spectrometry

Transgenic mice had significantly lower levels of
KYN, KYNA, XA, AA, 5-hydroxyindoleacetic acid (5-
HIAA), indole-3-acetic acid (IAA), and higher levels of
3-HK in plasma samples than wild-type mice. In urine
samples, KYNA, XA, and IAA were significantly lower,
whereas KYN, 3-HK, and 5-HT were significantly higher
than those of the wild-type counterparts (Fig. 5; Table 3).

3.5 Enzyme Activities in Tryptophan (Trp) Metabolism
The transgenic mice showed significantly lower

KATs, kynureninase (KYNU), KAT III, monoamine ox-
idase (MAO), aldehyde dehydrogenase (ALDH), and
tryptophan-2-monooxygenase (TMO) activities and signif-
icantly higher kynurenine 3-monooxygenase (KMO) activ-
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Fig. 3. DNA sequence and western blot analysis of knockout kat2-/- mouse line. (a) Genomic sequences around the mutation site of
knockout kat2-/- mouse strain. (b) Western blot analysis of knockout kat2-/- mouse line. MM: molecular weight marker, WT: wild-type
mouse. The figure was created with Scientific Image and Illustration Software Biorender.

Table 2. Behaviors of kat2-/- mice and the wild-type counterparts.
Test type Number of animals Perspectives Mean ± SD of wild-type Mean ± SD of kat2-/- p-value

Modified forced
swim test (FST)

WT: n = 12 Immobility time (s) 157.73 ± 17.23 174.09 ± 6.64 0.022 *
kat2-/-: n = 11 Swimming time (s) 18.18 ± 15.37 3.18 ± 4.62 0.014 *

Climbing time (s) 4.09 ± 4.37 1.82 ± 6.03 0.681

Tail suspension
test (TST)

WT: n = 10
Immobility time (s) 194.50 ± 66.76 209.58 ± 67.23 0.625

kat2-/-: n = 13

Passive avoida-
nce test (PAT)

WT: n = 12
kat2-/-: n = 12

Time spent in the lit box
on the training day (s)

48.33 ± 29.24 64.67 ± 55.78 0.979

Time spent in the lit box
on the test day (s)

256.00 ± 76.94 283.75 ± 39.60 0.822

Elevated plus
maze (EPM) test

WT: n = 10
Time spent in the open arms (s) 42.90 ± 61.60 30.64 ± 43.70 0.500

kat2-/-: n = 11

Light dark box
(LDB) test

WT: n = 12
Time spent in the lit box (s) 119.00 ± 31.38 113.91 ± 24.41 0.957

kat2-/-: n = 11

Open field
(OF) test

WT: n = 12
kat2-/-: n = 11

Number of entries to the
center zones (times)

281.67 ± 69.13 210.73 ± 65.20 0.011 *

Number of entries to the
corner zones (times)

83.08 ± 26.95 51.27 ± 17.88 0.001 ***

Ambulation distance (cm) 2191.75 ± 364.45 1609.27 ± 381.96 0.002 **
Number of jumps (times) 7.33 ± 4.94 2.45 ± 3.08 0.034 *

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

ity in plasma samples thanwild-typemice. In the urine sam-
ples, the transgenic mice showed significantly lower KATs,
KYNU, KAT III, MAO, ALDH, and TMO activities, and
significantly higher tryptophan-2,3-dioxygenase (TDO)/

indoleamine 2,3-dioxygenases (IDOs) (KFA), KMO, and
aromatic L-amino acid decarboxylase (AADC) activities
compared to the wild-type counterparts (Fig. 6, Table 4).
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Fig. 4. Behavioral tests. (a) Time spent immobile in the modified forced swim test (FST). (b) Time spent swimming in the modified
FST. (c) Ambulation distance in the open field (OF) test. (d) Number of jumps in the OF test; and (e) Number of entries into the center and
corner zones in the OF test. Wild-type mice (light green); kat2-/- mice (dark green). WT, wild-type; kat2-/-, kynurenine aminotransferase
II knockout mice; FST, forced swim test; OF, open field test; •, outliner. Mean ± SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001. The
figure was created with Labplot 2.9.0 (KDE, Berlin, Germany) and Scientific Image and Illustration Software Biorender.
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Fig. 5. Concentration level of tryptophan metabolites in plasma and urine. (a) Kynurenine. (b) Kynurenic acid. (c) 3-
hydroxykynurenine. (d) Anthranilic acid. (e) Xanthurenic acid. (f) Serotonin/5-hydroxytryptamine. (g) 5-hydroxyanthranilic acid.
(h) Indole-3-acetic acid. We marked wild-type mice with light, and kat2-/- mice results with dark green boxes. WT, wild-type;
kat2-/-, kynurenine aminotransferase II knockout; 3-HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyanthranilic acid; 5-HT, serotonin/5-
hydroxytryptamine; AA, anthranilic acid; IAA, indole-3-acetic acid; KYN, kynurenine; KYNA, kynurenic acid; XA, xanthurenic acid;
•, outliner; ▲, far out. Mean ± SD; *, p < 0.05; **, p < 0.01; ***, p < 0.001. The figure was created with Labplot 2.9.0 (KDE, Berlin,
Germany) and Scientific Image and Illustration Software Biorender.
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Fig. 6. Tryptophan metabolism’s enzyme activity in plasma and urine. (a) Tryptophan 2,3-dioxygenase/indoleamine 2,3-
dioxygenases (kynurenine formamidase). (b) Kynurenine aminotransferases. (c) Kynurenine 3-monooxygenase. (d,e) Kynureninase.
(f) Kynurenine aminotransferase III/cysteine conjugate beta-lyase 2. (g) Aromatic L-amino acid decarboxylase. (h) Monoamine ox-
idases + aldehyde dehydrogenase. (i) Tryptophan-2-monooxygenase (tryptophan decarboxylase, aromatic amino acid aminotrans-
ferase). We marked wild-type mice with light, and kat2-/- mice results with dark green boxes. 3-HAA, 3-hydroxyanthranilic acid; 3-
HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin/5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan;
AADC, aromatic L-amino acid decarboxylase; ALDH, aldehyde dehydrogenase; ArAT, aromatic amino acid aminotransferase; IAA,
indole-3-acetic acid; IDOs, indoleamine 2,3-dioxygenases; KAT III, kynurenine aminotransferase III/cysteine conjugate beta-lyase 2;
kat2-/-, kynurenine aminotransferase II knockout; KATs, kynurenine aminotransferases; KFA, kynurenine formamidase; KMO, kynure-
nine 3-monooxygenase; KYNU, kynureninase; MAO, monoamine oxidase; TDO, tryptophan 2,3-dioxygenase; TMO, tryptophan-2-
monooxygenase; TrD, tryptophan decarboxylase; Trp, tryptophan; WT, wild-type; XA, xanthurenic acid; KYN, kynurenine; KYNA,
kynurenic acid; AA, anthranilic acid; •, outliner; ▲, far out. Mean ± SD; *, p < 0.05; **, p < 0.01; ***, p < 0.001. The figure was
created with Labplot 2.9.0 (KDE, Berlin, Germany) and Scientific Image and Illustration Software Biorender.
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Table 3. Quality control samples of mouse plasma and urine (runtime 25 h, (mean concentrations, 14-14 replicates of each, the given n is the samples size of the pooled individual
samples)).

Plasma (nM) Urine (nmol/mmol Creatinine)

Mean ± SD
p value

Mean ± SD
p value

WT kat2-/- WT kat2-/-

Tryptophan (Trp) 40,901.678 ± 21,056.888 35,543.573 ± 16,203.237 0.532 2022.196 ± 908.643 1972.014 ± 286.954 0.870
Kynurenine (KYN) 440.674 ± 102.886 327.348 ± 76.385 0.012 ** 25.238 ± 10.185 50.883 ± 17.134 <0.001 ***
Kynurenic acid (KYNA) 96.960 ± 70.837 3.654 ± 0.860 <0.001 *** 11,783.938 ± 5040.178 920.990 ± 215.223 <0.001 ***
Quinaldic acid (QAA) 6.884 ± 5.397 5.608 ± 1.234 0.476 14.248 ± 9.716 12.014 ± 7.490 0.572
3-hydroxykynurenine (3-HK) 70.714 ± 18.994 130.851 ± 82.199 0.037 ** 55.472 ± 31.438 5986.833 ± 3157.255 <0.001 ***
Xanthurenic acid (XA) 93.624 ± 45.637 7.406 ± 1.452 <0.001 *** 127,228.662 ± 52,582.223 3273.334 ±1021.511 <0.001 ***
Anthranilic acid (AA) 32.655 ± 13.114 19.335 ± 7.280 0.012 ** 69.112 ± 45.347 60.862 ± 22.368 0.612
3-Hydroxyanthranilic acid (3-HAA) 22.992 ± 6.140 20.920 ± 5.921 0.452 1741.538 ± 824.887 1789.475 ± 454.422 0.874
Quinolinic acid (QA) 132.185 ± 75.409 112.000 ± 41.600 0.468 10,059.485 ± 4601.597 11,718.491 ± 2401.051 0.326
Picolinic acid (PA) 193.797 ± 93.230 154.895 ± 88.753 0.352 190.435 ± 91.394 193.898 ± 113.072 0.941
5-Hydroxytryptophan (5-HTP) 2.790 ± 1.577 2.708 ± 1.297 0.901 21.742 ± 8.520 19.297 ± 3.833 0.419
Serotonin (5-HT) 277.309 ± 353.179 1010.379 ± 2219.355 0.316 371.974 ± 125.489 479.383 ± 63.304 0.027 *
5-hydroxyindoleacetic acid (5-HIAA) 362.241 ± 199.450 201.217 ± 99.184 0.035 ** 3774.968 ± 1666.005 2969.725 ± 598.373 0.167

Indole-3-acetic acid (IAA) 457.329 ± 153.046 229.142 ± 68.266 <0.001 *** 6030.306 ± 4737.901 1513.400 ± 1097.122 0.009 **
Indoxyl-sulphate (INS) 6738.111 ± 3559.896 5404.257 ± 2292.535 0.332 400,636.750 ± 185,880.105 497,063.585 ± 190,235.646 0.267

SD, standard deviation; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Table 4. Enzymes activities in plasma and urine.

Enzyme Product/Substrate
Plasma Urine

Mean ± SD
p value

Mean ± SD
p value

WT kat2-/- WT kat2-/-

TDO/IDOs (KFA) KYN/Trp 0.013 ± 0.007 0.011 ± 0.006 0.532 0.013 ± 0.002 0.026 ± 0.006 <0.001 ***
KATs KYNA/KYN 0.205 ± 0.107 0.011 ± 0.002 <0.001 *** 476.464 ± 164.156 18.937 ± 5.057 <0.001 ***
KMO 3-HK/KYN 0.168 ± 0.062 0.386 ± 0.180 0.002 ** 2.219 ± 0.827 122.983 ± 75.543 <0.001 ***
KYNU AA/KYN 0.075 ± 0.028 0.059 ± 0.016 0.120 2.593 ± 0.862 1.253 ± 0.529 <0.001 ***
KYNU 3-HAA/3-HK 0.330 ± 0.070 0.194 ± 0.080 <0.001 *** 35.177 ± 16.776 0.372 ± 0.182 <0.001 ***
KAT III XA/3-HK 1.374 ± 0.714 0.070 ± 0.033 <0.001 *** 2702.990 ± 1524.430 0.629 ± 0.229 <0.001 ***
3-HAO QA/3-HAA 5.l771 ± 2.978 5.486 ± 1.994 0.804 6.240 ± 2.487 6.856 ± 1.779 0.532
3-HAO + ACMSD PA/3-HAA 8.797 ± 4.263 7.681 ± 4.872 0.592 0.123 ± 0.071 0.119 ± 0.085 0.906
TPHs 5-HTP/Trp <0.001 ± <0.001 <0.001 ± <0.001 0.128 0.011 ± 0.002 0.010 ± 0.003 0.410
AADC 5-HT/5-HTP 97.585 ± 87.384 307.233 ± 509.276 0.216 17.608 ± 3.583 25.997 ± 7.185 0.004 **
MAOs + ALDH 5-HIAA/5-HT 4.217 ± 4.818 0.905 ± 0.712 0.045 * 10.209 ± 2.530 6.181 ± 0.859 <0.001 ***
TMO (TrD, ArAT) IAA/Trp 0.013 ± 0.005 0.007 ± 0.002 0.005 ** 2.570 ± 1.243 0.786 ± 0.636 <0.001 ***
TNA INS/Trp 0.208 ± 0.178 0.170 ± 0.089 0.555 215.671 ± 100.757 248.916 ± 81.413 0.428

*, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Table 5. The oxidative stress and excitotoxicity indices in the plasma and urine.
Oxidative stress index

Oxidant/antioxidant
metabolites

Plasma (nM) Urine (nmol/mmol Creatinine)

Mean ± SD
p value

Mean ± SD
p value

WT kat2-/- WT kat2-/-

3-HK/KYNA+AA+XA 0.378 ± 0.163 4.090 ± 1.478 <0.001 *** 0.085 ± 0.011 1.352 ± 0.473 <0.001 ***

Excitotoxicity index

NMDA Plasma (nM) Urine (nmol/mmol Creatinine)

agonist/antagonist Mean ± SD
p value

Mean ± SD
p value

metabolites WT kat2-/- WT kat2-/-

QA/KYNA 1.648 ± 0.810 30.514 ± 8.618 <0.001 *** 0.884 ± 0.320 13.092 ± 2.833 <0.001 ***
***, p < 0.001.

3.6 Oxidative stress and Excitotoxicity indices

Transgenic mice had higher levels of oxidative stress
and excitotoxicity in both plasma and urine than wild-type
mice (Fig. 7, Table 5).

4. Discussion
Dysregulation of 5-HT metabolism is a key factor in

mental symptom development, with attention focused on
its imbalance with neurotransmitters like dopamine, nore-
pinephrine, and biosystems such as substance P [206–210].
Alterations in 5-HT precursor Trp metabolism are noted in
mental illnesses, but their connection with the Trp-KYN
metabolic system remains poorly understood [211–213].
Growing evidence suggests that the gut microbial indole
pyruvate pathway can influence the microbiome-gut-brain
axis, implying that intestinal Trp metabolism may play a
significant role in psychological health. The microbiome-
gut-brain axis is responsible for regulating mood, cogni-
tion, stress response, and behavior [101]. As a result, the
gut-microbial indole pyruvate pathway can influence the
microbiome-gut-brain axis by controlling the production
and availability of neurotransmitters, hormones, cytokines,
and bioactivemetabolites involved in neuropsychiatric con-
ditions.

KATs are cytosolic and mitochondrial aminotrans-
ferases that convert KYN to KYNA [74,214–216]. The mi-
tochondrial isoform KAT II exclusively influences cellular
bioenergetics due to its exclusive location in the mitochon-
dria [117,205]. CRISPR/Cas9 was employed to knock out
the kat2 gene, creating kat2-/- mice. This study aimed to
examine the negative emotional aspects and evaluate any
behavioral alterations caused by the knockout of the kat2
gene in young adults aged 8 weeks. kat2-/- mice, studied in
8-week-old adults, induce a unique depression-like pheno-
type marked by increased immobility in FST, likely linked
to serotonergic pathways. TST did not show significant dif-
ferences, possibly due to FST conditioning. The results that
the PAT did not show a significant difference may suggest

that depression-like behavior is more likely to be related
to depression-like behavior caused by despair experiences
than to aversive-conditioned memory. Anxiety-like behav-
iors (EPM and LDB) showed no difference, but the OF
test revealed shorter ambulation distance, fewer jumping
counts, and fewer entries into both center field and corners,
suggesting a la belle indifference-like trait. kat2-/- mice
exhibited despair-based depression-like behavior without
anxiety-like traits, demonstrating motor deficits. The study
suggests the kat2 gene deletion potentially leads to a PTSD-
like phenotype, including a la belle indifference trait, in-
dicative of complex PTSD with emotional dysregulation
[217–219].

The gene knockout significantly alters Trpmetabolism
in both 5-HT, KYN, and indole pathways in plasma and
urine. A major 5-HT metabolite, 5-HIAA, is markedly re-
duced, possibly explained by scarce mitochondrial enzyme
activity. Lower levels of KYNA and antioxidant KYNs in-
dicate decreased production in peripheral tissues of kat2-/-
mice. Conversely, 3-HK is significantly elevated. The lev-
els of the gut microbial metabolite IAA, an antioxidant and
anti-inflammatory molecule, were reduced. The disruption
of the KAT II gene may lead to a reduction in the levels of
IAA in the indole pathway of the gut microbiota, as the en-
zyme plays a role in controlling Trp metabolism. KAT II
has an impact on the availability of Trp and its subsequent
metabolic pathways, including the production of IAA. In
the absence of KAT II, the Trpmetabolite balancemay shift,
resulting in less IAA synthesis by gut bacteria. This change
may disrupt the gut-brain axis and have an impact on intesti-
nal health, as IAA is required for immune response regula-
tion, intestinal barrier integrity, and modulating the produc-
tion of other indole derivatives. Furthermore, gene knock-
out affects enzyme activity, puts organisms under oxidative
stress, imposes high excitotoxicity and neurotoxicity, and
alters immune responses. The study demonstrates that the
deletion of the kat2 gene leads to a specific set of charac-
teristics, including behavior similar to depression, impaired

16

https://www.imrpress.com


Fig. 7. Oxidative stress and excitotoxicity indices in plasma and urine. (a) The oxidative stress indices in kat2-/- mice’s plasma
and urine samples are significantly higher than those in the wild-type. (b) The excitotoxicity indices in kat2-/- mice’s plasma and urine
samples are significantly higher than those in the wild-type. We marked wild-type with light, and kat2-/- mice results with dark green
boxes. WT, wild-type; kat2-/-, kynurenine aminotransferase II knockout; •, outliner. Mean± SD; ***, p< 0.001. The figure was created
with Labplot 2.9.0 (KDE, Berlin, Germany) and Scientific Image and Illustration Software Biorender.

motor function, decreased levels of KYNA, and a change in
the way Trp is metabolized towards the KYN pathway. This
phenotype exhibits similarities to PTSD in humans, poten-
tially indicating the presence of complex PTSD due to the
observed belle indifference-like trait.

The amygdala encodes and stores fear memory af-
ter receiving sensory input from the thalamus, which also
consolidates and retrieves memories from the initial stim-
uli that induce fear [220–222]. Fear memory is associ-
ated with the release of stress hormones such as adrenaline
and cortisol, which stimulate the sympathetic nervous sys-
tem and the hypothalamic-pituitary-adrenal axis [46,223–
227]. This study does not show evidence of fear memory
acquisition. In contrast, the encoding and storage of mem-
ories associated with despair occur in the prefrontal cortex,
which plays a crucial role in the cognitive and emotional
processing of negative experiences [228]. Recalling dis-
tressing memories, triggered by cues linked to the initial
negative encounter, results in the disruption of 5-HT, nore-
pinephrine, and dopamine regulation. Although fear and
despair memories have similarities in terms of encoding and
retrieval processes, they are associated with different brain
regions, neurotransmitters, and neural circuits [229,230].

Furthermore, despair memory and despair experience
differ. The latter pertains to an instantaneous, personal feel-
ing of despair or hopelessness, prompted by present circum-
stances, as opposed to a remembrance of past experiences
[231]. Despair memory involves the consolidation and re-
trieval of long-term memories, influenced by stress and

emotion [232]. In contrast, a despair experience entails im-
mediate emotional responses influenced by factors like cog-
nitive assessments, environmental cues, and physiological
states [233]. Additionally, la belle indifference arises from
a discrepancy between cognitive and emotional symptom
processing, including altered emotional processing in the
amygdala and insula, changed self-awareness in the medial
prefrontal cortex, and adjusted activity in the somatosen-
sory cortex influenced by dopamine and 5-HT [234]. Thus,
kat2-/- mice show more despair-based depression-like be-
havior involving a change in 5-HT metabolism.

Approximately 60% of individuals on antidepressants,
including SSRIs, for two months experience a 50% reduc-
tion in depression symptoms [235]. The observation aligns
with the monoamine hypothesis, suggesting depression’s
pathogenesis is linked to low 5-HT levels. Transgenic mod-
els are used to study 5-HT dysmetabolism behaviors, with
a focus on the Tph gene, which encodes tryptophan hy-
droxylase, a key enzyme in 5-HT synthesis [236]. Pre-
clinical studies found normal 5-HT levels with no behav-
ioral changes in Tph1-/- mice, while Tph2-/- mice’s behav-
iors are inconclusive [237,238]. The knock-in mice of the
TPH2 variant (R439H) showed depression-like behavior in
TST [239]. Intriguingly, Tph1/Tph2-/- mice exhibited con-
trasting behaviors: antidepressant-like in FST, depressive
in TST, and anxious in the MB test, accompanied by low
5-HT levels in the brain and periphery [240]. 5-HT1A re-
ceptor knockout (5-HT1AR-/-) mice display heightened fear
memory to contextual cues, suggesting a role for 5-HT re-
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ceptors in PTSD-like phenotype [241]. 5-HT 2C receptor
knockout 5-HT2CR-/-mice attenuates fear responses in con-
textual or cued but not compound context-cue fear condi-
tioning [242]. Knockout of the 5-HTT gene in mice (5-
HTT -/-) leads to impaired stress response, fear extinction,
and abnormal corticolimbic structure [243].

Over 90% of 5-HT precursor Trp undergoes
catabolism in the Trp-KYN metabolic system, generating
a variety of bioactive molecules including prooxidants,
antioxidants, inflammation suppressants, neurotoxins, neu-
roprotectants, and/or immunomodulators [244]. Growing
evidence indicates disrupted KYN metabolism in MDD,
bipolar disorder, and SCZ [245–247]. Earlier, KYN
metabolites were suggested to be either neuroprotective or
neurotoxic [248]. However, increasing evidence suggests
that KYN metabolites exhibit versatile actions, potentially
influenced by concentrations and the microenvironment
[249]. Previously, cognitive and motor functions of
129/SvEv kat2-/- mice were reported. These transgenic
mice exhibited transient hyperlocomotive activity and
motor coordination issues at postnatal day 21. However,
from postnatal day 17 to 26, they demonstrated notable
improvements in cognitive functions, particularly in object
exploration and recognition tasks in PAT and T-maze tests
[250,251].

Other biosystems play an important role in the patho-
genesis of PTSD, including dopaminergic and gamma-
aminobutyric acid (GABA)ergic, and cannabinoid sys-
tems. Catechol-O-methyltransferase (COMT) degrades
dopamine. COMT -/- mice exhibited an increased response
to repeated stress exposures [252]. Glutamic acid decar-
boxylase (GAD) synthesizes GABA [253]. GAD6-/- mice
shows increased generalized fear and impaired extinction
of cued fear [254]. GABA receptor subunit B1a knockout
GABAB1a-/- mice showed a generalization of conditioned
fear to nonconditioned stimuli [255]. Cannabinoid 1 recep-
tor (CBIR) knockout CB1R-/- mice showed an increased re-
sponse to repeated stress exposures [256].

The potential of this study is to characterize the nega-
tive valence of emotional domain in context with aversive-
conditioned memory and despair experience in the young
adult (8 week) of kat2-/- mice. The findings complement the
previous studies of kat2-/- mice in the early adolescence (2
and 1/2 to 4 weeks) to reveal that, toward adulthood, there
is a dynamic change in emotional susceptibility and mo-
tor function derived from despair experience in adjunct to
Trp metabolism. Furthermore, urinary Trp metabolite lev-
els were generally consistent with plasma levels, suggesting
that urinary samples may serve as non-invasive biomarkers
for Trp metabolism status. This study may shed new light
on the deletion of the kat2 gene as a new avenue toward
understanding a KYN metabolite as an oxidative stressor,
a potential barrier between aversive-conditioned memory
and despair experience, a distinction between memory and
experience, their mechanism for the formation of intrusive

memories, and the pathogenesis of PTSD. The ultimate goal
is to probe a potential interventionable stage in age where
the progression of PTSD is preventable and to identify tar-
gets which drugs or psychotherapy can relieve symptoms
of PTSD. The greatest challenge lies in preclinical animal
models that are difficult to simulate and interpolate to men-
tal illnesses to achieve high model validity.

This research on transgenic mice offers great poten-
tial for future studies. By examining the link between be-
havioral changes and variations in Trp and its metabolites
in plasma and urine, scientists can gain insights into Trp
metabolism’s role in emotional and cognitive functions.
Additionally, assessing enzyme activities related to Trp
metabolism and their effects on oxidative stress and neu-
rochemical imbalances may uncover mechanisms behind
observed behavioral differences. This thorough approach
could reveal causal or parallel relationships, shedding light
on how altered Trp metabolism impacts neurochemical im-
balances and oxidative stress, contributing to conditions
like depression and PTSD. The results may help identify
specific biomarkers and therapeutic targets, opening new
pathways for precision medicine and more effective treat-
ments for neuropsychiatric disorders. The study’s find-
ings could lead to the development of customized therapies,
enhancing mental health by focusing on unique metabolic
pathways and genetic factors. This research highlights the
importance of combining metabolic, behavioral, and ge-
netic data to deepen our understanding of complex psychi-
atric disorders [257].

This study suggests that behavioral sampling in
rodents can distinguish between fear-, memory-, and
despair-based depression-like behavior associated with Trp
metabolism gene deletions. Further research incorporat-
ing neurochemical, neurogenetic, and electrophysiological
biomarkers may reinforce this finding. Additionally, us-
ing inhibitory RNA or antisense RNA on neurotransmit-
ters in specific brain regions could elucidate the precise
mechanisms underlying emotional behaviors. Preclinical
research drives advances in clinical applications like preci-
sion medicine and drug discovery [258–260]. The study ac-
knowledges weaknesses, noting distinctions in interpreting
animal behaviors and drug responses compared to humans.
Recent perspectives consider depression-like behavior in
FST as related to different stages of stress-coping behav-
iors [261]. Consequently, Translational research has limita-
tions that necessitate careful interpretation [262–264]. This
study employed animal models with standard protocols, fo-
cusing on the negative valence of the emotional domain and
motor function in kat2-/- mice. Further exploration with di-
verse models such as sucrose preference tests, fear condi-
tion tests, and those using non-standard protocols is crucial
for a more accurate characterization of kat2-/- mouse be-
havior. Notably, the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition, emphasizes four symptom
clusters in PTSD diagnosis [265–267]. The transgenic mice
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in this study did not exhibit signs related to negative cog-
nitions and mood, and arousal state and reactivity were not
investigated.

5. Conclusions
Psychiatric disorders, including PTSD, have a signif-

icant impact on memory and emotion, and disruptions in
5-HT metabolism have been associated with these disor-
ders. The Trp-KYN metabolic pathway plays a crucial role
in metabolizing over 95% of the 5-HT precursor Trp. To
investigate the effects of gene deletion on negative valence
in emotion, memory, and motor function, transgenic kat2-/-
mice were created and compared to WT mice. The kat2-/-
mice exhibited depression-like behavior characterized by
despair experiences, diminished motor functions, and la
belle indifference-like characteristics without anxiety-like
behavior. This study provides insights into the negative va-
lence of the emotional domain in the context of aversive-
conditionedmemory and despair experiences in 8-week-old
kat2-/- mice. Understanding the complex interplay between
memory, emotion, and genetic factors is crucial for advanc-
ing our knowledge of psychiatric disorders [268,269]. By
elucidating the specific effects of gene deletion on negative
valence and related behaviors, this research contributes to
our understanding of the underlying mechanisms and po-
tential interventions.
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