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Abstract

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent
advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may
significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is
a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and
neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic
pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic
targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions
could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut
microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in
MS, setting the stage for future research and therapeutic exploration.
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1. Introduction
Multiple sclerosis (MS) is a chronic autoimmune con-

dition affecting the central nervous system (CNS), where
the immune system attacks the myelin, a crucial protective
covering of nerve fibers [1]. This pathology leads to in-
flammation, demyelination, and neurodegeneration, mani-
festing as lesions or plaques primarily in the brain as well
as spinal cord [2]. Globally, around 2.8 million people suf-
fer from MS [3]. Clinically, MS presents with a wide ar-
ray of symptoms that vary greatly among individuals de-
pending on the location and extent of CNS involvement;
these include sensory disturbances like numbness and tin-
gling, motor issues such as muscle weakness and spastic-
ity, visual impairments, cognitive deficits, and emotional
disturbances such as depression and anxiety [4–7]. MS
progresses mainly in several forms, each with distinct pro-
gression patterns, with the most common being relapsing-
remitting MS (RRMS), along with Primary Progressive
MS (PPMS) and secondary progressive MS (SPMS) [8].
Treatment primarily involves disease-modifying therapies
(DMTs) [9] designed to lower relapse rates and decel-
erate disease advancement, with emerging therapies like
hematopoietic stem cell transplantation (HSCT) [10] show-
ing promise. Managing MS is complex, requiring a multi-
disciplinary approach to address the diverse and debilitating
symptoms associated with the disease.

Recent research has demonstrated a significant cor-
relation between gut microbiota and various neurodegen-

erative diseases [11], particularly noting its importance in
MS [12]. In patients with MS, there is a marked dysbiosis
in the gut microbiome, manifesting as alterations in bac-
terial diversity and composition [13,14]. This includes a
decrease in beneficial bacterial groups like those within
the Firmicutes phylum, coupled with an increase in poten-
tially detrimental groups such as the bacteroidetes phylum
[15,16]. Such changes in the gut’s microbial environment
have profound implications for the progression and activity
of MS. For instance, diminished production of short-chain
fatty acids (SCFAs), such as butyrate, may lead to compro-
mised gut barrier function and heightened systemic inflam-
mation [17,18]. Additionally, shifts in specific microbial
populations have been linked to inflammation markers, cy-
tokine levels, and the frequency of relapses in MS patients
[14].

Ferroptosis is a form of programmed cell death dif-
ferent from apoptosis and necrosis, primarily marked by
excessive lipid peroxide accumulation [19]. This cell
death mechanism is closely associated to iron metabolism
and reactive oxygen species (ROS) [20]. Recent re-
search suggests that the dysregulation of iron homeosta-
sis and heightened oxidative stress in neural cells may in-
duce ferroptosis, leading to the degeneration of neurons
and oligodendrocytes—the cells responsible for produc-
ing myelin [21,22]. Gut microbiota influences ferroptosis
through several mechanisms [23,24]. Microbial metabo-
lites such as SCFAs and bile acids, along with siderophores
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produced by some bacteria, regulate iron metabolism cru-
cial for ferroptosis. These metabolites can modulate sys-
temic iron availability, thereby influencing ferroptosis sen-
sitivity [25,26]. Moreover, the gut microbiota impacts lipid
metabolism and antioxidant defenses, both vital in the fer-
roptosis process [26,27].

This review examines the interplay between gut mi-
crobiota and ferroptosis in MS, proposing that this relation-
ship could unlock new therapeutic avenues and deeper un-
derstanding of disease mechanisms. As recent studies illu-
minate the impact of gut microbial dysbiosis on systemic
immune responses and neurological health, the potential
modulation of ferroptosis throughmicrobial interactions of-
fers a compelling perspective [28,29].

2. The Overview of Ferroptosis
2.1 Ferroptosis

Ferroptosis is a specialized form of regulated cell
death, characterized by its unique dependency on iron and
the accumulation of lipid peroxides [19]. This type of cell
death has emerged as a crucial area of interest in medical
research due to its potential implications in various dis-
eases, including cancer [30], neurodegeneration [31], and
ischemic injury [32]. Unlike apoptosis or necrosis, ferrop-
tosis is primarily driven by the catastrophic failure of the
cell’s lipid repair mechanisms, leading to lethal, oxidative
damage.

The concept of ferroptosis was first introduced in 2012
by Dixon et al. [19], who identified it as a distinct, iron-
dependent form of non-apoptotic cell death [19]. This dis-
covery has since spurred extensive research into the molec-
ular pathways that regulate ferroptosis and their potential
therapeutic applications [33]. The process is marked by an
accumulation of iron and the formation of ROS, particularly
within the lipid structures of cell membranes [34].

Ferroptosis can be triggered by a variety of factors, in-
cluding the inhibition of glutathione peroxidase 4 (GPX4), a
critical enzyme that safeguards cells against oxidative dam-
age [35]. The involvement of multiple pathways, includ-
ing the mevalonate and transsulfuration pathways, intro-
duces additional complexity into the regulation of ferropto-
sis [36,37]. This form of cell death is distinguished by two
main pathways: the classical, or GPX4-dependent pathway,
and the non-classical (GPX4-independent) pathway that in-
volves other regulatory mechanisms, highlighting its multi-
faceted nature in cell biology and its potential significance
in therapeutic strategies (Table 1, Ref. [35,38–43]).

2.2 GPX4-Dependent Pathway
GPX4 is a key enzyme that regulates oxidative stress

and lipid peroxidation, playing a crucial role in preventing
ferroptosis [35]. GPX4 utilizes glutathione (GSH), a ma-
jor cellular antioxidant, to convert lipid hydroperoxides into
non-toxic lipid alcohols and transforms free GSH into oxi-
dized glutathione (GSSG) [44,45]. This reaction is vital for

preserving cellular membrane integrity and shielding cells
from oxidative damage.

The inhibition of GPX4 is a key factor in triggering
ferroptosis. Specific compounds, including ras-selective
lethal small molecule 3 (RSL3) andML162, target and bind
to the active site of GPX4, effectively blocking its enzy-
matic function [46,47]. This inhibition results in the accu-
mulation of lipid peroxides, triggering the ferroptotic pro-
cess by amplifying lipid peroxidation cascades throughout
cellular membranes.

Moreover, the genetic downregulation or ablation of
GPX4 further elucidates its critical role in cell survival.
Knockdown or genetic deletion of GPX4 in experimen-
tal models, such as conditional knockout mice, has shown
to result in increased susceptibility to ferroptosis [48,49].
These models have illustrated that the absence of GPX4
gives rise to severe pathological outcomes including acute
renal failure [50] and neurodegeneration [51] due to ram-
pant lipid peroxidation and ensuing ferroptosis. This sus-
ceptibility highlights the critical role of GPX4 in defending
cells from oxidative stress and maintaining cellular viabil-
ity.

Additionally, research has also pointed to the interac-
tion between GPX4 inhibition and other ferroptosis regu-
lators. For example, the availability of GSH, which is es-
sential for GPX4’s peroxidase activity, is regulated by sys-
tem Xc-, a cystine/glutamate antiporter [52]. When system
Xc- is inhibited, it leads to a reduction in cystine absorption
and a subsequent decrease in GSH, indirectly suppressing
GPX4 activity, which promotes ferroptosis [53]. This in-
terdependence illustrates the complex network of pathways
regulating ferroptosis and emphasizes the complex role of
GPX4 as a therapeutic target.

2.3 GPX4-Independent Pathway

The non-classical pathway of ferroptosis does not de-
pend on GPX4 but involves other regulatory mechanisms
and enzymes [54]. One such pathway involves the protein
ferroptosis suppressor protein 1 (FSP1), originally identi-
fied as AIF family member 2 (AIFM2) [55]. FSP1 acts in-
dependently of the glutathione-dependent antioxidant sys-
tem, utilizing nicotinamide adenine dinucleotide phosphate
(NADPH) to reduce ubiquinone to ubiquinol [38]. This
reduction process serves as a potent lipophilic radical-
trapping antioxidant, reducing lipid peroxidation and subse-
quently inhibiting ferroptosis [56]. This pathway highlights
the role of alternative redox systems in controlling lipid per-
oxidation, independent of the classic glutathione system.

Another significant GPX4-independent mechanism is
the p53-mediated pathway [57,58]. p53, widely recognized
for its role in tumor suppression, has been shown to regulate
ferroptosis via several pathways, not just by modulating so-
lute carrier family 7member 11 (SLC7A11) [39]—a critical
element of the cystine/glutamate antiporter which controls
the cellular uptake of cystine and glutathione synthesis—
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Table 1. Pathways involved in ferroptosis.
Pathway Main molecules involved How to promote or inhibit ferroptosis

GPX4-dependent GPX4 Inhibit: GPX4 employs glutathione to reduce lipid
hydroperoxides to non-toxic lipid alcohols, preventing

lipid peroxidation.

[35]

GPX4-independent

FSP1 Inhibit: FSP1 reduces coenzyme Q10 to ubiquinol,
enhancing the antioxidant defense against lipid

peroxidation in cellular membranes.

[38]

p53
Promote: p53 inhibits SLC7A11 to reduce glutathione
synthesis and increases SAT1 and GLS2 expression,

which boosts lipid peroxidation.

[39,40]

Inhibit: p53 blocks DPP4 activity and induces
CDKN1A/p21, which mitigates oxidative stress and lipid

peroxidation.
DHODH Inhibit: DHODH reduces ubiquinone to ubiquinol in the

mitochondrial inner membrane, preventing mitochondrial
lipid peroxidation and cellular damage.

[41]

GCH1/BH4 Inhibit: GCH1 synthesizes BH4, which supports the
integrity of phospholipids with polyunsaturated fatty acyl
chains, thus preventing their peroxidation and subsequent

cell death.

[42]

NCOA4 Promote: NCOA4 facilitates ferritinophagy, increases the
cellular labile iron pool and exacerbates lipid

peroxidation. Through phosphorylation by ATM kinase,
NCOA4 enhances its interaction with ferritin, leading to

ferritin degradation in lysosomes.

[43]

GPX4, glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1; DHODH, dihydroorotate dehydrogenase; GCH1, GTP
cyclohydrolase 1; BH4, tetrahydrobiopterin; NCOA4, nuclear receptor coactivator 4; SLC7A11, solute carrier family 7 member
11; SAT1, spermidine/spermine N1-acetyltransferase 1; GLS2, glutaminase 2; DPP4, dipeptidyl peptidase 4; CDKN1A, cyclin
dependent kinase inhibitor 1A; GCH1, GTP cyclohydrolase 1; ATM, ATM serine/threonine kinase.

but also by affecting lipid peroxidation through its impact
on lipoxygenases such as arachidonate 12-lipoxygenase,
12S type (ALOX12) and arachidonate 15-lipoxygenase
(ALOX15) [59,60]. The latter is regulated via spermi-
dine/spermine N1-acetyltransferase 1 (SAT1), enhancing
the cell’s susceptibility to ferroptosis [61]. Notably, p53
can both promote and inhibit ferroptosis: it promotes this
form of cell death by inhibiting anti-ferroptotic factors like
SLC7A11 and boosting pro-ferroptotic factors including
SAT1 and glutaminase 2 (GLS2) [39]. Conversely, it can
act protectively by blocking dipeptidyl peptidase 4 (DPP4)
activity and inducing cyclin dependent kinase inhibitor 1A
(CDKN1A)/p21 expression, thereby aiding cell survival
under stress [40]. This dual role highlights the intricate bal-
ance p53 maintains in cellular health and stress responses,
positioning it as a potential target for therapies in conditions
marked by abnormal ferroptosis, such as various cancers
[30].

Beyond the FSP1 and p53-mediated pathways, sev-
eral other GPX4-independent mechanisms significantly im-
pact ferroptosis. These include the dihydroorotate dehydro-
genase (DHODH) pathway, which involves mitochondrial
redox activities affecting lipid peroxidation [41]; the GTP

cyclohydrolase 1 (GCH1)/tetrahydrobiopterin (BH4) path-
way, crucial for reducing oxidative stress and blocking lipid
peroxidation [42]; and the regulation of iron storage and
mobilization via ferritin and the autophagy-related protein
nuclear receptor coactivator 4 (NCOA4), which controls the
availability of reactive iron crucial for ferroptosis execution
[43].

2.4 Key Characteristics of Ferroptosis

The inhibition of GPX4 is a fundamental character-
istic of ferroptosis, essential for preventing lipid peroxida-
tion by reducing lipid hydroperoxides into non-toxic lipid
alcohols [35]. Beyond GPX4 inhibition, ferroptosis is also
recognized by its iron dependence and extensive lipid per-
oxidation, marking it as a distinct type of cell death driven
by iron-catalyzed oxidative stress and lipid damage [19].

2.4.1 Iron Dependence

Iron is fundamentally involved in ferroptosis, ampli-
fying oxidative stress through various biochemical mech-
anisms. Its primary action is through the Fenton reaction,
where ferrous iron (Fe2+) catalyzes the transformation of
hydrogen peroxide into highly reactive hydroxyl radicals
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[62]. These radicals initiate the peroxidation process of
polyunsaturated fatty acids (PUFAs)-rich phospholipids in
cellular membranes, a cornerstone of ferroptosis [63].

In addition to the Fenton reaction, iron stimulates
lipid peroxidation indirectly by the activation of lipoxy-
genases (LOXs) [45,64]. These iron-dependent enzymes,
such as arachidonate 15-lipoxygenase (ALOX15), catalyze
the oxygenation of PUFAs in membrane phospholipids,
forming lipid hydroperoxides [65]. These lipid hydroper-
oxides are the immediate precursors to toxic lipid perox-
ides, which further propagate the lipid peroxidation chain
reaction, exacerbating cellular damage. The presence of
available free iron, therefore, is a key determinant in the
progression of ferroptosis due to its essential role in these
enzymatic processes.

Research also highlights the importance of iron in
regulating various signaling pathways and gene expression
profiles associated with oxidative stress responses and mi-
tochondrial function [66–68]. These studies further link
iron metabolism to ferroptotic sensitivity by demonstrating
how disruptions in iron handling can predispose cells to un-
dergo ferroptosis, underlining the intricate relationship be-
tween iron metabolism and cellular health.

2.4.2 Lipid Peroxidation
Lipid peroxidation is not only a defining feature of fer-

roptosis but also its main execution pathway [69]. It refers
to a destructive process mediated by free radicals that oxi-
dize PUFAs [70]. This oxidative process damages cellular
membranes and further harms cellular structures and func-
tions by releasing various toxic metabolic products, such as
malondialdehyde and 4-hydroxynonenal [71]. The process
of lipid peroxidation unfolds through two main pathways:
enzymatic pathway and non-enzymatic pathway.

The enzymatic pathway relies predominantly on
LOXs, a group of iron-dependent enzymes catalyzing the
formation of lipid hydroperoxides from PUFAs in mem-
brane phospholipids [72]. For example, ALOX15 is critical
in ferroptosis, initiating the production of lipid hydroper-
oxides, which are precursors to more toxic lipid peroxyl
radicals [73]. On the other hand, the non-enzymatic path-
way is largely driven by the Fenton reaction, where hy-
drogen peroxide is converted into highly reactive hydroxyl
radicals [63]. These radicals attack PUFAs in the cellu-
lar membranes, triggering a chain reaction that produces
lipid alkoxyl and lipid peroxyl radicals. These species fur-
ther promote lipid peroxidation by accumulating ROS [74].
Moreover, the conjugate acid of superoxide can also trig-
ger lipid peroxidation, especially in the acidic microenvi-
ronments within cells, thereby accelerating the lipid perox-
idation process [75].

Interestingly, research indicates that lipid peroxidation
often initiates within the endoplasmic reticulum (ER) mem-
brane before affecting the plasma membrane [70]. This
progression suggests a systematic sequence of membrane

degradation during ferroptosis, with the ER’s extensive
membrane surface, rich in PUFAs, being particularly vul-
nerable to oxidative stress [76–78]. This intricate interplay
of biochemical reactions underscores lipid peroxidation as
a key factor in ferroptosis, profoundly impacting cell via-
bility and disease pathology.

2.4.3 Morphological Changes
Ferroptosis is characterized by distinctive morpholog-

ical alterations at both the cellular and subcellular levels,
which are crucial for its identification and distinction from
other types of cell death (Fig. 1). Ferroptosis, in contrast to
apoptosis or necrosis, shows distinct changes indicative of
its oxidative and iron-dependent characteristics.

At the cellular level, one of the most noticeable mor-
phological changes associatedwith ferroptosis is the shrink-
age of cell volume [79]. This is in contrast to the swelling
that is typically observed in necrosis. Cells undergoing
ferroptosis also display a formation of membrane protru-
sions, accompanied by a reduction in overall cell elasticity
[80]. Plasma membrane shows signs of rupture and bleb-
bing, indicating a loss of integrity [81,82]. Unlike apop-
tosis, ferroptotic cells do not display chromatin condensa-
tion or nuclear fragmentation, and the nucleus remains nor-
mally sized [19]. Additionally, there is sometimes cyto-
plasmic swelling, and an increase in autophagic vacuoles is
observed, pointing to a potential relationship between au-
tophagy and ferroptosis [82–84].

At the subcellular level, the most striking features of
ferroptosis are observed in the mitochondria, which un-
dergo profound morphological changes. Mitochondria in
ferroptotic cells are typically smaller, display enhanced
membrane density, and show a reduction or complete loss
of mitochondrial cristae [19,50,85]. These changes are in-
dicative of disrupted mitochondrial function, which is es-
sential for energy production and cellular metabolism. The
altered mitochondrial morphology reflects the metabolic
disturbances occurring during ferroptosis, such as impaired
oxidative phosphorylation and energy depletion.

3. The Role of Ferroptosis in Multiple
Sclerosis
3.1 Evidence of Ferroptosis in MS
3.1.1 Changed Expression of Ferroptosis-Related Genes in
MS

Research has identified alterations in key genes as-
sociated with ferroptosis in patients with multiple sclero-
sis or in animal models, suggesting their potential role in
the pathology of the disease [21,86–88]. In the exper-
imental autoimmune encephalomyelitis (EAE) model—a
widely recognized mouse analog of MS—there is an up-
regulation of acyl-CoA synthetase long-chain family mem-
ber 4 (ACSL4) [89]. ACSL4 is essential for integrating
PUFAs into phospholipids that are susceptible to peroxi-
dation [90]. Additionally, EAE mice show a reduction in
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Fig. 1. Morphological distinctions between ferroptosis and other forms of cell death. Apoptosis: Induced by internal or external
signals leading to caspase cascade activation and nuclear fragmentation. Characteristically shows cell shrinkage, chromatin condensation,
membrane blebbing, and the formation of apoptotic bodies without loss of membrane integrity until late stages. Ferroptosis: Triggered
by iron-dependent lipid peroxidation, resulting in the accumulation of ROS and lipid peroxidation products such as MDA and 4-HNE,
causing cell membrane damage. Characterized by reduced cell size, cell membrane rupture and blebbing, and mitochondrial shrinkage
and abnormal morphology. Autophagy: Initiated in response to nutrient deprivation or cellular stress, involving the sequestration of
cytoplasmic contents into double-membrane vesicles called autophagosomes. Features include extensive vacuolization of the cytoplasm,
gradual degradation of cellular components within autolysosomes, and typically a lack of chromatin condensation. Necroptosis: Occurs
through receptor-interacting protein kinase 1 and 3 (RIPK1, RIPK3) mediated phosphorylation of MLKL, leading to its oligomerization
and membrane translocation. Morphologically marked by cell swelling, plasma membrane rupture, and release of cellular contents,
leading to inflammation. Scorched: Characterized by the oligomerization and pore formation by gasdermin D proteins, leading to rapid
cell swelling, plasma membrane rupture, and pronounced inflammatory responses. Often accompanied by cytoplasmic granulation and
mitochondrial swelling. ROS, reactive oxygen species; Fe2+, ferrous ion; Fe3+, ferric ion; GSH, glutathione; NADPH, nicotinamide
adenine dinucleotide phosphate; MDA, malondialdehyde; 4-HNE, 4-hydroxynonenal; LC3, microtubule-associated protein 1A/1B-light
chain 3; MLKL, mixed lineage kinase domain-like protein; RIPK1, Receptor-Interacting Protein Kinase 1; RIPK3, Receptor-Interacting
Protein Kinase 3; ATP, adenosine triphosphate; GSDMD, Gasdermin D; N-GSDMD, N-terminal domain of Gasdermin D; NLRP3, NOD-
, LRR- and pyrin domain-containing protein 3; ASC, apoptosis-associated speck-like protein containing a CARD; NEK7, NIMA (never
in mitosis gene a)-related kinase 7. (Created with BioRender.com).

5

https://www.biorender.com/
https://www.imrpress.com


the glutathione-dependent antioxidant defense, specifically
the levels of system xC (xCT) and GPX4 [21]. This re-
duction is indicative of a decreased capacity to counteract
oxidative stress, leading to enhanced lipid peroxidation and
subsequent ferroptotic cell death [35].

3.1.2 Iron Accumulation in MS
Evidence from susceptibility Magnetic resonance

imaging (MRI) has revealed elevated iron levels in deep
gray matter structures of MS patients, correlating with in-
creased disability and gray matter atrophy [91–93]. An au-
topsy study further substantiate these findings, demonstrat-
ing significant degeneration of deep gray matter associated
with iron accumulation and oxidative damage [94]. In the
same individuals, the accumulation of iron detected through
susceptibility MRI also aligns with postmortem analyses,
such as X-ray fluorescence and iron staining [95,96]. Sus-
ceptibility MRI also indicates iron deposition near lesions
where myelin loss occurs [97]. Both active and chronic
lesions in MS show increased unstable iron (Fe2+), and
the cerebrospinal fluid (CSF) of MS patients shows an el-
evated Fe2+/Fe3+ ratio [98]. Interestingly, while iron lev-
els are elevated in deep gray matter structures and adjacent
to lesions, there is a notable reduction of iron in normal-
appearing white matter (NAWM). This reduction appears
to correlate with disease duration, indicating a potential link
between iron homeostasis and the progression of MS.

3.1.3 Increased Lipid Peroxidation in MS
Increased lipid peroxidation is a notable feature in

MS, evidenced by high immunoreactivity for E06 and 4-
hydroxy-2-nonenal (4-HNE) in both active and chronic MS
lesions, with the most pronounced signals detected in active
lesions [98]. Additionally, CSF from MS patients show el-
evated levels of lipid peroxidation markers, including mal-
ondialdehyde (MDA) [99,100] and oxidized phosphatidyl-
choline [101], compared to control groups. Serum analyses
also reveal increased levels of MDA [102], lipid peroxides
[103], and fluorescent lipid peroxidation products (PFLPP)
[104] in MS patients. Furthermore, a study has indicated
heightened markers of lipid peroxidation in urine samples
from MS patients relative to controls [105]. Notably, in-
creased lipid peroxidation was observed even before the
onset of neurological symptoms in a study involving seven-
week-old male Lewis rats with acute EAE [106], indicating
that lipid peroxidation may play a crucial role early in the
pathogenesis of MS.

3.1.4 Cellular Changes in MS Brains
Cellular alterations in the brains of MS patients re-

veal significant pathophysiological changes that may inter-
sect with ferroptotic mechanisms. In the lateral geniculate
nucleus, parvocellular neurons are smaller in MS brains
(mean size: 226 µm2) compared to controls (230 µm2),
with greater variation in size, indicating more atrophic neu-

rons [107]. This atrophy may reflect similar cellular shrink-
age seen in ferroptosis, characterized by reduced cell vol-
ume [79,83]. Oligodendrocytes become dysfunctional in
MS, leading to myelin damage and axonal degeneration,
exacerbated bymetabolic disruptions such asmitochondrial
dysfunction [108]. Notably, studies show that mitochondria
in axons of EAE spinal cord are shorter compared to those
in naïve spinal cord, resembling the profound morphologi-
cal changes observed in ferroptotic cells, where mitochon-
dria are smaller and exhibit enhanced membrane density
[19,50,85]. Dysfunction in the mitochondrial fusion/fission
machinery, with a notable increase in Y-shaped mitochon-
dria in EAE spinal cord axons [109] also parallels the dis-
rupted mitochondrial morphology associated with ferrop-
tosis. These changes suggest a potential convergence be-
tween the pathophysiological processes of MS and ferrop-
totic cell death.

3.2 Mechanisms of Ferroptosis in MS
3.2.1 Oxidative Stress

Ferroptosis may contribute to MS through oxidative
stress mechanisms driven by iron accumulation and lipid
peroxidation [110,111]. In MS, abnormal iron deposition
within the central nervous system catalyzes the Fenton re-
action, producing reactive hydroxyl radicals and leading to
significant oxidative damage and cellular stress [21]. The
enhanced lipid peroxidation of PUFAswithin cellular mem-
branes, compounded by an imbalance in iron homeostasis,
further drives the ferroptotic process, undermining neuronal
and oligodendrocyte integrity [72].

3.2.2 Activation of Inflammatory Responses
The inflammatory response in MS is intricately linked

to ferroptosis through the iron dysregulation and the accu-
mulation of lipid peroxides [112,113]. Elevated iron levels
and lipid peroxidation products within MS lesions suggest
that iron-mediated oxidative stress perpetuates ongoing in-
flammation and tissue damage [98]. Moreover, ferroptosis
can exacerbate neuroinflammation by releasing lipid per-
oxidation products and damage-associated molecular pat-
terns (DAMPs), which activatemicroglia and other immune
cells, thereby promoting a vicious cycle of inflammation
and cell death [114]. The process also influences T-cell ac-
tivation through the T-cell receptor signaling pathway, en-
hancing the autoimmune response and leading to further de-
myelination and neuronal damage [89].

3.2.3 Death of Neurons and Oligodendrocytes
Ferroptosis significantly contributes to the death of

neurons and oligodendrocytes in MS [115]. Oligodendro-
cytes, responsible for myelinating axons, succumb to iron-
induced oxidative stress and lipid peroxidation, resulting in
their ferroptotic death [116]. This cell death contributes di-
rectly to the demyelination observed in MS [21]. Neurons
also fall victim to iron toxicity and the resultant oxidative
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stress. The high metabolic demand of neurons makes them
particularly vulnerable to disrupted mitochondrial function
and oxidative damage, which are hallmarks of ferroptosis
[117].

3.3 Interactions with Other Cell Death Pathways
Apoptosis and Ferroptosis: Apoptosis, a form of pro-

grammed cell death, involves cell shrinkage, chromatin
condensation, and DNA fragmentation [118]. Unlike fer-
roptosis, which is driven by lipid peroxidation, apoptosis
is primarily controlled by caspase activation through ei-
ther the intrinsic or extrinsic pathways [119]. However,
recent studies have suggested a connection between these
two pathways [120,121]. Ferroptotic agents can trigger
endoplasmic reticulum (ER) stress leading to apoptosis
through activation of pathways such as eukaryotic transla-
tion initiation factor 2 alpha kinase 3 (EIF2AK3, or PERK)-
eukaryotic initiation factor 2 alpha (eIF2α)-activating tran-
scription factor 4 (ATF4)-DNA damage inducible transcript
3 (DDIT3, or CHOP ( PERK-eIF2α-ATF4-CHOP), which
promotes the expression of pro-apoptotic proteins like p53
up-regulated modulator of apoptosis (PUMA) [121]. More-
over, components of the apoptotic machinery, such as p53,
have been shown to modulate ferroptosis by affecting glu-
tathione synthesis and thus influencing lipid peroxidation
[122].

Necroptosis and Ferroptosis: Necroptosis is another
form of regulated cell death that is dependent on the
receptor-interacting protein kinase (RIPK) pathway, par-
ticularly RIPK1 and RIPK3, and the mixed lineage kinase
domain-like pseudokinase (MLKL) [123,124]. Like ferrop-
tosis, necroptosis is associated with oxidative stress and in-
flammation but is distinguished by its mechanism of cell
membrane disruption [125–127]. Iron overload in ferrop-
tosis can trigger mitochondrial permeability transition pore
(MPTP) opening, exacerbating RIPK1 phosphorylation and
enhancing necroptosis [128]. Additionally, heat shock pro-
tein 90 (HSP90) acts as a common regulator for both path-
ways by modulating receptor interacting serine/threonine
kinase 1 (RIPK1, or RIP1) phosphorylation and suppress-
ing GPX4 activation [129,130], linking oxidative stress to
both ferroptosis and necroptosis [131].

Pyroptosis and Ferroptosis: Pyroptosis is an inflam-
matory form of cell death driven by gasdermin proteins,
which form pores in the cell membrane, causing cell ly-
sis and the release of inflammatory cytokines [132]. The
inflammasome pathway, which is central to pyroptosis,
has been shown to interact with ferroptosis mechanisms
[133,134]. The activation of inflammasomes can lead to
ROS production, which can promote lipid peroxidation
and ferroptosis [134]. On the contrary, lipid peroxida-
tion, a key feature of ferroptosis, can also promote pyrop-
tosis by destabilizing cellular membranes and enhancing
gasdermin-mediated cell lysis [135].

4. Gut Microbiota Regulation of MS
Through Ferroptosis

The gut microbiota, comprising themicrobial commu-
nities residing in the human gastrointestinal tract, plays a
critical role in host health [136]. These microbes are not
only involved in digestion but also significantly influence
the immune system’s functionality and the host’s suscep-
tibility to diseases [137]. Recent research has illuminated
complex interactions between the gut microbiota and var-
ious diseases, including MS [12], an autoimmune disorder
affecting the central nervous system. The gut microbiota
may influence the progression of multiple sclerosis through
various mechanisms (Fig. 2).

4.1 Dysbiosis in Patients with Multiple Sclerosis
Patients with MS show microbial dysbiosis character-

ized by disrupted gut microbiota. This includes a dimin-
ished presence of beneficial bacteria and a rise in poten-
tially harmful bacterial species. A case-control study has
identified differences in 61 bacterial species between MS
patients and healthy individuals, with 31 species enriched
in MS cases [14]. Beneficial bacteria such as Faecalibac-
terium prausnitzii, Roseburia, and Bifidobacterium, known
for their anti-inflammatory properties and roles in main-
taining gut health, are typically reduced. Conversely, po-
tentially harmful bacteria such as akkermansia muciniphila,
methanobrevibacter, and clostridium perfringens increase,
promoting an inflammatory environment [13,14,138,139].

Furthermore, the gut microbiota composition in MS
patients varies with the activity of the disease [14]. Cer-
tain bacteria that correlate with pro-inflammatory cytokines
such as Interleukin-17A (IL-17A) and tumor necrosis
factor-alpha (TNF-α) are more common in patients with ac-
tive MS. In contrast, patients with non-active MS exhibit an
enrichment of anti-inflammatory bacteria, such as Faecal-
ibacterium prausnitzii [14]. While the exact temporal rela-
tionship between changes in gut microbiota and the onset
of MS symptoms remains unclear, current evidence sug-
gests that characteristic gut dysbiosis is consistently present
throughout the clinical course of MS [140].

4.2 Increased Gut Permeability
The gut barrier is a protective boundary in the gut that

prevents harmful substances and pathogens from entering
the body while allowing the absorption of water, nutrients,
and electrolytes [141]. This barrier consists of a physical
barrier formed by tight junctions between epithelial cells, a
secretory barrier that includes antimicrobial peptides, mu-
cus, and other fluids, and an immune barrier that comprises
elements of both the innate and adaptive immune systems
[142].

Patients with MS often have a genetic predisposition
that makes them susceptible to gut barrier disruptions [143].
Such disruptions can be exacerbated by dysbiosis in the gut
microbiota, which can provoke immune responses leading
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Fig. 2. Gut microbiota regulation ofMS through ferroptosis. Patients with multiple sclerosis show dysbiosis of the gut microbiota and
increased intestinal permeability. This condition facilitates the polarization of T cells towards a pro-inflammatory phenotype, specifically
T helper 1 (Th1) cells and T helper 17 (Th17) cells. There is a concomitant increase in pro-inflammatory cytokines, like tumor necrosis
factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-17 (IL-17), and interleukin-6 (IL-6). Production of anti-inflammatory
metabolites such as acetate, propionate, butyrate, and serotonin, is decreased. Alterations in iron homeostasis are observed. These
systemic inflammatory and metabolic changes exacerbate inflammation in the central nervous system, leading to increased oxidative
stress and ferroptosis in neurons and oligodendrocytes. Demyelination of neurons is significant pathological features. (Created with
BioRender.com).

to further damage. For example, an imbalance between pro-
inflammatory T helper (Th)1-Th17 cells and regulatory T
cells can disrupt the tight junctions within the gut epithe-
lium [144].

In patients with MS, alterations in the expression of
proteins that form tight junctions in gut epithelial cells have
been observed. This disruption increases gut permeability,
permitting the translocation of bacteria and their products
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Table 2. Changes in gut microbiome-derived metabolites in
patients with multiple sclerosis.

Participants
Metabolite changes

MS Control

304 68 Propionate↓ [172]
30 10 Propionate↓ [171]
129 58 Butyrate↓ [18]
20 15 Acetate↓, Propionate↓, Butyrate↓ [173]
98 55 Acetate↓, Propionate↓, Butyrate↓ [174]
34 34 Acetate↓, Propionate↓, Butyrate↓ [175]
227 36 Serotonin↓ [176]
60 12 Serotonin↓ [177]

22 21
L-tyrosine↓, L-isoleucine↓,

L-tryptophan↓
[178]

L-glutamic acid↑, L-valine↑
MS, multiple sclerosis; The symbols “↑ ” and “↓ ” indicate an
increase and decrease in metabolite levels, respectively, in MS
patients compared to control participants.

into the bloodstream. This, in turn, can trigger systemic
inflammation and may have implications for the CNS [142,
145].

4.3 Gut Microbiota and the Immune System

The gut microbiome is fundamental in training and de-
veloping the host’s immune system, with about 70–80% of
immune cells residing in the gut [146–148]. This interac-
tion is particularly crucial during early life as it aids in es-
tablishing proper immune maturation. Disruptions during
this critical period can have long-term impacts on immune
function [148,149]. Intestinal immune function is under-
developed in germ-free mice [150]. The influence of the
gut microbiota extends beyond local mucosal immunity to
affect systemic immune responses [148]. A diverse and
healthymicrobiota is associatedwith awell-functioning im-
mune system. Disruption or imbalance in the gut micro-
biota, known as dysbiosis, is linked to various immune-
mediated diseases and increased susceptibility to infections
[151]. The microbiota produces metabolites and molecular
patterns that regulate the immune system, including SCFAs
and other compounds that can modulate immune cell func-
tions [152,153]. This relationship is reciprocal; the micro-
biota shapes the immune system, which in turn helps pre-
serve the equilibrium of the gut microbiota [154].

Pro-inflammatory cytokines are integral to the patho-
genesis of MS. These cytokines, including interferon-
gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α),
interleukin-6 (IL-6), and interleukin-17 (IL-17), promote an
inflammatory environment within the CNS, contributing to
demyelination and neuronal degeneration [155,156]. Ele-
vated cytokine levels, found in both the blood and CSF of
MS patients, correlate with disease activity and progression
[157]. Shifts in the gut microbiota ofMS patients are linked
to increased levels of pro-inflammatory cytokines, such as

IL-17A, IL-22, IL-33, IFN-β, and TNF-α. These cytokines
are crucial in promoting inflammation and autoimmunity in
MS [14,158].

4.4 Impact of Gut Microbiota on Ferroptosis in Multiple
Sclerosis
4.4.1 Modulation of Iron Homeostasis

The regulation of iron homeostasis in the body is sig-
nificantly influenced by the gut microbiota, which operates
through various interconnected mechanisms [159]. Firstly,
it affects iron absorption in the intestines; certain bacteria
produce metabolites that enhance iron uptake, while others
compete with the host for this essential mineral [159–161].
Moreover, the microbiota can modulate the production of
hepcidin, the master regulator of iron metabolism [162].
Hepcidin manages iron absorption and recycling by target-
ing ferroportin, the primary cellular iron exporter, thereby
influencing systemic iron levels [163]. Additionally, gut
microbiota assists iron uptake by certain immune cells, no-
tably regulatory T cells in the colon, which is crucial for
maintaining intestinal immune tolerance [164].

These microbiota functions extend to influencing iron
storage, with observations that germ-free mice show lower
ferritin levels in their colonic regulatory T cells (Tregs) cells
compared to normal counterparts [164]. Furthermore, some
gut bacteria produce siderophores, iron-binding molecules
that sequester iron, reducing its availability for absorption
[165]. This complex interaction between microbiota and
iron also involves the modulation of inflammation and gut
barrier integrity, both of which impact iron metabolism
[166]. Chronic intestinal inflammation, often influenced by
microbiota, can result in anemia of inflammation, marked
by decreased iron availability [167]. Importantly, this re-
lationship is bidirectional, where iron levels change the
microbiota’s composition and function, potentially causing
dysbiosis and associated iron-related disorders [160,168].
This intricate relationship might also extend to ferroptosis,
an iron-dependent form of cell death, suggesting that dis-
ruptions in gut microbiota could influence cell survival and
disease pathogenesis through iron dysregulation [169].

4.4.2 Metabolite Changes
Patients with MS show significant alterations in

metabolites that are closely associated with the gut micro-
biota [170]. Research has revealed that these changes in
metabolites, particularly those involved in metabolic and
immune pathways, may influence the pathophysiology of
the disease (Table 2, Ref. [18,171–178]).

SCFAs such as acetate, propionate, and butyrate,
which are produced by the gut microbiota through the fer-
mentation of dietary fibers, are essential for maintaining
gut health and modulating immune functions [179]. SCFAs
possess anti-inflammatory properties and participate in im-
mune regulation, including promoting Tregs and suppress-
ing pro-inflammatory cells [180,181]. It has been observed
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that levels of SCFAs, especially butyrate and propionate,
are generally lower in MS patients [17,182]. This reduction
correlates with a decreased abundance of SCFA-producing
bacteria in their gut microbiota [171]. Notably, lower serum
levels of propionate have been documented in MS patients
[14], and treatments with propionate have shown promise
in inhibiting the development of EAE, by promoting the ex-
pansion of Tregs [172]. SCFAs have been found to regulate
ferroptosis; therefore, changes in these metabolites may in-
directly regulate the development of MS by affecting the
ferroptosis pathway.

Serotonin (5-HT), a neurotransmitter that regulates
mood, cognition, and immune function [183], is typically
reduced inMS patients, correlating with comorbidities such
as depression and anxiety [184,185]. Serotonin can modu-
late immune responses by acting on various immune cells,
such as T cells and dendritic cells, influencing cytokine pro-
duction and immune cell activity, crucial for the inflam-
matory processes in MS. Selective serotonin reuptake in-
hibitors (SSRIs) have demonstrated efficacy in reducing the
severity of EAE by regulating immune responses [186,187].
The gut microbiota has an influence on serotonin produc-
tion in the intestines, thereby affecting systemic serotonin
levels and immune functions [12,158]. Changes in gut mi-
crobiota may impact serotonin generation, influencing sys-
temic immune functions and potentially affecting MS pro-
gression [12,188]. 5-HT has been identified as a regula-
tor of ferroptosis [189]. Consequently, fluctuations in its
endogenous levels may also impact the progression of MS
through modulation of the ferroptosis.

4.5 Therapeutic Potential

Targeting Ferroptosis: Targeting ferroptosis offers a
promising avenue for MS treatment. In the EAE mouse
model, using ferroptosis inhibitors to target ferroptosis or
reduce the expression of ACSL4 has shown to improve
behavioral phenotypes, reduce neuroinflammation, reverse
iron overload, and inhibit demyelination, ultimately pre-
venting neuronal death [89,190]. Treatment with the fer-
roptosis inhibitor Fer-1 markedly reverses oligodendrocyte
death and demyelination [21]. In a preclinical model of
RRMS, the ferroptosis inhibitor UAMC-3203 has been
shown to delay relapses and enhance disease management,
underscoring the potential of ferroptosis modulation in MS
therapy [98].

Targeting the Gut Microbiota: Animal studies suggest
that probiotic treatments can stimulate anti-inflammatory
cytokine IL-10 production by T regulatory type 1 (Tr1)
cells, reduce central nervous system inflammation, and de-
crease autoreactive T cell responses, thereby ameliorating
EAE [191,192]. In patients with MS, probiotics have been
shown to increase the levels of beneficial taxa such as Lac-
tobacillus while reducing MS-associated taxa like Akker-
mansia and Blautia [193]. MS patients treated with Fe-
cal Microbiota Transplantation (FMT) for constipation not

only experience alleviation of gastrointestinal symptoms
but also improvement in neurological symptoms [194].
This evidence opens the door to personalized medicine
approaches that could tailor microbiota-targeted therapies
based on individual microbial profiles. By analyzing the
unique microbiota compositions of MS patients, treatments
could be customized to enhance beneficial bacteria and sup-
press harmful species, potentially leading to more effective
management of symptoms in MS.

Supplementing Microbiota-Derived Products: Sup-
plementing with microbiota-derived metabolites like SC-
FAs and tryptophan metabolites is another potential ther-
apeutic approach. SCFAs have improved symptoms in
EAEmice, whereas long-chain fatty acids (LCFA) have ex-
acerbated them [195,196]. Supplementing untreated MS
patients with propionic acid (PA) as an adjunct to MS
immunotherapy has shown promising results. After two
weeks of PA intake, there is a significant and sustained in-
crease in functional Treg cells, and a significant decrease
in Th1 and Th17 cells. After three years of PA treatment,
the annual relapse rate decreases, disability stabilizes, and
brain atrophy is reduced [172]. Oral butyrate significantly
inhibits lysolecithin-induced demyelination and enhances
myelin regeneration, promoting oligodendrocyte differen-
tiation [197]. Similarly, dietary supplementation with tryp-
tophan metabolites has improved symptoms in EAE mice,
while the use of antibiotics to suppress tryptophanase-
positive bacteria, reducing tryptophan metabolite levels,
has worsened EAE scores [198].

Optimal Timing for Therapeutic Interventions: De-
termining the optimal timing for therapeutic interventions
targeting ferroptosis in MS involves several complex con-
siderations. Ferroptosis has been shown to contribute to
disease progression from early stages [98], suggesting that
early targeting could be beneficial. Additionally, treat-
ments with ferroptosis inhibitors have delayed relapse and
ameliorated disease progression in preclinical models of
relapsing-remitting MS [98], indicating value during ac-
tive disease phases and in preventing progression. When
considering combination with current therapies, inhibiting
ferroptosis could supplement existing immunosuppressive
strategies, though the optimal timing likely depends on co-
ordination with these treatments. However, the long-term
effects of inhibiting ferroptosis are not yet fully under-
stood, requiring careful evaluation of safety profiles to de-
termine the appropriate timing and duration of treatment
[199]. Clinical trials will be crucial in determining the most
effective treatment protocols targeting ferroptosis in MS.

5. Conclusion
This review has illuminated the intricate interplay

between ferroptosis, an iron-dependent form of regulated
cell death, and gut microbiota, underscoring their signif-
icant roles in the pathogenesis and progression of Multi-
ple Sclerosis (MS). We have explored how gut microbiota-

10

https://www.imrpress.com


induced dysbiosis exacerbates ferroptotic processes by al-
tering iron metabolism and inflammatory responses, thus
impacting neurological health. Addressing these mech-
anisms, novel therapeutic strategies including probiotics,
microbiota-derived metabolite supplementation, and fer-
roptosis inhibitors show promise in altering disease pro-
gression and improving clinical outcomes. Future research
should aim to identify precise biological markers within
these pathways and assess the long-term effects of such
therapies on MS, paving the way for tailored and effective
patient care.
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