

Short Communication

ERK1/2 Inhibition Alleviates Diabetic Cardiomyopathy by Suppressing Fatty Acid Metabolism

Academic Editors: Ramoji Kosuru and Graham Pawelec

Submitted: 24 September 2024 Revised: 26 November 2024 Accepted: 2 December 2024 Published: 22 January 2025

Abstract

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear. In this study, we tested our hypothesis that pharmacological inhibition of ERK 1/2 alleviates cardiac remodeling in diabetic mice through a reduction in fatty acid metabolism. Methods: ERK1/2 phosphorylation in diabetes was determined both in vitro and in vivo. H9C2 cells were subjected to high glucose, high palmitic acid, or both high glucose and palmitic acid. db/db and streptozotocin (STZ)-induced diabetic mice were analyzed for ERK 1/2 phosphorylation levels as well as the effects of U0126 treatment on cardiac remodeling. Administration of STZ and U0126 in mice was performed via intraperitoneal injection. Blood glucose levels in mice were measured using a glucometer. Mouse heart total RNAs were purified for reverse transcription. Real-time polymerase chain reaction (PCR) analysis of the messenger ribonucleic acid (mRNA) expression was performed for hypertrophy (ANF, BNP, and β MHC), fibrosis (Col3 α I), and fatty acid metabolism genes $(PPAR\alpha, CPTIA, \text{ and } FACS)$. Interstitial fibrosis of the myocardium was analyzed using Masson's trichrome staining of the paraffinembedded tissues. Results: ERK1/2 phosphorylation was significantly increased in diabetic conditions. Inhibition of ERK1/2 by U0126 in both streptozotocin-induced diabetic mice and db/db mice resulted in a significant reduction in the expression of genes associated with hypertrophy and fibrosis. In contrast, elevated phosphorylation of ERK1/2 in Dusp6/8 knockout (DKO) mice resulted in fibrosis. Mechanistically, ERK1/2 activation enhanced the expression of fatty acid metabolism genes $PPAR\alpha$, CPT1A, and FACS in the heart, which was reversed by U0126 treatment. Conclusion: ERK1/2 are potential therapeutic targets for diabetic cardiomyopathy by modulating fatty acid metabolism in the heart.

Keywords: cardiac remodeling; diabetes mellitus; ERK1/2; fatty acid metabolism

1. Introduction

Diabetic cardiomyopathy is a pathologic condition of the heart with structural and functional changes that aren't caused by coronary artery disease, hypertension, and atherosclerosis [1]. Diabetic cardiomyopathy is characterized by cardiac hypertrophy, myocardial fibrosis, cardiac dysfunction, and eventual heart failure [2]. Complex cellular mechanisms have been implicated in the pathogenesis of diabetic cardiomyopathy including oxidative stress [3–5], inflammation [6,7], cell death [8,9], fibrosis [10,11], impaired calcium handling [7,12], accumulation of advanced glycation end products [13,14], and altered energy metabolism [15]. Various studies have indicated that reduced fuel flexibility and subsequent energetic deficits have been recognized as the main cause of diabetic cardiomyopathy [16,17]. Under normal conditions, the heart utilizes β oxidation of free fatty acids to produce 50-70% of total energy and relies on glucose, amino acids, lactate, and ketone bodies for the remaining energy [18]. However, fatty acids are less efficient in ATP production with an ATP/oxygen atom of 2.3, whereas glucose has an ATP/oxygen atom of 5 [19,20]. In diabetes, the heart shifts to fatty acids to produce ATP as glucose utilization is impaired because of insulin resistance. This metabolic shift leads to increased mitochondrial oxygen consumption and intramyocardial overload of lipid metabolites including diacylglycerol and ceramide, which reduces cardiac efficiency and predisposes the heart to maladaptive remodeling and impaired ischemic tolerance [21–26].

Several studies on diabetic animal models and human patients have revealed increased myocardial triglyceride content [21,27,28]. Thus, one potential avenue of diabetic cardiomyopathy treatment could be through the reduction of fatty acid metabolism in the heart. Fatty acids enter the cardiomyocytes through fatty acid translocase (FAT)/CD36, a long-chain fatty acid transporter present in the sarcolemma [29]. Once inside the cytoplasm, fatty acids are esterified to form long-chain acyl CoAs through fatty acid CoA synthetase (FACS) [30]. Fatty acid CoAs are used to generate lipid intermediates such as diacylglycerol, triglyceride, and ceramide, which are associated with apoptosis and lipid toxicity in the diseased heart [23,31]. The acyl group of acyl CoA can also be transferred to carni-

¹Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA

^{*}Correspondence: liuruiji@gvsu.edu (Ruijie Liu)

tine to form long-chain acylcarnitine via carnitine palmitoyltransferase 1s (CPT1s) which enter the mitochondria for beta-oxidation to produce the energy. The expression of metabolic enzymes involved in fatty acid uptake and oxidation are tightly controlled by the nodal transcription factor peroxisome proliferator-activated receptor alpha (PPAR α) [32,33]. PPAR α expression was significantly elevated in the diabetic mice, and cardiac overexpression of PPAR α resulted in enhanced expression of fatty acid oxidation genes and phenotypes like that of the diabetic heart [34]. Conversely, PPAR α deficient mice demonstrated reduced fatty acid metabolism in the diabetic heart [35]. Thus, it is evident that targeting PPAR α signaling could be a potential treatment strategy.

Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that convert extracellular stimulation into sequential activation of intracellular signaling proteins, resulting in proliferation, differentiation, or death of the cell [36,37]. MAPKs include three major subfamilies: extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), p38, and c-Jun NH₂-terminal kinase 1 and 2 (JNK1/2). MAPKs have been involved in the pathogenesis of metabolic diseases [38,39]. For example, JNK1 knockout $(Jnk1^{-/-})$ mice demonstrated reduced adiposity and enhanced insulin sensitivity [40]. Mice with adipocyte-specific knockout of JNK1 were protected against diet-induced insulin resistance [41]. Mice with loss of p38 α in the adipocytes showed resistance to diet-induced obesity with enhanced energy expenditure [42]. Lastly, several studies have suggested a direct association between ERK1/2 and energy metabolism [43–45]. ERK1/2 phosphorylation was increased in the livers of both high fat diet-induced and genetically obese mice, and activation of ERK1/2 in the liver by overexpressing the constitutively active mitogen-activated protein kinase kinase 1 (MEK1) led to reduced expression of fatty acid metabolism genes [45]. $Erkl^{-/-}$ mice developed diet-induced obesity and insulin resistance [43]. In addition, increased ERK1/2 signaling was associated with the upregulation of PPAR α , suggesting a potential interaction between ERK1/2 and PPAR α in energy metabolism in the diabetic heart disease [44,46].

This study investigated the role of ERK1/2 in the pathogenesis of diabetic cardiomyopathy in mice with either activation or inhibition of ERK1/2. We showed that ERK1/2 inhibition decreased gene expression for cardiac hypertrophy and fatty acid metabolism. ERK1/2 activation in diabetic mice developed cardiomyopathy. Thus, our study provided the first evidence that ERK1/2 could be potential therapeutic targets for treatment of diabetic cardiomyopathy.

2. Materials and Methods

2.1 Mice

The Institutional Animal Care and Use Committee at Grand Valley State University has approved this study (pro-

tocol number 23-05-A). 8-week-old C57BL/6J male mice (000664, The Jackson Laboratory, Bar Harbor, ME, USA) were utilized for diabetic induction by streptozotocin (STZ) (S0130, MilliporeSigma, Burlington, MA, USA) due to their high sensitivity compared to female mice [47,48]. 12week-old male db/db mice (000697, The Jackson Laboratory, Bar Harbor, ME, USA) were utilized as an alternative diabetic mouse model. Upon arrival at the animal facility, mice were allowed one week to adapt to the new environment before any experiments. Dusp6/8 double knockout (DKO) mice were generated for the loss of both Dusp6 and Dusp8 and had been characterized using gene-specific primers and antibodies [44]. Mice were kept in a room with a 12 h day/night cycle, at 21 °C and 50-70% humidity. Mouse anesthesia was performed through an anesthetic machine which delivers 1.5% isoflurane in oxygen at a flow rate of 0.8 L/min. Mice were monitored for their loss of righting reflex and slowed respiratory rate to determine their readiness for the drug injection procedures.

2.2 H9C2 Cell Culture

H9C2 cells were purchased from the American Type Culture Collection (ATCC) (CRL-1446, ATCC, Manassas, VA, USA) and tested for mycoplasma contamination using the universal mycoplasma detection kit (30-1012K, ATCC, Manassas, VA, USA) to ensure a negative result. And the cell lines were validated by short tandem repeat (STR) profiling. Cells were cultured in low glucose (1 g/L or 5.5 mM glucose) Dulbecco's Modified Eagle Medium (DMEM) (11885084, Thermo Fisher Scientific, Waltham, MA, USA) supplied with 10% fetal bovine serum (30-2020, ATCC, Manassas, VA, USA) and 5% CO2 in a humidified incubator. 70% confluent cells were cultured in DMEM with either 5.5 mM glucose, 25 mM glucose, 150 µM palmitic acid, or both 25 mM glucose and 150 µM palmitic acid for 24 and 48 hours before harvest. In the U0126 treatment experiment, U0126 (J61246.MB, Thermo Fisher Scientific, Waltham, MA, USA) was solubilized in 6% DMSO. ~70% confluent cells were cultured in 5.5 mM glucose DMEM and pretreated with either 6% DMSO or 10 µM U0126 for 30 minutes before stimulation with 20% fetal bovine serum for 5 minutes. Cells were washed off residual medium with room temperature 1× phosphate-buffered saline (PBS) and lysed for biochemical analysis of ERK 1/2 phosphorylation.

2.3 STZ Induction of Diabetes and U0126 Treatment

8-week-old C57BL/6J male mice were first fasted for four hours in the morning before baseline glucose measurement by a Contour Next glucometer (ASCENSIA Diabetes Care, Parsippany, NJ, USA) using blood from the tail vein. Mice were then subjected to intraperitoneal injections of either a sodium citrate solution (0.1 M, pH 4.5), or STZ (75 mg/kg/day) for five consecutive days. STZ is a compound that is selectively toxic to the β cells of the pancreatic islets. To ensure the effectiveness of STZ, the sodium citrate solution was freshly prepared to dissolve STZ prior to the daily

injection. 14 days post STZ injection, those with fasting glucose higher than 300 mg/dL (16.7 mmol/L) were considered diabetic [49,50]. Half of these diabetic mice were injected daily with 6% DMSO, while the other half were injected with 15 mg/kg of U0126. Similarly, *db/db* diabetic mice were injected daily with either 6% DMSO or 15 mg/kg of U0126. To ensure the development of cardiac abnormalities and the effectiveness of U0126, all mice were kept on U0126 for 6 weeks as suggested [34,51]. After U0126 treatment, mice were first tested for their fasting glucose levels and then euthanized with CO₂ inhalation and cervical dislocation. Full body weight was measured and then the mice were immediately dissected to retrieve the heart for heart weight, histological assessment, and RNA and protein analysis.

2.4 RNA Purification and Real-Time PCR Analysis

Heart tissue (~30 mg) was minced by scissors followed by RNA extraction using a RNeasy Fibrous Tissue Kit (74704, Qiagen, Germantown, MD, USA). RNA concentration was determined by a nanodrop 2000 spectrophotometer (ND-2000, Thermo Fisher Scientific, Waltham, MA, USA). Complementary DNA (cDNA) synthesis of 1 μg RNA was performed using First-Strand Synthesis Kit (18080e051, Invitrogen, Waltham, MA, USA). Real-time polymerase chain reaction (RT-PCR) was performed with a SYBR green dye (172e5274, Bio-Rad, Hercules, CA, USA) in a final volume of 20 µL. The following gene-specific primers were used for RT-PCR: ribosomal protein 7 (RPL7), forward: 5'-gaageteatetatgagaagge-3', reverse: 5'-aagacgaaggagctgcagaac-3'; peroxisome proliferator-activated receptor α (PPAR α), forward: 5'-atgccagtactgccgttttc-3'; reverse: 5'-ggccttgaccttgttcatgtperoxisome proliferator-activated receptor (PPAR γ), forward: 5'-ttttcaagggtgccagtttc-3', reverse: 5'-aatcettggccetet gagat-3'; carnitine palmitoyltransferase 1A (CPT1A), forward: 5'-ccaggctacagtgggacatt-3', re-5'-gaacttgcccatgtccttgt-3'; fatty acid synthase (FACS), forward: 5'-ggctctatggattacccaa-3', reverse: 5'-ccagtgttcgttcctcgga-3'; atrial natriuretic factor (ANF), forward: 5'-gccctgagcgagcagaccga-3', reverse: cggaagctgttgcagccta-3'; B-type natriuretic (BNP), forward: 5'-ctgctggagctgataagaga-3', reverse: 5'-agtcagaaactggagtctcc-3'; β myosin heavy chain (βMHC), forward: 5'-acctaccagacagaggaaga-3', reverse: 5'-ttgcaaagagtccaggtctgag-3'; collagen $3\alpha 1$ (Col $3\alpha 1$), forward: 5'-tgaaggcgaattcaaggctgaagg-3', reverse: 5'agggccaatgtccacacaaattc-3'. RT-PCR data was analyzed with a $2^{-\Delta\Delta CT}$ method and normalized using RPL7 as an internal control [44].

2.5 Western Blot

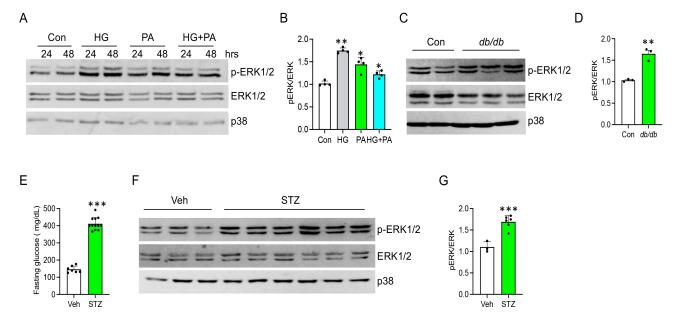
Confluent H9C2 cells from 60 mm culture dishes or ~40 mg of mouse heart tissues were solubilized into a buffer containing 10 mM Tris-HCl (pH 7.4), 1% Triton X-100, 150 mM NaCl, 2 mM EDTA, proteinase inhibitors

(05892970001, MilliporeSigma, Burlington, MA, USA), and phosphatase inhibitors (4906837001, MilliporeSigma, Burlington, MA, USA) [44]. Protein samples were harvested by centrifugation and quantified using a Pierce BCA Assay Kit (23227, Thermo Fisher Scientific, Waltham, MA, USA). 40 µg of proteins were separated by 10% SDS-PAGE, transferred onto a PVDF membrane (1620177, Bio-Rad, Hercules, CA, USA), blocked by 1% blocker bovine serum albumin (BSA) (37525, Thermo Fisher Scientific, Waltham, MA, USA), and incubated overnight with the following primary antibodies. ERK1/2 (9102S, Cell Signaling Biotechnology, Danvers, MA, USA) and phospho-ERK1/2 (9101S, Cell Signaling Biotechnology, Danvers, MA, USA) antibodies were used in 1:1000 dilution in 10 mL of 1% blocker BSA. IRDye@800CWgoat anti-rabbit secondary antibody (P/N:926-32211, Li-Cor Biosciences, Lincoln, NE, USA) was used in 1:10,000 dilution in 10 mL 1% blocker BSA. Visualization and quantification of Western blots were achieved by the Odyssey infrared system of Li-Cor Biosciences.

2.6 Histology

At the end of U0126 treatment, mice were euthanized for heart removal and cross sections of the hearts were cut. Heart tissues were fixed in 10% formalin (SF100-4, Thermo Fisher Scientific, Waltham, MA, USA) for 24 h, dehydrated in concentrated ethanol solutions, and embedded in paraffin. 5 µm thick sections were cut with a rotary microtome (90-520-0STS, Thermo Fisher Scientific, Waltham, MA, USA) and stained with Masson's trichrome (HT15-1KT, MilliporeSigma, Burlington, MA, USA) for fibrosis detection. At least three images per section were taken using a Nikon A1 microscope (Nikon Instruments Inc, Melville, NY, USA).

2.7 Statistical Analysis


Statistical analysis was conducted using GraphPad Prism 10 (GraphPad Software, La Jolla, CA, USA) and all the data was shown as the mean \pm standard error of mean. The normality of data was analyzed using the Shapiro-Wilk test. Student's *t*-test was used to compare only two groups, and a p value smaller than 0.05 was considered significant. For analysis of multiple groups with one variable, oneway ANOVA was used to analyze the variance followed by a Bonferroni post hoc test for comparison of differences across multiple groups. An adjusted p value of <0.05 was considered significant.

3. Results

3.1 ERK1/2 Phosphorylation is Upregulated in Diabetic Conditions

To assess whether ERK1/2 are key signaling molecules in diabetic cardiomyopathy, we first analyzed ERK1/2 phosphorylation in H9C2 cells in medium containing high glucose or palmitic acid, which mimics the hyperglycemia and hyperlipidemia conditions in diabetes.

Fig. 1. ERK1/2 phosphorylation is elevated in diabetic conditions. (A) Western blot analysis of ERK1/2 phosphorylation as well as their total levels in H9C2 cells subjected to high glucose (HG), palmitic acid (PA), or both HG and PA (HG+PA) for 24 and 48 hours. Control (con) were H9C2 cells cultured in DMEM that had 5.5 mM glucose. p38 was used as a loading control. (B) Quantification of ERK1/2 phosphorylation based on Fig. 1A. * p < 0.05 vs. con, and ** p < 0.01 vs. con. (C) Analysis of phosphorylation and total protein levels of ERK1/2 in db/db mouse hearts by a Western blot approach. p38 was used as a loading control. (D) Quantification of ERK1/2 phosphorylation levels based on Fig. 1C. ** p < 0.01 vs. con. (E) Fasting serum glucose level in mice 7 days after receiving 5 consecutive days of either a citrate solution (veh) or STZ. *** p < 0.001 vs. veh. (F) Western blot analysis of phosphorylation and total protein levels of ERK1/2 in the hearts of control (veh) and STZ-treated mice. p38 was used as a loading control. (G) Western blot quantification based on Fig. 1F. *** p < 0.001. All the samples in Fig. 1 were biological replicates. ERK1/2, extracellular signal-regulated protein kinases 1 and 2; STZ, streptozotocin.

We chose palmitic acid (PA) to stimulate the cells as PA is a saturated fatty acid commonly found in the human body [52], and PA stimulation of liver HepG2 cells has been shown to activate ERK1/2 [53]. H9C2 cells cultured in 25 mM of glucose (HG) demonstrated a substantial increase in ERK1/2 phosphorylation (75% increase, p=0.008) (Fig. 1A,B). Similarly, PA elevated ERK1/2 phosphorylation (39% increase, p=0.016). Combination of both high glucose and palmitic acid did not induce an additional increase in ERK1/2 phosphorylation. Consistent with these *in vitro* observations, ERK1/2 phosphorylation was also found to be increased in the myocardium of 12-week-old db/db mice (68% increase, p=0.0019), although the total ERK1/2 levels were lower as reported in another study (Fig. 1C,D) [54].

STZ has been commonly used to generate animal models of diabetes, reliably resulting in hyperglycemia and hyperlipidemia [48]. STZ-treated animals demonstrate increased production of reactive oxygen species, inflammation, apoptosis, and fibrosis which are all features of latestage diabetic hearts [1,47]. Moreover, STZ treatment didn't cause any mortality and has been shown to enhance serum lipid level [53]. We successfully established a protocol to generate diabetic mice by administering STZ injection to 8-week-old male C57Bl/6J mice for 5 consec-

utive days. Fasting glucose was significantly elevated in the STZ-treated animals 1 week post STZ administration (Fig. 1E). More than 90% of STZ-treated mice in our study developed diabetes with a glucose level higher than 300 mg/dL (16.7 mM), which is considered the threshold for diabetes in mice [49,50]. Again, ERK1/2 phosphorylation in the mouse hearts was significantly higher in the STZ-treated group (68% increase, p = 0.00068) (Fig. 1F,G). Taken together, ERK1/2 phosphorylation is elevated in diabetic conditions, suggesting their potential role in the diabetic hearts.

3.2 Inhibition of ERK1/2 Activity by U0126 Attenuates Diabetic Cardiomyopathy in Mice

To further determine the potential role of ERK1/2 in diabetic cardiomyopathy, we sought to inhibit ERK1/2 phosphorylation *in vivo* and analyze the effect on the heart. We first determined the effect of U0126 on ERK1/2 phosphorylation *in vitro*. We found U0126 pretreatment of H9C2 cells for 30 minutes completely abolished ERK1/2 phosphorylation at both baseline as well as FBS stimulation conditions (Fig. 2A,B). We then tested the effective U0126 dose for ERK1/2 inhibition *in vivo*. Mice were subjected to 7 consecutive days of intraperitoneal injections of either a vehicle (6% DMSO), low (1 mg/kg) or high dose (15 mg/kg) of U0126 as previous studies suggested

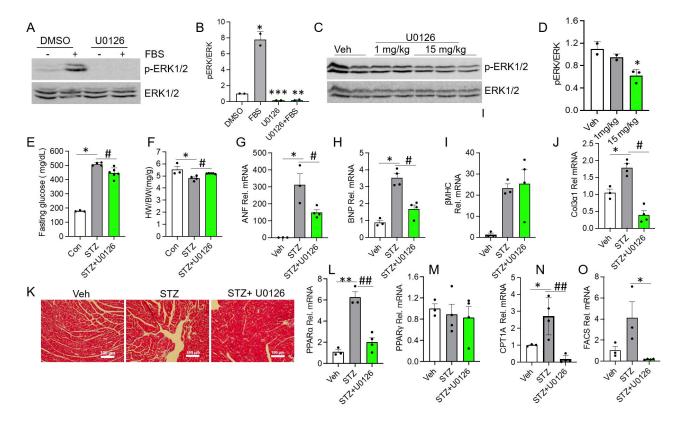


Fig. 2. U0126 inhibition attenuates the diabetic cardiomyopathy. (A) Effect of U0126 on ERK1/2 phosphorylation in H9C2 cells at baseline and 20% FBS stimulation conditions. (B) Quantification of ERK1/2 phosphorylation based on Fig. 2A. * p < 0.05 vs. DMSO; ** p < 0.01 vs. DMSO/FBS; *** p < 0.001 vs. DMSO/FBS. (C) Determining ERK1/2 phosphorylation levels in the hearts of mice treated with either 6% DMSO (veh) or U0126 at different doses for one week. (D) Quantification of ERK1/2 phosphorylation in Fig. 2C. * p < 0.05 vs. veh. (E,F) Fasting glucose measurement and heart/body weight ratios in mice 6 weeks post U0126 treatment. * and # p < 0.05. (G–J) RT-PCR analysis of genes in cardiac hypertrophy (G–I) and fibrosis (J). * and # p < 0.05. (K) Representative Masson's trichrome images for fibrosis analysis in the mouse heart. Scale bar, 100 µm. (L–O) RT-PCR analysis of genes involved in fatty acid uptake (FACS), fatty acid oxidation (CPT1A), fatty acid metabolism (PPAR α), and fatty acid synthesis and storage (PPAR γ). * p < 0.05; ** and ## p < 0.01. All the samples in Fig. 2 were biological replicates. RT-PCR, real-time polymerase chain reaction.

[49,55]. Both concentrations of U0126 decreased the phosphorylation of ERK1/2 in the mouse heart (Fig. 2C,D). 15 mg/kg of U0126 significantly reduced it by ~40%, a reduction sufficient to impact ERK1/2-regulated physiology without causing observable changes in the physical wellbeing of the mice [49]. U0126 treatment notably decreased the serum glucose level in the STZ-treated mice (446.5 mg/dL vs. 508.2 mg/dL in STZ mice, p = 0.01) (Fig. 2E). However, this reduction might be a systemic effect. U0126 treatment also preserved the cardiac muscle mass (hw/bw: 5.2 in STZ-U0126 mice vs. 4.8 in STZ mice, p = 0.01), suggesting that ERK1/2 inhibition could be beneficial against cell death in STZ hearts (Fig. 2F) [56]. Similarly, the expression for cardiac hypertrophy marker genes ANF, BNP, and interstitial fibrosis gene collagen $3\alpha 1$ were significantly attenuated in U0126 treated mice (Fig. 2G-J). Masson's trichrome staining of mouse heart tissues demonstrated moderate increase of fibrosis in STZ-treated mouse hearts, which was attenuated by U0126 treatment (Fig. 2K and Supplementary Fig. 1). Moreover, the messenger ribonucleic acid

(mRNA) levels for fatty acid metabolism genes (FACS, CPTIA, and $PPAR\alpha$) were all downregulated (Fig. 2L–O). This gene expression alteration is consistent with our hypothesis that increased fatty acid metabolism is detrimental to the heart.

We also used *db/db* mice to further investigate the role of ERK 1/2 in diabetic cardiomyopathy. At 12 weeks of age, these mutant mice already demonstrated a significantly high level of plasma insulin (9.2 ng/mL vs. 0.4 ng/mL in control mice, data not shown). Consistent with STZ-treated mice (Fig. 2), 6 weeks of U0126 administration significantly reduced the plasma glucose level (Fig. 3A). Neither the heart/body weight ratios, nor the fibrosis levels, were altered by U0126 (Fig. 3B,F,G and **Supplementary Fig. 2**). This inconsistency with STZ mice could be due to the difference in mouse models and sensitivity to develop heart disease [57]. Nevertheless, we did observe the attenuation in the mRNA expression for cardiac hypertrophic markers (*ANF*, *BNP*, *βMHC*) (Fig. 3C–E) as well as fatty acid metabolism (*PPARα*, *CPT1A*, and *FACS*) (Fig. 3H–K).

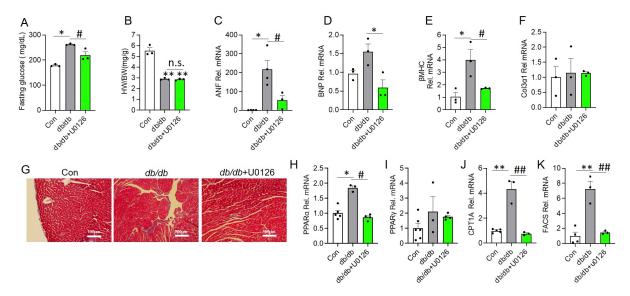


Fig. 3. U0126 inhibition in db/db mice alleviates the diabetic cardiomyopathy. (A) Fasting glucose levels in indicated groups of mice. *and #p < 0.05. (B) Comparison of heart/body weight ratios in all three groups of mice. **p < 0.05 vs. con. n.s., not significant. (C–F) RT-PCR analysis of marker genes for cardiac hypertrophy and interstitial fibrosis. *and #p < 0.05. (G) Fibrosis comparison among three groups of mouse hearts by Masson's trichrome staining. Scale bar, 100 μ m. (H–K) RT-PCR analysis of fatty acid metabolism genes. *and #p < 0.05; ** and ##p < 0.01. All the samples in Fig. 3 were biological replicates.

PPAR γ expression was not significantly influenced by either STZ or U0126 treatment in both diabetic mouse models (Fig. 3I and Fig. 2M), consistent with distinct functions of PPAR α and PPAR γ in fatty acid metabolism [33,58]. Together, these results suggest that increased ERK1/2 activity induced by hyperglycemia or hyperlipidemia causes cardiomyopathy in mice.

3.3 ERK1/2 Activation Exacerbates Diabetes-Induced Cardiac Remodeling

Next, we used a different mouse model with knockout of both dual-specificity phosphatase 6 and 8 (DKO), two dual phosphatases for ERK1/2 inactivation [44]. ERK1/2 phosphorylation was significantly elevated in these DKO mouse hearts (Fig. 4A,B), consistent with previous findings [44]. Upon diabetic induction by STZ, both wild type (WT) and DKO mice developed similar levels of hyperglycemia within a week (Fig. 4C). 6 weeks after STZ injection, there was no statistical difference in cardiac hypertrophy in DKO-STZ hearts compared to WT-STZ (Fig. 4D). Again, we observed elevated but moderate interstitial fibrosis in the hearts of STZ-treated DKO mice (Fig. 4E and Supplementary Fig. 3). An upregulation of gene expression for hypertrophy (ANF, BNP, and β MHC), fibrosis ($Col3\alpha I$), and fatty acid metabolism ($PPAR\alpha$, CPTIA, and FACS) was found in STZ-treated DKO mouse hearts, suggesting the association between ERK1/2 activation and development of diabetic cardiomyopathy (Fig. 4F,G).

4. Discussion

ERK1/2 play a crucial role in regulating cardiomyocyte growth [59–61]. Due to their emerging role in fatty

acid metabolism, ERK1/2 have been implicated as potential therapeutic targets for improvement of insulin sensitivity in diabetes [62,63]. For instance, administration of the MEK1/2 inhibitor PD184352 to target the ERK1/2 pathway reversed the diabetic conditions in the db/db mice Hepatic ERK1/2 activation was associated with impaired insulin sensitivity, and short hairpin interfering RNA-mediated knockdown of ERK1/2 in the liver restored the insulin sensitivity [45]. However, the effect of ERK1/2 inhibition on diabetic cardiomyopathy hasn't been investigated. The strength of this study is that we show the ERK/PPAR α axis is involved in diabetic cardiomyopathy by promoting fatty acid metabolism. We observed 6 weeks of ERK1/2 inhibition by daily U0126 administration significantly reduced the mRNA expression for $PPAR\alpha$ and its target genes (CPT1A and FACS), which alleviated fibrosis and hypertrophy in the diabetic mouse hearts (Figs. 2,3). In contrast, elevated ERK1/2 activity in DUSP6/8KO mice enhanced the expression of fatty acid metabolism genes, which was associated with fibrosis and cardiac dysfunction (Fig. 4). Ultimately, our study suggests ERK1/2 as therapeutic targets against lipotoxicity in the diabetic heart.

Diabetic cardiomyopathy is a multifaceted disease characterized by hyperglycemia, hyperlipidemia, and insulin resistance. Numerous studies have been conducted to ameliorate one aspect of its pathogenesis such as inflammation [65–67]. For example, Li *et al.* [65] showed that administration of alpha lipoic acid, a naturally occurring antioxidant, into the STZ-induced diabetic rats significantly reduced the level of cardiac collagens and fibrotic gene expression such as transforming growth factor β (TGF β) and α smooth muscle actin. Interestingly, the protective ef-

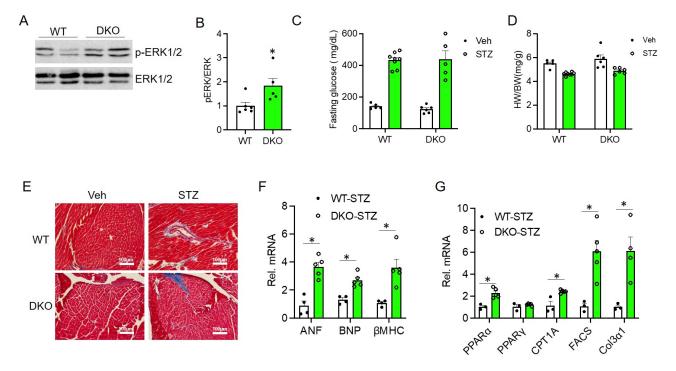


Fig. 4. Activation of ERK1/2 exacerbates diabetic cardiomyopathy. (A) Comparison of ERK1/2 phosphorylation in the hearts of wild type (WT) and DUSP6/8 double knockout mice (DKO). (B) ERK1/2 phosphorylation quantification based on Fig. 4A. * p < 0.05 vs. WT. (C) Fasting glucose levels in indicated groups of mice 1 week after STZ administration. (D) Comparison of heart/body weight ratios in all four groups of mice. (E) Representative Masson's trichrome images for fibrosis analysis in the mouse hearts. Scale bar, 100 μ m. (F,G) Gene expression analysis for cardiac hypertrophy, fibrosis, and fatty acid metabolism. * p < 0.05. All the samples in Fig. 4 were biological replicates.

fect of alpha lipoic acid was partially achieved through reduction in JNK and p38 activity, further highlighting the critical role of MAPKs in energy metabolism. Similarly, high pericardial adiposity is strongly associated with diabetes [66]. Administration of hemin, a heme oxygenase inducer, potentiated the insulin signaling and suppressed the cardiac inflammation responses [67]. However, controlling diabetes through reduction in fatty acid oxidation and heart damage may still be the best option [19]. Medications like Trimetazidine, Perhexiline, and Etomoxir, have been shown to target mitochondrial oxidative metabolism and improve cardiac function [19,68–70]. Consistent with this notion, administration of β adrenergic receptor agonist isoprenaline into a pancreatectomy-induced diabetic rat model restored the metabolic flexibility through enhancing glycolysis [71].

We acknowledge that our study provides limited functional and mechanistic characterization of diabetic mice regarding ERK1/2 inhibition. Since diabetic cardiomyopathy is associated with left ventricular chamber dilation and contractile dysfunction [72,73], further analysis by Doppler echocardiography will help determine whether ERK1/2 inhibition restores the cardiac function in the diabetic mice. In addition, STZ-induced diabetic mice demonstrate decreased ventricular muscle mass [73]. Our study could be further strengthened by determining whether ERK1/2 in-

hibition reduces lipotoxicity and cell death in the diabetic hearts by analyzing the lipid contents and apoptotic protein levels in the myocardium. Moreover, it is known that the expression of glucose transporter 4 (GLUT4) and glucose transporter 1 (GLUT1) in diabetic mouse hearts is decreased [74]. We demonstrate that ERK1/2 inhibition reduces the serum glucose in STZ-induced diabetic mice (Fig. 2E and Fig. 3A). It is possible that reduction of fatty acid metabolism in the hearts of U0126-treated mice is compensated by an increase in GLUT4 expression, as demonstrated by a histone deacetylase (HDAC) inhibition study in restoring the GLUT4 level [74]. Lastly, our study is limited by the lack of direct molecular mechanism for the association between ERK1/2 activation and elevation in lipid metabolism gene expression [74]. As numerous cytoplasmic and nuclear proteins have been reported as the targets of ERK1/2 [62], it is possible that in the diabetic hearts increased fatty acid uptake activates ERK1/2, which then translocate to the nucleus to phosphorylate PPARlpha at serine 12 and 2 to initiate the transcriptional activity of PPAR α [75].

Activation of PPAR α and its target genes increase fatty acid metabolism, subsequently resulting in lipotoxicity in the heart. Targeting PPAR α signaling through regulating its cofactors could be another avenue for the treatment of diabetic cardiomyopathy. Interestingly, ubiquitin-

specific protease 7 (USP7), a deubiquitinase, was found to bind to the PPAR α coactivator 1β (PGC1 β), leading to the deubiquitination and stabilization of PGC1 β . Conditional gene knockout or chemical inhibition of USP7 reversed the cardiac phenotype in the diabetic mice, further supporting the notion that activation of PPAR α signaling leads to lipotoxicity and the development of diabetic cardiomyopathy [76]. Of note, although increased fatty acid uptake into the myocardium leads to lipotoxicity, activation of mitochondrial protein kinase B (PKB/AKT1) signaling enhances the whole-body energy expenditure which protects the mice from diabetic cardiomyopathy [77]. Thus, further studies are needed to elucidate the balance between fatty acid metabolism and energy expenditure in the context of diabetic heart disease.

5. Conclusion

ERK1/2 phosphorylation is increased in the diabetic heart which is associated with elevated gene expression for hypertrophy and fatty acid metabolism. U0126 administration into the diabetic mice blocks the ERK1/2 activity, decreases the fatty acid metabolism, and reverses the pathological cardiac remodeling. ERK1/2 are promising targets against diabetic heart disease.

Availability of Data and Materials

All the data and materials are available from the corresponding author RL upon request.

Author Contributions

All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work. MC tested the optimal dose of STZ for diabetic induction in mice. RL and MC initiated the study. EM and CDR performed STZ and U0126 injection, measured blood glucose levels, and analyzed body and heart weights of the mice, as well as acquired images of Masson's trichrome staining. AM performed all RT-PCR analysis. JC performed H9C2 culture and evaluated ERK1/2 phosphorylation. RL analyzed all the data and wrote the manuscript. All authors contributed to the editorial changes in the manuscript and approved the final manuscript.

Ethics Approval and Consent to Participate

The animal experiments in this study have been approved by the Grand Valley State University Ethics Committee (approval number: 23-05-A).

Acknowledgment

Not applicable.

Funding

This work was supported by grants from Center for Scholarly and Creative Excellence and Department of Biomedical Sciences at the Grand Valley State University.

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Material

Supplementary material associated with this article can be found, in the online version, at https://doi.org/10.31083/FBL26700.

References

- [1] Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circulation Research. 2020; 126: 1501–1525. https://doi.org/10.1161/CIRCRESAHA.120.315913.
- [2] Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research. 2018; 122: 624–638. https://doi.org/10.1161/CIRCRESAHA.117.311586.
- [3] Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, et al. Diabetic Cardiovascular Disease Induced by Oxidative Stress. International Journal of Molecular Sciences. 2015; 16: 25234–25263. https://doi.org/10.3390/ijms 161025234.
- [4] De Geest B, Mishra M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants. 2022; 11: 784. https://doi.org/10. 3390/antiox11040784.
- [5] Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. Journal of Diabetes Investigation. 2014; 5: 623–634. https://doi.org/10.1111/jdi.12250.
- [6] Dinh W, Füth R, Nickl W, Krahn T, Ellinghaus P, Scheffold T, et al. Elevated plasma levels of TNF-alpha and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovascular Diabetology. 2009; 8: 58. https://doi.org/10.1186/1475-2840-8-58.
- [7] Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature Reviews. Immunology. 2011; 11: 98–107. https://doi.org/10.1038/nri2925.
- [8] Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circulation Research. 2000; 87: 1123–1132. https://doi.org/10.1161/01.res. 87.12.1123.
- [9] Chowdhry MF, Vohra HA, Galiñanes M. Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: role of caspases and poly-adenosine diphosphateribose polymerase. The Journal of Thoracic and Cardiovascular Surgery. 2007; 134: 124–124–131, 131.e1–3. https://doi.org/10. 1016/j.jtcvs.2006.12.059.
- [10] Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology. 2016; 90: 84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011.
- [11] Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Advanced Drug Delivery Reviews. 2021; 176: 113904. https://doi.org/10.1016/j.addr.2021.113904.
- [12] Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, et al. Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2007; 293: R1787–R1797. https://doi.org/10.1152/ajpregu.00059.2007.
- [13] Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Failure Reviews. 2014; 19: 49–63. https://doi.org/10.1007/s10741-013-9374-y.

- [14] Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology. 2014; 18: 1–14. https://doi.org/ 10.4196/kjpp.2014.18.1.1.
- [15] Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart-deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. Journal of the American Heart Association. 2013; 2: e000433. https://doi.org/10.1161/JAHA.113.000433.
- [16] Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Reviews in Endocrine & Metabolic Disorders. 2010; 11: 31–39. https://doi.org/10.1007/s11154-010-9131-7.
- [17] Erion DM, Park HJ, Lee HY. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated comorbidities. BMB Reports. 2016; 49: 139–148. https://doi.org/10.5483/bmbrep.2016.49.3.268.
- [18] Schulze PC, Drosatos K, Goldberg IJ. Lipid Use and Misuse by the Heart. Circulation Research. 2016; 118: 1736–1751. https://doi.org/10.1161/CIRCRESAHA.116.306842.
- [19] Spoladore R, Pinto G, Daus F, Pezzini S, Kolios D, Fragasso G. Metabolic Approaches for the Treatment of Dilated Cardiomyopathy. Journal of Cardiovascular Development and Disease. 2023; 10: 287. https://doi.org/10.3390/jcdd10070287.
- [20] Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine. 2018; 5: 68. https://doi.org/10.3389/fcvm .2018.00068.
- [21] Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB Journal. 2004; 18: 1692–1700. https://doi.org/10.1096/fj.04-2263com.
- [22] van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovascular Research. 2011; 92: 10–18. https://doi.org/10.1093/cvr/cvr212.
- [23] D'Souza K, Nzirorera C, Kienesberger PC. Lipid metabolism and signaling in cardiac lipotoxicity. Biochimica et Biophysica Acta. 2016; 1861: 1513–1524. https://doi.org/10.1016/j.bbalip .2016.02.016.
- [24] Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, et al. Heart failure in diabetes. Metabolism: Clinical and Experimental. 2021; 125: 154910. https://doi.org/10.1016/j.metabol.2021.154910.
- [25] Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, et al. Pathophysiology and Treatment of Diabetic Cardiomy-opathy and Heart Failure in Patients with Diabetes Mellitus. International Journal of Molecular Sciences. 2022; 23: 3587. https://doi.org/10.3390/ijms23073587.
- [26] Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovascular Diabetology. 2017; 16: 155. https://doi.org/10.1186/ s12933-017-0638-z.
- [27] McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007; 116: 1170–1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614.
- [28] Rijzewijk LJ, van der Meer RW, Lamb HJ, de Jong HWAM, Lubberink M, Romijn JA, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. Journal of the American College of Cardiology. 2009; 54: 1524–1532. https://doi.org/10.1016/j.jacc.2009.04.074.
- [29] van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovascular Research. 2000; 45: 279–293. https://doi.org/10.1016/ s0008-6363(99)00263-1.
- [30] Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley

- WC. Myocardial fatty acid metabolism in health and disease. Physiological Reviews. 2010; 90: 207–258. https://doi.org/10.1152/physrev.00015.2009.
- [31] Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. Journal of Lipid Research. 2008; 49: 2101–2112. https://doi.org/10.1194/jlr.M800147-JLR200.
- [32] Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology. 2015; 62: 720–733. https://doi.org/10.1016/j.jhep .2014.10.039.
- [33] Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nature Reviews. Cardiology. 2021; 18: 809–823. https://doi.org/10.1038/ s41569-021-00569-6.
- [34] Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, *et al.* The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. The Journal of Clinical Investigation. 2002; 109: 121–130. https://doi.org/10.1172/JCI14080.
- [35] Fillmore N, Hou V, Sun J, Springer D, Murphy E. Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2. PLoS ONE. 2022; 17: e0265007. https://doi.org/10.1371/journal.pone.0265007.
- [36] Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews. 2011; 75: 50–83. https://doi.org/10.1128/MMBR.00031-10.
- [37] Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiological Reviews. 2010; 90: 1507–1546. https://doi. org/10.1152/physrev.00054.2009.
- [38] Yung JHM, Giacca A. Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells. 2020; 9: 706. https://doi.org/10.3390/cells9030706.
- [39] Nikolic I, Leiva M, Sabio G. The role of stress kinases in metabolic disease. Nature Reviews. Endocrinology. 2020; 16: 697–716. https://doi.org/10.1038/s41574-020-00418-5.
- [40] Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420: 333–336. https://doi.org/10.1038/ nature01137.
- [41] Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008; 322: 1539–1543. https://doi.or g/10.1126/science.1160794.
- [42] Matesanz N, Nikolic I, Leiva M, Pulgarín-Alfaro M, Santamans AM, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biology. 2018; 16: e2004455. https://doi.org/10.1371/journal.pbio.2004455.
- [43] Khan AS, Subramaniam S, Dramane G, Khelifi D, Khan NA. ERK1 and ERK2 activation modulates diet-induced obesity in mice. Biochimie. 2017; 137: 78–87. https://doi.org/10.1016/j.bi ochi.2017.03.004.
- [44] Liu R, Peters M, Urban N, Knowlton J, Napierala T, Gabrysiak J. Mice lacking DUSP6/8 have enhanced ERK1/2 activity and resistance to diet-induced obesity. Biochemical and Biophysical Research Communications. 2020; 533: 17–22. https://doi.org/10.1016/j.bbrc.2020.08.106.
- [45] Jiao P, Feng B, Li Y, He Q, Xu H. Hepatic ERK activity plays a role in energy metabolism. Molecular and Cellular Endocrinology. 2013; 375: 157–166. https://doi.org/10.1016/j.mce.2013. 05.021.
- [46] Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP. Deactivation of peroxisome proliferator-activated receptor-

- alpha during cardiac hypertrophic growth. The Journal of Clinical Investigation. 2000; 105: 1723–1730. https://doi.org/10.1172/JCI9056.
- [47] Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, et al. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. International Journal of Molecular Sciences. 2023; 24: 1132. https://doi.org/10.3390/ijms24021132.
- [48] Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols. 2021; 1: e78. https://doi.org/10. 1002/cpz1.78.
- [49] Wang T, Wu J, Dong W, Wang M, Zhong X, Zhang W, *et al.* The MEK inhibitor U0126 ameliorates diabetic cardiomyopathy by restricting XBP1's phosphorylation dependent SUMOylation. International Journal of Biological Sciences. 2021; 17: 2984–2999. https://doi.org/10.7150/ijbs.60459.
- [50] Qi B, He L, Zhao Y, Zhang L, He Y, Li J, et al. Akapl deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis. Diabetologia. 2020; 63: 1072–1087. https://doi.org/10.1007/s00125-020-05103-w.
- [51] Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015; 35: 948–959. https://doi.org/10.1161/ATVBAHA.114.305116.
- [52] Carta G, Murru E, Banni S, Manca C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Frontiers in Physiology. 2017; 8: 902. https://doi.org/10.3389/fphys.2017.00902.
- [53] Bi L, Chiang JYL, Ding WX, Dunn W, Roberts B, Li T. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice. Journal of Lipid Research. 2013; 54: 2754–2762. https://doi.org/10.1194/jlr.M039347.
- [54] Singh GB, Raut SK, Khanna S, Kumar A, Sharma S, Prasad R, et al. MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy. Molecular and Cellular Biochemistry. 2017; 424: 1–11. https://doi.org/10.1007/s11010-016-2838-3.
- [55] Tao M, Shi Y, Tang L, Wang Y, Fang L, Jiang W, et al. Blockade of ERK1/2 by U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with hyperuricemic nephropathy. American Journal of Physiology. Renal Physiology. 2019; 316: F660–F673. https://doi.org/10.1152/ajprenal.00480.2018.
- [56] Cai L, Kang YJ. Cell death and diabetic cardiomyopathy. Cardiovascular Toxicology. 2003; 3: 219–228. https://doi.org/10. 1385/ct:3:3:219.
- [57] Abdurrachim D, Nabben M, Hoerr V, Kuhlmann MT, Bovenkamp P, Ciapaite J, et al. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovascular Research. 2017; 113: 1148–1160. https://doi.org/10.1093/cvr/cvx100.
- [58] Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al. Nuclear receptors PPARbeta/delta and PPA-Ralpha direct distinct metabolic regulatory programs in the mouse heart. The Journal of Clinical Investigation. 2007; 117: 3930–3939. https://doi.org/10.1172/JCI32578.
- [59] Gilbert CJ, Longenecker JZ, Accornero F. ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology. 2021; 10: 346. https://doi.org/10.3390/biology10040346.
- [60] Kehat I, Molkentin JD. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Annals of the New York Academy of Sciences. 2010; 1188: 96–102. https://doi.or g/10.1111/j.1749-6632.2009.05088.x.
- [61] Grimes KM, Maillet M, Swoboda CO, Bowers SLK, Millay

- DP, Molkentin JD. MEK1-ERK1/2 signaling regulates the cardiomyocyte non-sarcomeric actin cytoskeletal network. American Journal of Physiology. Heart and Circulatory Physiology. 2024; 326: H180–H189. https://doi.org/10.1152/ajpheart .00612.2023.
- [62] Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y, et al. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. International Journal of Molecular Sciences. 2016; 17: 2001. https://doi.org/10.3390/ijms17122001.
- [63] Jump DB. Fatty acid regulation of gene transcription. Critical Reviews in Clinical Laboratory Sciences. 2004; 41: 41–78. http s://doi.org/10.1080/10408360490278341.
- [64] Ozaki KI, Awazu M, Tamiya M, Iwasaki Y, Harada A, Kugisaki S, et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism. 2016; 310: E643–E651. https://doi.org/10.1152/ajpendo.00445.2015.
- [65] Li CJ, Lv L, Li H, Yu DM. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alphalipoic acid. Cardiovascular Diabetology. 2012; 11: 73. https://do i.org/10.1186/1475-2840-11-73.
- [66] de Wit-Verheggen VHW, Altintas S, Spee RJM, Mihl C, van Kuijk SMJ, Wildberger JE, et al. Pericardial fat and its influence on cardiac diastolic function. Cardiovascular Diabetology. 2020; 19: 129. https://doi.org/10.1186/s12933-020-01097-2.
- [67] Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. The Journal of Pharmacology and Experimental Therapeutics. 2013; 345: 239–249. https://doi.org/10.1124/jpet.112. 200808.
- [68] Shu H, Peng Y, Hang W, Zhou N, Wang DW. Trimetazidine in Heart Failure. Frontiers in Pharmacology. 2021; 11: 569132. ht tps://doi.org/10.3389/fphar.2020.569132.
- [69] Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005; 112: 3280–3288. https://doi.org/10.1161/CIRCULATIONAHA.105. 551457
- [70] Fillmore N, Lopaschuk GD. Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochimica et Biophysica Acta. 2013; 1833: 857–865. https://doi.org/10.1016/ j.bbamcr.2012.08.014.
- [71] Lindsay RT, Thisted L, Zois NE, Thrane ST, West JA, Fosgerau K, et al. Beta-adrenergic agonism protects mitochondrial metabolism in the pancreatectomised rat heart. Scientific Reports. 2024; 14: 19383. https://doi.org/10.1038/s41598-024-70335-4.
- [72] Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. Journal of the American College of Cardiology. 2006; 48: 1548–1551. https://doi.org/10.1016/j.jacc.2006.07.033.
- [73] Huo JL, Feng Q, Pan S, Fu WJ, Liu Z, Liu Z. Diabetic cardiomy-opathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discovery. 2023; 9: 256. https://doi.org/10.1038/s41420-023-01553-4.
- [74] Chen Y, Du J, Zhao YT, Zhang L, Lv G, Zhuang S, et al. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovascular Diabetology. 2015; 14: 99. https://doi.org/10.1186/ s12933-015-0262-8.
- [75] Juge-Aubry CE, Hammar E, Siegrist-Kaiser C, Pernin A, Takeshita A, Chin WW, et al. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating do-

- main. The Journal of Biological Chemistry. 1999; 274: 10505–10510. https://doi.org/10.1074/jbc.274.15.10505.
- [76] Yan M, Su L, Wu K, Mei Y, Liu Z, Chen Y, et al. USP7 promotes cardiometabolic disorders and mitochondrial homeostasis dysfunction in diabetic mice via stabilizing PGC1β. Pharmacological Research. 2024; 205: 107235. https://doi.org/10.1016/j.
- phrs.2024.107235.
- [77] Chen YH, Ta AP, Chen Y, Lee HC, Fan W, Chen PL, et al. Dual roles of myocardial mitochondrial AKT on diabetic cardiomyopathy and whole body metabolism. Cardiovascular Diabetology. 2023; 22: 294. https://doi.org/10.1186/s12933-023-02020-1.

