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Abstract

The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome is a multiprotein
complex fundamental for the secretion of pro-inflammatory cytokines during the innate immune response. NLRP3 dysregulation is
implicated in the pathogenesis of several diseases, such as inflammatory bowel disease, arthritis, cancer, Alzheimer’s disease, and type
2 diabetes. The pharmacological modulation of NLRP3 by several compounds, which are fully described in this review, represents an
important strategy to regulate inflammatory processes. Moreover, NLRP3 is also involved in drug-related adverse reactions, and its
pharmacological modulation represents a rapid strategy to mitigate such adverse effects, as reported in this study. NLRP3 inflammasome
activation is tightly regulated by post-transcriptional modifications and epigenetic factors, such as long non-coding RNAs (IncRNAs) and
DNA methylation, as well as other interacting regulators. Recently, different studies have revealed the importance of NLRP3 levels in
predicting drug response. In particular, the methylation of the NLRP3 promoter, which is associated with the inflammasome expression
level, emerged as a new promising pharmacoepigenetic biomarker for the glucocorticoid therapy response in several inflammatory disease
conditions.
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1. Introduction molecular patterns (PAMPs, e.g., bacterial products like
lipopolysaccharides) and derived danger-associated molec-
ular patterns (host DAMPs, e.g., uric acid crystals, adeno-
sine triphosphate (ATP)) through the pattern recognition re-
ceptors (PRRs) to activate a physiological response against
pathogens [3]. These PRRs subsequently oligomerize to
form inflammasomes [4], whose caspase-1-mediated ac-
tivation stimulates the secretion of proinflammatory cy-
tokines, such as interleukin (IL)-15 and IL-18 [5]. Nowa-
days, five members of PRRs have been identified: Toll-
like receptors (TLRs), nucleotide-binding oligomeriza-
tion domain-like receptors (NLRs), retinoic acid-inducible
gene I-like receptors (RLRs), C-type lectin receptors
(CLRs), and absent in melanoma 2-like receptors (ALRs).
These receptors are able to generate inflammasome com-
plexes, which include nucleotide-binding oligomerization
domain (NOD), leucine-rich repeat (LRR)-containing pro-
teins (NLR) family members (NLRP1, NLRP2, NLRP3,
NLRP6, NLRP7, NLRP12 and NLRC4), [F116, AIM2 and
pyrin. The inflammasomes are formed by the combina-
tion of NLRP complex, pro-caspasel and the apoptosis-

The human immune system comprises both adaptive
immunity and innate immunity, with the latter serving as
the first line of defense [1]. Nucleotide-binding domain,
leucine-rich-containing family, pyrin domain-containing-3
(NLRP3) inflammasomes are intracellular multimeric pro-
tein complexes that activate pro-caspase-1, which is cru-
cial for the initiation and control of inflammation. This
activation is fundamental for the innate immune system
activation and consequent inflammatory modulation. No-
tably, inflammasome dysregulation has been found to be
involved in different inflammatory chronic conditions, in-
cluding rheumatoid arthritis, systemic lupus erythemato-
sus, type 2 diabetes, atherosclerosis, ischemic heart dis-
ease, liver diseases, amyotrophic lateral sclerosis, inflam-
matory bowel disease (IBD), Parkinson’s and Alzheimer’s
disease [2]. Given that NLRP3 activity is tightly regulated,
different pharmacological approaches have been developed
to identify molecules capable of modulating its activity,
thereby leading to inflammatory regulation.

The NLRP3 inflammasome formation, activation and
modulation are straightly related to the immune response
activation and maintenance. In particular, the innate im-
mune response recognizes different pathogen-associated

associated speck-like protein (ASC) complex, which con-
tains a caspase-recruitment domain (Fig. 1) [4]. The distinct
NLRP isoforms play specialized functions, present tissue-
specific expression patterns, and are activated in response
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Fig. 1. Inflammasome structure. Nucleotide-binding domain, leucine-rich—containing family, pyrin domain—containing-3 (NLRP3)

inflammasome structure, which is a complex composed by NLRP3, apoptosis-associated speck-like protein (ASC), and procaspase-1.

NLRP3 shows three regions: the pyrin domain in the amino terminus, the NACHT site, and the LRR (leucine-rich repeat) domain in the

carboxy terminus. NLRP3 recruits ASCs through pyrin-pyrin domain interactions. In turn, procaspase-1 is recruited by ASC through
Caspase Recruitment Domain (CARD)-CARD interactions to form the NLRP3-ASC-procaspase-1 (CAP-1) inflammasome. In particular,

we generated Figs. 1,2 using BioRender.com (BioRender Inc., Toronto, Canada).

to different processes [4]. For instance, NLRP1, NLRP3
and NLRP12 are expressed in various immune cells in-
volved in inflammatory responses, such as macrophages,
dendritic cells, and neutrophils, whereas NLRP6 is primar-
ily expressed in the gastrointestinal tract, particularly in the
colon, where it is involved in intestinal homeostasis main-
tenance [6]. Furthermore, the activation of NLRP1 can be
stimulated by bacterial toxins [7], and recent studies have
reported that NLRP 12 modulates immune responses against
viral [8] or parasitic infections [9]; however the NLRP12
activation is less characterized compared to NLRP1 and
NLRP3.

Since NLRP3 is the best characterized and studied
isoform, this review focuses on NLRP3 description. As
previously specified for all inflammasome classes, NLRP3
can be activated by several stimuli, including PAMPs and
DAMPs to form an inflammasome that activates caspase-
1 and promotes the maturation and secretion of IL-1/3 and
IL-18 [10]. The molecular mechanism underlying its acti-
vation and modulation will be deeply discussed in the fol-
lowing sections.

2. The Mechanism of NLRP3 Activation

NLRP3 activation is finely regulated, depends on dif-
ferent factors, and comprises several steps. This complex
mechanism is divided into two main phases: the priming
step and the activation step [10,11]. The priming step con-

sists of increased cellular expression levels of pro-1L-15,
pro-IL-18 and NLRP3 transcripts following TLRs and nu-
clear factor-xB (NF-xB) activation. The activation phase
induces NLRP3 inflammasome oligomerization, leading to
the recruitment of ASC and pro-caspase-1, which are re-
sponsible for the release of inflammatory cytokines IL-153
and IL-18, the main drivers of phlogosis.

In cells, NLRP3 activation can be induced by dif-
ferent stimuli, such as the Kt and Cl~ efflux due to
PAMPs/DAMPs [12,13], Ca?* release from endoplasmic
reticulum [14], intracellular accumulation of reactive oxy-
gen species (ROS) [15], mitochondrial dysfunction [16],
the presence of metabolic changes, trans-Golgi disassem-
bly [17], and lysosomal disruption due to particulate mat-
ter accumulation, such as alum, silica, asbestos, amyloid-
B and cholesterol crystals [4,18]. However, Katsnelson et
al. [19] demonstrated that higher levels of lysosomal mem-
brane disruption, due to cellular stress conditions, increased
K™ cellular efflux and higher Ca%* release from endoplas-
mic reticulum, lead to inflammasome signaling suppres-
sion. Similarly, NLRP3 inflammasome inhibition was ob-
tained after treatment with inhibitors of TLR4, NF-xB and
other molecules used to reduce inflammation in different
inflammatory pathological conditions, such as atheroscle-
rosis, ischemic stroke, Alzheimer’s disease, diabetes melli-
tus and IBD [20]. Indeed, several cellular, genetic and epi-
genetic mechanisms corroborate to modulate NLRP3 activ-
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ity, and their possible dysfunction may be involved in the
pathological development of disease conditions, as deeply
explored in the next paragraphs.

3. The Fine Regulation of NLRP3 Activation

It is important to consider that NLRP3 interacts with
different regulatory proteins. Many proteins, such as chap-
erone heat shock protein 90 (Hsp90) and its co-chaperone
the suppressor of G2 allele of Skpl (SGT1), are important
for NLRP3 conformation and stability [21]. Additionally,
Thioredoxin-Interacting Protein (TXNIP) serves as an ox-
idative sensor and interacts with thioredoxin (TRX) under
reducing conditions; in the presence of ROS, TRX disso-
ciates from TXNIP, permitting its interaction with NLRP3
and leading to inflammasome activation [22]. Moreover,
guanylate-binding protein 5 (GBPS5) binds to the pyrin do-
main of NLRP3, promoting ASC oligomerization and fa-
cilitating inflammasome activation [23]. Other factors,
such as the double-stranded RNA-dependent protein kinase
(PKR), migration inhibitory factor (MIF) and microtubule-
affinity regulating kinase 4 (MARK4), are able to interact
with NLRP3, leading to its inhibition or activation through
a variety of mechanisms that involve stress sensing, au-
tophagy, and proteasomal degradation [24,25]. Together,
these findings underscore the importance of correct NLRP3
functionality, which is involved in several cellular mech-
anisms responsible for intracellular degradation of exoge-
nous stress sources, such as pathogens, and demonstrate
that disruptions in these systems can contribute to tissue in-
flammation.

From a molecular point of view, different post-
transduction modifications, such as phosphorylation, ubig-
uitination and SUMOylation, are involved in NLRP3 in-
flammasome activation and modulation, as detailed below.

NLRP3 inflammasome can be phosphorylated during
both the priming phase and the activation phase, and phos-
phorylation can also be involved in the inflammasome reg-
ulation during inflammatory resolution [26]. Phosphoryla-
tion at different sites of NLRP3 inflammasome is respon-
sible for its activation, and several kinases are involved
in these mechanisms, including TGF-f3-activated kinase 1
(TAK1), the mitogen-activated protein kinase kinase kinase
(MAPKKK) family, such as JNK1, the p21-activated ki-
nase (PAK) family proteins, the protein kinase A (PKA)
and the protein kinase D (PKD) [27]. Song et al. [28]
demonstrated that JNK1-mediated NLRP3 phosphorylation
at the Ser194 residue during the priming phase is essential
for NLRP3 assembly and activation, and other evidences
showed that the pyrin domain of NLRP3 is crucial for its
activation by phosphorylation [29]. Also kinases of the
inhibitor of kB kinases (IKKs) family, through phospho-
rylation of NLRP3 have a crucial role for the modulation
of inflammasome activation [28]. Also NLRP3 ubiquiti-
nation, has a role in inflammasome activation and auto-
inhibition [30]. Indeed, it was demonstrated that both F-
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box/LRR-repeat protein 2 (FBXL2) and Parkin RBR E3
ubiquitin protein ligase 2 (PARK2) mediate NLRP3 ubig-
uitination, inhibiting inflammasome activation and facili-
tating NLRP3 proteasomal degradation [31,32]. The ubig-
uitination may be also responsible for NLRP3 intracellular
translocation. In particular, the E3 ubiquitin ligase gp78
[33], the E3 Ubiquitin Ligase Tripartite Motif-containing
protein 65 (TRIM65) [34] and the E3 ligase Ariadne ho-
molog 2 (ARIH2) [35] ubiquitinate and inhibit NLRP3,
suppressing its oligomerization and subcellular transloca-
tion. These evidences highlight that modulation of NLRP3
ubiquitination may be considered a new possible target for
anti-inflammatory therapeutic approaches [36].

In recent years, also SUMOylation emerged as an im-
portant post-translational modification of inflammasome.
NLRP3 SUMOylation at multiple sites occurs by the E3
SUMO protein ligase MUL1 (MAPL) and regulates NLRP3
activation; in particular, it has been found that upon
activation, NLRP3 becomes deSUMOylated by sentrin-
specific protease 6 (SENP6) and SENP7, and defects in the
SUMOylating mechanisms may lead to NLRP3 hyperacti-
vation [37].

4. The Role of Epigenetic Factors in the
Modulation of NLRP3

Since epigenetic factors, such as microRNAs and long
non-coding RNA (IncRNA), have recently been recognized
as crucial regulators of NLRP3 inflammasome by target-
ing NLRP3 mRNA [38], this section reports the epigenetic
mechanisms identified as involved in NLRP3 regulation.

Among the various microRNAs implicated in NLRP3
modulation, several have been extensively characterized for
their regulatory roles. For instance, a study has demon-
strated that miR-9 inhibits NLRP3 inflammasome in car-
diomyocytes, leading to cardiac cell death and heart fail-
ure [39]. In contrast, miR-223 inhibits NLRP3 inflam-
masome, resulting in reduced myocardial damage in both
in vitro and in vivo models, while miR-22 acts as nega-
tive regulator of NLRP3 during tumorigenesis [40]. Sim-
ilarly, miR-21 has been identified as a regulator of inflam-
masome activation through direct interaction with NLRP3
mRNA [41]. However, miR-21 also exerts indirect effects
on NLRP3 regulation. Specifically, miR-21 targets and
downregulates Phosphatase and tensin homolog (PTEN)
[42], which in turn negatively regulates AKT1, a kinase
responsible for NLRP3 phosphorylation [28]. This regu-
latory cascade suggests a complex indirect mechanism by
which miR-21 influences inflammasome activity. Further-
more, Scalavino et al. [43] demonstrated that miR-369-
3p reduces the expression of BRCA1/BRCA2-containing
complex 3 (BRCC3), a key regulator of NLRP3 activation
through de-ubiquitination [44]. By targeting BRCC3, this
miRNA blocks the recruitment of ASC adaptor to the in-
flammasome complex, ultimately reducing NLRP3 activ-

ity.
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In addition to miRNAs, several IncRNAs have
emerged as crucial inflammasome regulators, modulat-
ing NLRP3 at both transcriptional and post-transcriptional
level. A prominent example is Nuclear Enriched Abun-
dant Transcript 1 (NEAT1), a IncRNA [45] normally lo-
cated in the nucleus, where it is responsible for the main-
tenance of the structural integrity of the paraspeckles in the
chromatin by associating with nuclear RNA binding pro-
teins [46]. Upon stimulation with inflammasome-activating
signals, NEAT1 disassociates from paraspeckles proteins
and migrates into the cytoplasm, where it promotes inflam-
masome activation by facilitating the assembly of NLRP3,
NLRC4 and AIM2. This occurs through NEAT1’s ability
to bind and stabilize mature caspase-1 tetramers, increasing
their protease activity [45]. Supporting this mechanism, an
in vivo study performed on allergic rhinitis models demon-
strated that NEAT1 can trigger NLRP3-mediated pyroptosis
through activation of the PTBP1/FOXP1 signaling cascade
[471.

Another important IncRNA in NLRP3 regulation is
metastasis-associated lung adenocarcinoma transcript 1
(MALATI). Elevated MALATI levels have been consis-
tently associated with higher NLRP3 activation and con-
sequent increased inflammation across different patholo-
gies, including Parkinson’s disease [48], myocardial infarc-
tion [49], diabetes and atherosclerosis [50—52]. Mechanis-
tically, MALAT1 plays a key role in the NLRP3-mediated
pyroptosis in conditions such as osteoarthritis [53] and col-
itis [54] through its ability to modulate specific miRNAs,
that regulate NLRP3 expression and activity, such as miR-
124-3p [53] and miR-22-3p [54].

Together, these evidence highlight the role of NLRP3
epigenetic regulation and the disruption of these mecha-
nisms may be involved in chronic inflammatory disorders
and cancer conditions, underlining the importance of a tight
and functional inflammasome regulation.

5. Pharmacological Modulators of NLRP3 as
Therapeutic Approaches for Inflammatory
Regulation

Since NLRP3 inflammasome is crucial in the modula-
tion of phlogosis and consequently in different physiologi-
cal processes several NLRP3 pharmacological modulators
have been identified (Supplementary Fig. 1), which could
play a role in inflammatory chronic disease treatment [55].

In neurodegenerative diseases, such as Parkinson’s
disease, glibenclamide has shown a neuroprotective effect
on dopaminergic neurons, through the reduction of over-
regulated a-synuclein, a component of Lewy bodies, re-
ducing NLRP3 activation and the production of IL-15 [56].
NLRP3 inflammasome influences some central nervous
system diseases, such as major depressive disorder, which
are mainly treated with common antidepressant drugs, such
as fluoxetine. This drug, which is a selective serotonin re-
uptake inhibitor, has also been shown to inhibit NLRP3

and caspase-1 activity and consequently the expression of
IL-18 and IL-18 inflammatory cytokines in microglia. In
particular, the inhibitory effect of fluoxetine on NLRP3 in-
flammasome occurs by inhibiting the ROS-double-stranded
RNA-dependent protein kinase (PKR)-NLRP3 signaling
pathway in peripheral macrophages and central microglia
[57]. Additionally, different NLRP3 inhibitors, such as sel-
noflast, usnoflast (also called ZYIL1) [58], DFV890 [59]
and NT-0796 [60], are being investigated in clinical tri-
als for neurological and cardiovascular disease conditions
[61]. Colchicine, a drug widely used in different inflam-
matory disorders (e.g., coronary diseases, gout, pericardi-
tis, familial Mediterranean fever), is able to reduce the
activation of NLRP3 inflammasome [62]. In acute coro-
nary syndrome, the colchicine inhibitory action is exerted
by decreasing pro-caspase-1 mRNA synthesis and caspase-
1 protein levels, which is probably due to the drug’s im-
munomodulatory action, leading to the arrest of pro-IL-173
cleavage and secretion of active IL-14, as shown in a group
of 21 acute coronary syndrome adult patients who were ran-
domized to oral colchicine or no treatment, and compared
with untreated healthy controls [63]. A randomized clin-
ical trial showed the inhibitory effect of colchicine on the
NLRP3 inflammasome in 72 adult patients with COVID-
19 infection presenting systemic inflammation and needing
supplemental oxygen, although now it is not recommended
for the management of SARS-CoV-2 infections. An analy-
sis of the patients serum showed that subjects treated with
colchicine presented lower values of caspase-1 and IL-18,
which were associated with the drug inhibitory effect on
NLRP3 inflammatory activity [64]. Among the pharma-
cological inhibitors of NLRP3, there is also tranilast, an
anti-allergic drug widely used in Asian countries for its safe
profile, even at high doses [65]. This molecule is an an-
thranilic acid analog responsible for Vascular Endothelial
Growth Factor (VEGF) inhibition and consequent blockade
of IgE-induced histamine release from mast cells [66]. Im-
portantly, Huang et al. [67] demonstrated that this trypto-
phan metabolite analog can also inhibit NLRP3 inflamma-
some in macrophages, through binding to a specific NLRP3
inflammasome domain, called the NACHT site, thereby
blocking NLRP3 oligomerization capacity. Similarly, the
non-steroidal anti-inflammatory drug fenamate (mefenamic
acid) inhibits NLRP3 both in vivo and in vitro through
blocking of C1~ volume-regulated anion channels (VRAC),
affecting the CI~ and K* ion fluxes, which are crucial for
NLRP3 activation, and ultimately reducing brain inflam-
mation and memory deficit in Alzheimer’s disease animal
models [68]. Recently, different new molecules have been
tested and found to be promising NLRP3 inflammasome in-
hibitors. Among these, MCC950 or CP-456773, is a diaryl
sulfonylurea that is a selective inhibitor of NLRP3 thanks
to its ability to bind the NACHT site, thereby interfering
with the NLRP3 binding capacity for adenosine diphos-
phate (ADP)/ATP, reducing its ATPase activity, and lead-
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ing to lower maturation and release of IL-1/3 [69,70]. Sev-
eral preclinical studies have demonstrated MCC950 possi-
ble application in different inflammatory chronic diseases,
such as asthma [71], atherosclerosis [72] and influenza A
viral infection [73], on in vitro and in vivo models on the
basis of its ability to reduce inflammasome activation and
decreasing the secretion of pro-inflammatory cytokines,
such as IL-18, IL-13 and IL-1a. Moreover, it was proved
that MCC950 can show a neuronal protective effect in a
mouse model of traumatic brain injury [74] and in dia-
betic rats after stroke [75]. Evidence demonstrated that
MCC950 enhanced also the blood brain barrier and vas-
cular integrity by reducing the endothelial NLRP3 expres-
sion [76]. In a study investigating the activity of MCC950
in porcine myocardial infarction models, a dose-dependent
reduction of intra-myocardial IL-13 was shown, leading
to lower size of the infarction site and preservation of the
cardiac function [77]. In rheumatoid arthritis, pharmaco-
logical inhibition of MCC950-mediated NLRP3 inflamma-
some could also provide new therapeutic strategies; how-
ever, a small clinical study showed an increased risk of
MCC950-related hepatotoxicity, leading to the discontin-
vation of the study [78]. Both in vitro and in vivo evi-
dence demonstrated that fadraciclib (also known as CY-09)
is a small benzothiazole-derived molecule presenting spe-
cific inhibitory activity against NLRP3 through its ability to
bind the NLRP3 inflammasome NACHT domain, prevent-
ing its oligomerization and consequent inflammatory acti-
vation [70]. In a study on hepatic steatosis in mice, CY-09
showed also a promising activity on the reduction of insulin
resistance and weight gain [79]. CY-09 can be also used for
the treatment of different NLRP3-correlated diseases, like
gout, where it was associated with a dose-dependent reduc-
tion of IL-14 and caspase-1 levels [80], diabetic nephropa-
thy, where it seemed to protect kidney from hyperglycemia
damage [81] and thrombosis, where CY-09 therapy low-
ered platelet aggregation on in vivo models [82]. A re-
cent in vivo study showed that the benzoxazolone acetamide
analogue C77 inhibited NLRP3 through the binding of the
NACHT domain in brain regions, such as cortex, front cor-
tex, hippocampus, and cerebellum of mice presenting neu-
rodegenerative disease [83]. Both in vitro and in vivo stud-
ies identify dapansutrile (also known as OLT1177), a (-
sulfonylnitrile compound, as a specific inhibitor of NLRP3
inflammasome thanks to its ability to block ASC recruit-
ment and NLRP3 oligomerization [84]. This molecule re-
sulted safe in both mice and humans during preclinical and
phase I trials, reducing IL-13 and IL-18 release [84]. A
subsequently phase II trial showed the OLT1177 effect on
gout flare and in osteoarthritis: in 18-80 years patients
with monoarticular monosodium urate crystal-proven gout
flare, the oral administration of OLT1177 reduced the joint
pain and inflammation, whereas in osteoarthritis, a topical
preparation of OLT1177 alleviated severe knee pain [85].
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Also hydroxybutyrate, an endogenous ketone body,
showed inhibitory action on NLRP3 inflammasome prob-
ably by decreasing intracellular potassium. In a cryopyrin-
associated periodic syndromes murine model, the oral de-
livery of exogenous hydroxybutyrate abolished inflamma-
tion [86]; in addition, in a gout murine model it blocked
NLRP3 priming and activation phases in neutrophils [87].
Furthermore, inzomelid (also known as emlenoflast or
MCC7840) is able to bind the NACHT site of NLRP3 and
showed a successful outcome in a phase I trial for a pa-
tient with cryopyrin associated periodic syndrome [61]. Re-
cently an innovative approach of NLRP3 modulation us-
ing an antisense oligonucleotide to target NLRP3 encoding
pre-mRNA was used in mice model, resulting in NLRP3
levels reduction with consequent systematic inflammation
decrease [88].

Collectively, the reported evidence highlights the im-
portance of pharmacological NLRP3 modulation for regu-
lating inflammatory processes in several disease conditions,
and further studies are required to improve both the under-
standing of their molecular action and to investigate their
potential clinical applications. In particular, it will be nec-
essary to understand the clinical relevance of the reported
molecules in the landscape of inflammatory diseases ther-
apy through clinical trials, which will be essential to clar-
ify the drug differences in efficacy and safety compared to
existing treatments. This kind of studies may also be able
to guide the clinical practice, determining how patient and
clinical parameters, such as patient age and disease severity,
may influence drug effectiveness and toxicity.

6. The Role of NLRP3 Inflammasome in the
Drug-Induced Toxicity

Recently emerged evidence indicates that NLRP3
pathway may be involved in the development of drug re-
lated side effects and its inhibition may represent a possible
strategy to overcome drug-induced toxicity [89]. While the
liver and kidney are the organs most frequently involved in
adverse drug reactions, the heart, lung, skin, gastrointestinal
tract, hematological system, and nervous system may also
be affected by drug-induced toxicity [89]. Although the
exact molecular mechanisms involving NLRP3 role in the
landscape of drug-related toxicity is not completely clear,
several studies have been performed confirming the impor-
tance of inflammasome in the modulation of drug adverse
reactions, leading to hepatotoxicity or nephrotoxicity. This
review provides a comprehensive overview of NLRP3’s in-
volvement in drug-related side effects, with special empha-
sis on hepatotoxicity and nephrotoxicity, conditions affect-
ing the primary organs responsible for drug metabolism and
excretion.
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7. The Impact of NLRP3 Inflammasome in
Drug-Mediated Hepatotoxicity

Different studies demonstrated the key role of the
NLRP3 inflammasome pathway in acetaminophen-related
liver injury. In particular, in vivo experiments detected
higher expression levels of both NLRP3 and IL-15 in
acetaminophen-treated mice liver and hepatic cell lines
[90,91] and the knock-out of NLRP3 inflammasome com-
ponents reduced the hepatotoxicity after acetaminophen
treatment [91].  Consistently, the presence of genetic
deficiencies in NLRP3 inflammasome components was
found to be associated with a lower risk of acetaminophen
(paracetamol)-induced liver injury [92]. In addition, studies
performed on pediatric patients presenting acetaminophen-
related hepatotoxicity or patients with acetaminophen over-
dose showed increased serum levels of inflammatory cy-
tokines, and monitoring their levels could be considered a
promising biomarker to determine the patient’s prognosis
[93,94]. Similarly, the anticonvulsant drug phenytoin, used
for the treatment of epilepsy, may produce drug-induced
liver injury characterized by hepatic necrosis [95]. Sasaki
et al. [96] generated an in vivo model to study this type of
hepatotoxicity, showing increased NLRP3, HMGBI, and
IL-18 liver expression in mice presenting this condition.
Evidence also demonstrated a role of NLRP3 inflamma-
some in the development of hepatotoxicity related to the
therapy with triptolide, an immunomodulator derived from
traditional Chinese medicine [97]. An in vivo study showed
that the triptolide-related liver injury was accompanied by
higher levels of both serum transaminases and tissue neu-
trophil infiltration, presenting time-dependent activation of
the NLRP3 inflammasome pathway and ROS production
[98]. The mice pre-treatment with an inhibitor of caspase-
1, Ac-YVAD-CMK, which can block NLRP3 inflamma-
some activation [99], decreased neutrophil infiltration and
the production of pro-inflammatory cytokines, such as IL-
13, TNF-q, IL-6, and Monocyte Chemoattractant Protein-1
(MCP1) [98], underlying the importance of the NLRP3 in-
flammasome pathway in triptolide-induced hepatotoxicity.
Moreover, increased activation of NLRP3 was associated
with drug-related hepatotoxicity after therapy with azathio-
prine [100], carbamazepine [101], and isoniazid [ 102], con-
firming the role of NLRP3 inflammasome activation in the
development of these adverse reactions and highlighting the
importance of monitoring NLRP3 levels, which are crucial
for determining the inflammatory status of a tissue and for
detecting possible toxicities. Similar situations may occur
in the kidney, as described in the next section.

8. The Role of NLRP3 Inflammasome in
Drug-Related Nephrotoxicity

A comparable situation was identified for drug-related
nephrotoxicity, which is characterized by increased NLRP3
inflammasome levels: augmented NLRP3 expression and

consequent increase in pro-inflammatory cytokines were
found in both renal tubular and glomerular cells after cis-
platin treatment in several in vivo models [103,104]. Zhang
et al. [105] demonstrated an increased amount of puriner-
gic 2X7 receptor (P2X7R), involved in apoptosis and in-
flammation in the renal tubular epithelial cells of mice
presenting cisplatin-induced nephrotoxicity. In contrast,
pre-treatment with A-438079, an experimental antagonist
of P2X7R, significantly alleviated both cisplatin-induced
renal damage and the inflammatory response in the kid-
ney, reducing NLRP3, ASC, caspase-1, and ROS lev-
els [105]. Furthermore, it was found that the caspase-1
inhibitor quinoline-Val-Asp-difluorophenoxymethylketone
(QVD-OPH) protected tubular epithelial cells from necrosis
after cisplatin treatment and was associated with lower lev-
els of caspase-1, IL-1a, and IL-18 [106]. An in vivo study
demonstrated that during liver and kidney injury, autophagy
also plays a role in the modulation of NLRP3: autophagy
reduces NLRP3 availability, thereby affecting its assem-
bly and activation. The cisplatin-mediated inhibition of au-
tophagy may be the basis of the NLRP3 activation in drug-
related nephrotoxicity [107]. It was found that nephrotoxic-
ity and cell apoptosis were lower in mice presenting NLRP3
silencing, which was related to increased autophagy, cel-
lular response to hypoxia, and mitochondrial oxidation
[108]. Similar in vivo evidence of the NLRP3 involve-
ment in drug-related adverse reactions was detected in a rat
model for aminoglycoside gentamicin-induced kidney in-
jury, which was associated with higher NLRP3, caspase-1,
IL-15 and TNF-« levels. Interestingly, anti-inflammatory
factor C1qg/tumor necrosis factor-related protein 6 (CTRP6)
reversed the NLRP3 inflammasome activation in a dose-
dependent manner in rats presenting gentamicin-induced
acute kidney injury [109]. NLRP3 also seems to be in-
volved in nephrotoxicity induced by methotrexate: in vivo
evidence showed that this adverse reaction was associated
with the renal overproduction of ROS and NF-xB upreg-
ulation, leading to higher NLRP3 inflammasome activa-
tion, caspase-1 activation and release of IL-15 [110]. These
data on nephrotoxicity highlighted the key role of NLRP3
inflammasome activation in the landscape of drug-related
side effects and identified the possible inflammatory play-
ers involved in the consequent inflammatory status.

Taken together, the reported observations on both hep-
atotoxicity and nephrotoxicity described the possible mech-
anisms by which NLRP3 is modulated during drug-related
adverse reactions, suggesting the importance of monitor-
ing NLRP3 levels to predict these side effects and coun-
teract them rapidly with different strategies, such as treat-
ing patients with NLRP3-inhibiting molecules. Also, the
ability to predict the onset of drug-related side effects is
fundamental to improving the outcome of pharmacological
treatments related to the inflammatory status mediated by
NLRP3 activity. In this context, NLRP3 methylation level
detection consists of a possible biomarker to improve the
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Fig. 2. NLRP3 methylation as a glucocorticoid response biomaker. Schematic representation of the NLRP3 promoter methylation

level as a regulator of glucocorticoid response.

anti-inflammatory precision therapy, as deeply described in
the next paragraph.

9. NLRP3 Level as a Biomarker for Drug
Efficacy and Response

The importance of NLRP3 expression and activity
in the inflammatory processes and their modulation has
been thoroughly demonstrated. Indeed, the potential role
of NLRP3 as a biomarker for clinical disease manage-
ment has been investigated in various inflammatory syn-
dromes. Currently, different inflammatory markers, such
as C-reactive protein (CRP), TNF-«, IL-18, and IL-15 cy-
tokines, can be used as prognostic factors in several dis-
eases [111-113]. NLRP3 levels have become a new possi-
ble disease prognostic marker in different pathological con-
ditions. It was recently demonstrated that NLRP3 inflam-
masome levels were associated with the prognosis of 297
acute coronary syndrome adult elderly patients with differ-
ences in sex, smoking status, hypertension, previous med-
ication history and clinical parameters. NLRP3 inflamma-
some levels were independent predictive factor for other
acute coronary syndrome prognostic factors, such as TRS-
2P, underlying its efficacy as a disease biomarker [114],
whereas another study found that NLRP3 methylation may
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predispose to depression-related brain structural changes by
increasing NLRP3 inflammasome activity [115].

In recent years, different studies have evaluated the
possible impact of genetic and epigenetic factors that mod-
ulate NLRP3 levels, demonstrating their ability to pre-
dict anti-inflammatory therapy response in different dis-
ease conditions. In particular, epigenetic factors, such as
DNA methylation, change with growth [116] and modulate
the expression of different genes involved in drug response
[117,118]. Similarly, NLRP3 methylation levels have been
investigated to evaluate their potential as biomarkers for
glucocorticoid therapy response. Paugh ef al. [119] identi-
fied for the first time the mechanism underlying the epi-
genetic regulation of the NLRP3 inflammasome in rela-
tion to glucocorticoid resistance in pediatric patients with
acute lymphoblastic leukemia. In particular, the authors
found that the level of promoter methylation of both NLRP3
and caspase-1 regulates glucocorticoid receptor amount,
thereby modulating cell sensitivity to steroids (Fig. 2). It
was shown that the overexpression of caspase-1 in a hu-
man leukemia cell line resulted in the cleavage of the gluco-
corticoid receptor, diminishing the glucocorticoid-induced
transcriptional response and leading to higher drug resis-
tance. The caspase-1 silencing or inhibition significantly
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increased glucocorticoid receptor levels, mitigating steroid
resistance. They also demonstrated the fundamental role
of NLRP3 in drug resistance modulation: the overexpres-
sion of CASP-1 alone, without activation via NLRP3, was
not sufficient to alter leukemic cells’ sensitivity to gluco-
corticoids [119]. Consistently, Lucafo ef al. [120] iden-
tified a correlation between NLRP3 promoter methylation
levels and glucocorticoid-resistance in both adult and pedi-
atric patients with idiopathic nephrotic syndrome. NLRP3
promoter methylation was significantly lower in steroid-
resistant patients. Interestingly, on in vitro models, NLRP3
knock-down increased glucocorticoid sensitivity, whereas
higher NLRP3 inflammasome activation led to a glucocor-
ticoid receptor reduction, which was the basis of higher cel-
lular drug resistance, thereby demonstrating a new molec-
ular mechanism underlying steroid resistance in patients
with idiopathic nephrotic syndrome [120]. The ability of
NLRP3 methylation to serve as a good biomarker of glu-
cocorticoid response was also reported in IBD patients
[121]. Recent results demonstrated that steroid response
is significantly associated with lower NLRP3 methylation
levels in pediatric IBD patients. Moreover, the patients’
disease activity score negatively correlated with NLRP3
methylation before starting the therapy and after 1 month
of methylprednisolone treatment. However, no significant
association between the patients’ disease activity score or
steroid response and NLRP3 methylation levels was found
in adults IBD patients, whereas in those subjects, a signif-
icant positive correlation between age and NLRP3 methy-
lation emerged, indicating that this epigenetic modification
of NLRP3 changes throughout the patients’ lifespan with
different clinical implications for pediatric and adult IBD
forms [121].

Several recent studies have demonstrated other pos-
sible epigenetic mechanisms underlying the modulation of
NLRP3 levels and affecting the drug response. Dai et al.
[122] found that the IncRNA LINC00969 promotes gefi-
tinib resistance in tumoral in vitro and in vivo models, af-
fecting the levels of NLRP3 transcriptional m6A modifi-
cation, which is an RNA post-transcriptional modification
important for gene expression regulation, tumorigenesis,
and drug resistance [123]. In particular, higher expression
of LINC00969 in lung cancer cells with acquired gefitinib
resistance could be due to the ability of this IncRNA to
modulate the NLRP3 promoter transcriptionally and mod-
ify NLRP3 m6A levels. These alterations reduce inflam-
masome expression and block the NLRP3-mediated pyrop-
tosis signaling pathway, promoting cancer drug resistance
[122]. PTEN is a tumor suppressor that affects NLRP3 ac-
tivation by directly stimulating its assembly or negatively
regulating the PI3K/AKT signaling pathway, which regu-
lates NLRP3 phosphorylation [124]. Meanwhile, BRCC3
is a deubiquitinase able to promote inflammasome phos-
phorylation by removing ubiquitin chains from specific ly-
sine residues on NLRP3 [44]. Interestingly, Cheng and col-

leagues [125] detected that microRNA-21 blocks the ex-
pression of PTEN and BRCC3, inhibiting NLRP3 inflam-
masome assembly and stimulating cancer cell drug resis-
tance to cisplatin. Furthermore, several studies have identi-
fied the epigenetic modulation of NLRP3 levels as crucial
for insulin resistance [126,127].

Together, the reported evidence highlights the crucial
effect of NLRP3 level regulation, particularly by epigenetic
factors, in predicting the pharmacological response to sev-
eral therapies used for different pathologies presenting sim-
ilar inflammatory characteristics. Indeed, further studies
are required to deeply investigate the epigenetic regulation
mechanisms affecting inflammasome levels to confirm the
potential role of NLRP3 levels as possible pharmacological
biomarkers able to predict drug efficacy.

10. Conclusions

This review thoroughly describes the crucial role of
NLRP3 inflammasome in innate immune system activa-
tion and inflammation modulation. As reported, NLRP3
tight regulation is sustained by several cellular, genetic
and epigenetic mechanisms, and its dysregulation is associ-
ated with several cancerous and chronic inflammatory dis-
eases, including IBD, arthritis, gout, Alzheimer’s disease
and type-2 diabetes. Several pharmacological compounds
have been identified as NLRP3 modulators in vitro and in
vivo models, and some of them have undergone clinical tri-
als; however, further studies and trials are required to fully
elucidate how these drugs can improve the existing thera-
pies for inflammatory diseases both in terms of efficacy and
safety.

A critical need exists for developing reliable pharma-
cological biomarkers that can predict patient responses to
anti-inflammatory drugs. This review synthesizes emerg-
ing evidence supporting NLRP3 levels as promising candi-
dates for personalizing therapeutic approaches, particularly
for anti-inflammatory treatments that serve as primary in-
terventions across multiple inflammatory pathologies.

Together, the collected evidence indicates that NLRP3
methylation level represent a reliable biomarker of phar-
macological steroid response across multiple inflamma-
tory disorders, highlighting its potential translatability-
across different inflammatory pathologies that require anti-
inflammatory treatments.
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