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Abstract

Background: Primary liver cancer (PLC) exhibits a high incidence and mortality rate. Early diagnosis and effective treatment are
crucial for improving patient survival rates. This study aims to identify biomarkers of hepatitis B-related liver cancer and establish a new
method for molecular subtype classification based on differential metabolite-related regulatory gene expression profiles. Methods: This
study collected sterile midstream urine samples from patients with hepatitis B-related liver cancer who had not received standardized
systematic antiviral therapy or anticancer therapy, as well as from healthy controls. Potential biomarkers were identified through liquid
chromatography-tandemmass spectrometry (LC-MS/MS)-basedmetabolomics, followed by Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis performed on the differential metabolites. Gene expression data of 371 hepatocellular carcinoma (HCC)
samples in The Cancer GenomeAtlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database were clustered using gene annotations for
differential metabolites derived from the HumanMetabolome Database (HMDB). The Kaplan-Meier (KM) survival curve was employed
to assess the prognosis of different HCC molecular subtypes. Expression differences of subtype-specific genes and their enrichment in
Hallmark, KEGG and Gene Ontology (GO) pathways were analyzed. The Tumor Immune Dysfunction and Exclusion (TIDE) scoring
tool was used to evaluate the subtypes’ response to immunotherapy. Sensitivity to sorafenib was also compared across the different
subtypes. Result: A total of 53 differential metabolites were identified (p< 0.01), which were significantly enriched in seven metabolic
pathways (p < 0.05). Three potential biomarkers were discovered: Suberic acid, 2′-O-methylcytidine, and 3′-Sialyllactose. Regulatory
genes associated with these differential metabolites clustered HCC samples from the TCGA-LIHC database into two molecular subtypes
(C1 and C2). KM survival analysis indicated that patients in the C2 subtype exhibited higher overall survival compared to those in C1.
Differential genes between the two subtypes were significantly enriched in Hallmark, KEGG and GO pathways. The TIDE scoring tool
revealed a higher likelihood of immune escape in C1 subtype patients. Molecular targeted drug analysis suggested that sorafenib may be
more effective in patients with the C1 subtype. Conclusions: Suberic acid, 2′-O-methylcytidine, and 3′-Sialyllactose hold promise as
metabolic biomarkers for hepatitis B-related liver cancer. Understanding the diversity of the human liver cancer gene expression profile
from a metabolomic perspective has potential applications for developing novel clinical treatment strategies.
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1. Introduction

Primary liver cancer (PLC) is a common type of can-
cer, with hepatocellular carcinoma (HCC) being the most
prevalent. This condition is marked by high malignancy,
subtle onset, and the absence of accurate early diagnosis
and treatment indicators [1,2]. The mortality of HCC is
high and the 5-year survival rate needs to be improved [3].
Metabolic reprogramming is frequently observed in tumor
cells, where significant alterations in metabolic pathways
occur to support their rapid growth, survival, and prolifer-
ation. HCC is characterized by metabolic reprogramming
[4], particularly glucose metabolic reprogramming, which

is fundamental to HCC progression [1]. Hepatitis B virus
(HBV) is still the main pathogenic factor of liver cancer
in China [5]. Effective and timely screening, diagnosis,
and treatment of hepatitis B-related liver cancer are critical
components of liver cancer management in China.

Current diagnostic methods for HCC have limitations,
and blood samples are commonly used for the detection and
exploration of disease biomarkers. Pathology remains the
most trusted diagnostic tool for identifying early-stageHCC
and its precancerous lesions [6]. Urine, as a non-invasive
diagnostic modality, provides greater potential for the in-
vestigation ofHCCbiomarkers [7]. Urine serves as a source
of early biomarkers sensitive to physiological changes, re-
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flecting subtle and early-stage alterations in body function
[8]. Currently, the study of urine metabolites for hepati-
tis B-related liver cancer remains in the exploratory stage.
Studying the changes of its metabolites can understand the
metabolic abnormalities of the liver, which is helpful for
early diagnosis, screening, monitoring, and prognosis eval-
uation of the disease. Analyzing the characteristic metabo-
lites in patients’ urine provides new insights into the iden-
tification of metabolic biomarkers for liver cancer and po-
tential therapeutic targets [9].

This study aims to investigate diagnostic biomark-
ers and perform subtype analysis of PLC. Using liquid
chromatography-tandem mass spectrometry (LC-MS/MS)-
based untargeted metabolomics, we analyzed the metabolic
profiles of urine metabolites in patients with hepatitis B-
related liver cancer and healthy controls. Our objective is
to identify potential metabolic biomarkers with high sen-
sitivity and specificity for hepatitis B-related liver cancer,
as well as to explore the characteristics of different HCC
subtypes from the perspective of urinary metabolites. This
study hopes to bring new insights into the non-invasive di-
agnosis and molecular characteristics of PLC.

2. Materials and Methods
2.1 Study Subjects

This study collected urine samples from 10 patients
with hepatitis B-related liver cancer and 8 healthy con-
trols. The inclusion criteria for patients were as follows:
(1) patients with a clinical diagnosis of PLC, with a con-
firmed history of HBV infection. Currently, both Hepatitis
B Surface Antigen (HBsAg) and HBV DNA are positive,
with HBsAg and/or HBV DNA positivity persisting for
more than 6 months. (2) These patients have not received
standardized and systematic antiviral therapy for HBV, nor
have they undergone antitumor treatments such as surgery,
radiotherapy, chemotherapy, or immunotherapy. The in-
clusion criteria of the healthy control group are as follows:
(1) subjects had no history of HBV infection, hypertension,
diabetes, or other relevant conditions; (2) liver function and
alpha-fetoprotein (AFP) results were within normal limits;
(3) ultrasound examination confirmed no significant abnor-
malities in the liver, kidneys, and pancreas. Exclusion cri-
teria are as follows: (1) subjects with chronic liver diseases
of other etiologies, including drug-induced liver disease, al-
coholic liver disease, non-alcoholic fatty liver disease, au-
toimmune liver disease, and metabolic liver disease; (2)
subjects with secondary liver cancer, other malignancies or
severe kidney disease. Two sets of routine test results were
collected, with AFP measured using the Abbott ARCHI-
TECT i2000SR system (Abbott Laboratories, Chicago, IL,
USA) and routine biochemical assays conducted using the
Abbott ARCHITECT c16000 system (Abbott Laboratories,
Chicago, IL, USA).

2.2 Sample Processing and Extraction
Midstream urine samples were aseptically collected

from all participants, followed by centrifugation at 3000
rpm for 10 min at 4 °C. The resulting supernatant was
aliquoted into cryovials and stored at –80 °C until analy-
sis. For quality control, a pooled sample was created by
combining equal volumes of urine from each individual.

Following collection, the urine samples were thawed
at 4 °C. An aliquot of each sample was then transferred into
a pre-cooled solution of methanol (catalog number A456-
4, Fisher Scientific, Waltham,MA,USA)/acetonitrile (cata-
log number 1499230-935,MerckKGaA,Darmstadt, Hesse,
Germany)/water (catalog number W6-4, Fisher Scientific,
Waltham, MA, USA) (2:2:1, v/v). After thorough vortex-
ing, the mixtures were sonicated at low temperature for 30
min. The sample was kept under frozen conditions (–20 °C)
for 10 min, followed by low-temperature high-speed cen-
trifugation at 14,000 g for 20 min at 4 °C. The supernatant
was then vacuum-dried.

The vacuum-dried samples were reconstituted in 100
µL acetonitrile/water (1:1, v/v) solvent. The mixtures were
then centrifuged at 14,000 g for 15 min at 4 °C. Finally, the
supernatant was analyzed by mass spectrometry.

2.3 Metabolomics Detection and Data Analysis
Throughout the analytical process, all samples were

maintained at 4 °C in the autosampler for continuous anal-
ysis in a random order. Analysis was performed using a
UHPLC (Agilent 1290 Infinity LC, Agilent Technologies,
Santa Clara, CA, USA) equipped with a HILIC column
(ACQUITY UPLC BEH Amide, Waters Corporation, Mil-
ford, MA, USA) and coupled to a quadrupole time-of-flight
(AB Sciex TripleTOF 6600, AB Sciex Pte. Ltd., Framing-
ham, MA, USA). The column temperature was maintained
at 25 °C. The mobile phase consisted of A = 25 mM am-
monium acetate (catalog number 73594, Sigma-Aldrich, St.
Louis, MO, USA) and 25 mM ammonium hydroxide (cat-
alog number A470-500, Fisher Scientific, Waltham, MA,
USA) in water, and B = acetonitrile. A constant flow rate
of 0.5 mL/min was applied, and the injection volume was 2
µL.

Raw data files were converted into MzML format
using ProteoWizard (version 3.0.6428, https://proteowiza
rd.sourceforge.io/), and then processed using the XCMS
online (version 3.7.1, https://xcmsonline.scripps.edu/) pro-
gram for peak alignment, retention time correction, and
peak area extraction. The molecular feature peaks of
the samples were annotated with metabolites by referenc-
ing public databases such as Mass Bank (https://massba
nk.eu/MassBank/), Metlin (https://metlin.scripps.edu/), and
MoNA (https://mona.fiehnlab.ucdavis.edu/), in conjunc-
tion with a secondary mass spectrometry database. To es-
tablish gene-metabolite associations, we queried the Hu-
man Metabolome Database (HMDB, https://hmdb.ca) and
restricted the analysis to high-confidence pairs with ex-
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Table 1. Clinical characteristics of healthy controls and patients.
Variables Healthy controls (n = 8) Ca (n = 10) p-value

Age (years) 51.00 ± 4.66 55.50 ± 11.22 0.271
Male/female 4/4 7/3 0.630∗

AFP (ng/mL) 3.13 (2.09~3.57) 607.49 (14.94~1200.00) 0.002
TP (g/L) 71.30 ± 2.98 66.78 ± 4.70 0.031
ALB (g/L) 44.66 ± 2.25 35.58 ± 6.07 0.001
TBIL (µmol/L) 15.70 (11.85~19.58) 17.55 (12.70~21.60) 0.307
DBIL (µmol/L) 4.30 (3.38~4.50) 6.10 (4.08~7.40) 0.029
ALT (U/L) 7.50 (5.25~13.00) 53.50 (47.75~88.00) 0.001
AST (U/L) 16.50 ± 4.17 75.70 ± 40.48 0.001
GGT (U/L) 15.50 (12.00~23.25) 172.50 (72.50~310.00) 0.001
*, Categorical variables were analyzed using Fisher’s exact test. Quantitative variables
were first assessed for normality; if normally distributed, the data were expressed as
mean± SD. If the data were not normally distributed, they were expressed as M (P25–
P75). Abbreviations: AFP, alpha-fetoprotein; TP, total protein; ALB, albumin; TBIL,
total bilirubin; DBIL, direct bilirubin; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, gamma-glutamyl transferase.

plicit experimental evidence (e.g., enzyme- or transporter-
related), supported by in vitro, clinical, or validated bioin-
formatic studies.

2.4 Statistical Analysis
Clinical data were analyzed using SPSS26.0 (IBM

Corp., Armonk, NY, USA). For categorical variables, in-
tergroup comparisons were conducted using Fisher’s ex-
act test. The quantitative variables were first assessed
for normality, and then analyzed using parametric or non-
parametric tests, as appropriate. Metabolomics data were
analyzed using R packages, such as pheatmap (version
1.0.12, https://cran.r-project.org/web/packages/pheatmap/i
ndex.html), gmodels (version 2.18.1, https://cran.r-proje
ct.org/web/packages/gmodels/index.html), ropls (version
1.7.2, https://bioconductor.org/packages/release/bioc/html/
ropls.html), and pROC (version 1.15.3, https://cran.r-pro
ject.org/web/packages/pROC/), among others. Molecular
subtyping analysis was performed using R software (ver-
sion 4.0.3, https://www.r-project.org/).

3. Results
3.1 Characteristics of the Study Population

Table 1 presents the basic clinical data of the healthy
population and patients with hepatitis B-related liver can-
cer. The results indicate that there were no statistically
significant differences in age and gender between the two
groups (p> 0.05). Compared to the healthy population, the
liver cancer group exhibited significantly elevated levels
of AFP, direct bilirubin (DBIL), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and gamma-
glutamyl transferase (GGT), while total protein (TP) and
albumin (ALB) levels were significantly decreased (p <

0.05).

3.2 Construction and Validation of Urine Model Based on
PCA and OPLS-DA

On the principal component analysis (PCA) plot, the
quality control samples were densely distributed, with sig-
nificant differences between the two groups and good re-
peatability within each group (Fig. 1A,B). The orthogonal
partial least square discriminant analysis (OPLS-DA) score
plot indicated R2X= 0.213, R2Y= 0.962, andQ2Y= 0.556,
demonstrating that the established model has a good predic-
tive ability (Fig. 1C). The permutation test plot confirmed
the reliability of the OPLS-DA model (Fig. 1D).

3.3 Screening of Differential Metabolites in Urine and
KEGG Enrichment Analysis

The criteria for screening differential metabolites in
this study were as follows: variable importance in the pro-
jection (VIP) ≥1 in the OPLS-DA model and p < 0.01
in the t-test. A total of 53 differential metabolites were
identified, including 44 significantly upregulated and 9 sig-
nificantly downregulated metabolites. Among them, 36
metabolites were annotated in the HMDB and classified
accordingly (Fig. 2A). A volcano plot was utilized to il-
lustrate the expression levels of differential metabolites be-
tween the groups (Fig. 2B). VIP plots show the importance
of metabolites and their contribution to sample discrimina-
tion (Fig. 2C). The Z-score plot of differential metabolites
(MS2 level) was employed to assess the relative content of
metabolites at the same level (Fig. 2D). Table 2 lists the
top 20 differential metabolites based on VIP values, where
a higher VIP value indicates a greater contribution of the
metabolite in distinguishing between the compared groups.

A Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis was performed on the 53
differential metabolites between the comparison groups,
identifying 35 enriched metabolic pathways. A bub-
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Fig. 1. PCA and OPLS-DA urinary models distinguish populations between the comparison groups. (A,B) PCA model plot in
positive and negative ion mode. (C) OPLS-DA model score plot. (D) OPLS-DA model permutation test plot. PCA, principal component
analysis; OPLS-DA, orthogonal partial least square discriminant analysis.

ble plot of the top 15 significantly enriched pathways
was generated based on the p-values (Fig. 2E). Addition-
ally, an enrichment circle plot was generated to illus-
trate the significance of the top 15 metabolic pathways
based on p-values, as well as the number of upregulated
and downregulated metabolites, and the metabolites ra-
tio (Fig. 2F). Seven metabolic pathways exhibited signif-
icant differences (p < 0.05), including the pantothenate
and CoA biosynthesis, 2-oxocarboxylic acid metabolism,
butanoate metabolism, cyanoamino acid metabolism, mi-
crobial metabolism in diverse environments, nicotinate and
nicotinamide metabolism, glycine, serine and threonine
metabolism.

3.4 Metabolomics-Based Potential Urinary Biomarkers
for Hepatitis B-Related Liver Cancer

In this study, receiver operating characteristic (ROC)
curve analysis was employed to assess the performance

of the selected differential metabolites by calculating their
area under the curve (AUC) values (Fig. 3). A ten-fold
cross-validation was conducted, and the mean AUC val-
ues were computed to reduce the risk of model overfitting.
The results revealed that the AUCmean values of three dif-
ferential metabolites were greater than 0.9, namely Suberic
acid, 2′-O-methylcytidine, and 3′-Sialyllactose. Specifi-
cally, Suberic acid AUC = 1 (healthy controls, n = 8; liver
cancer, n = 10; 95%CI: 1.000~1.000). 2′-O-methylcytidine
AUC = 0.975 (95% CI: 0.930~0.945). 3′-Sialyllactose
AUC = 0.938 (95% CI: 0.942~0.956). Table 3 provides de-
tailed information on these three potential metabolic mark-
ers.

3.5 Identification and Prognostic Analysis of Molecular
Subtypes of HCC

By querying the HMDB database, we identified 53
differentially expressed metabolites and retrieved their an-
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Fig. 2. Differential metabolites in urine between different groups exhibit distinct characteristics. (A) Classification map of differ-
ential metabolites. (B) Volcano plot of differential metabolites. (C) VIP plot of differential metabolites. (D) Z-score plot of differential
metabolites. (E) KEGG enrichment bubble plot of differential metabolites. The size of the circle represents the number of differential
metabolites enriched in each pathway. (F) Metabolic pathway circle plot. VIP, variable importance in the projection; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

notated gene information. This resulted in a final set of 98
metabolite-related regulatory genes, including enzymes and
proteins. The metabolic regulatory genes were then sub-
jected to consistent clustering with gene expression data

from 371 HCC samples in The Cancer Genome Atlas-Liver
Hepatocellular Carcinoma (TCGA-LIHC) database. When
K = 2, two stable clusters were generated, and the matrix
heatmap divided HCC into two molecular subtypes, C1 and
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Table 2. The top 20 differential metabolites of VIP value.
Metabolite log2FC p-value VIP RT m/z

Pentachlorophenol 1.319670893 0.005193234 15.87797916 0.753 263.02308
(-)-atropine 1.300709850 0.004324274 12.58696117 6.976 290.15969
Prostaglandin e3 –2.085074706 0.004407285 10.26758020 3.643 331.17628
Methapyrilene 0.697147177 0.000366731 10.11932463 7.049 262.12846
Hetisine 0.805211339 0.003716509 7.318897691 4.097 330.22736
Indole-3-acetamide 2.716237334 0.002617423 7.177248219 7.002 175.07133
3,4-dihydroxycinnamic acid (l-alanine methyl ester) amide 2.072153586 0.004808742 6.590770361 0.888 232.05928
Verruculotoxin 1.486965976 0.000645205 6.241679989 4.050 243.13503
Zaleplon 1.178122656 0.000781359 6.119466205 7.008 264.11886
His-Pro 0.620611090 0.009466142 5.952839278 2.584 235.11890
Alpha-ketoisovaleric acid 0.860165726 0.006610992 4.601905686 2.242 115.04007
Maleic acid 0.778322529 0.001799395 4.303796919 0.871 115.00370
Mandelonitrile 1.160697155 0.003412904 4.065987293 1.053 134.08119
Tamoxifen 2.527436553 0.009707497 3.553467422 5.745 372.23808
Perillaldehyde 2.289121455 0.006801001 3.534889206 3.409 169.13351
Ser-Ala 1.640677069 0.009690771 3.039145470 2.988 177.06581
Agnuside 2.091059830 0.003236282 2.967104677 0.882 465.12568
2-methylguanosine 1.123081135 0.007675389 2.739367426 3.601 296.10004
Indican 0.811175486 0.004991964 2.694630637 1.207 296.13521
Gentisic acid –0.945866373 0.007011832 2.647569997 1.771 153.01932
RT, retention time; VIP, variable importance in the projection.

Fig. 3. ROC curves of potential biomarkers. (A) ROC curve of Suberic acid. (B) ROC curve of 2′-O-methylcytidine. (C) ROC curve
of 3′-Sialyllactose. ROC, receiver operating characteristic.

C2 (Fig. 4A). The results revealed significant differences in
the expression of metabolic regulatory genes between the
two molecular subtypes. Kaplan-Meier (KM) analysis in-
dicated a statistically significant difference in overall sur-
vival between the subtypes (Fig. 4B, p < 0.05). Patients
with the C2 had significantly longer survival times and a
more favorable prognosis than those in the C1 subtype (p
< 0.05).

As shown in Table 4, significant differences in clin-
icopathological characteristics were observed between the
C1 and C2 subtypes. Specifically, the C1 subtype demon-
strated more aggressive features, including a significantly
higher proportion of high-grade (G3/G4) tumors (p <

0.001) and a more advanced T stage (p = 0.005). Conse-
quently, the clinical stage was significantly more advanced
in the C1 group (p = 0.001). This aggressive profile was
associated with a poorer clinical prognosis, reflected by a
significantly higher mortality rate in the C1 subtype (p =
0.01).

3.6 Pronounced Differences in Genes Expression Across
HCC Molecular Subtypes

Differentially expressed genes between the two sub-
types were selected based on |log2FoldChange| >1 and
p < 0.05. A volcano plot (Fig. 5A) was used to illus-
trate the differential genes between C1 and C2. The re-
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Table 3. Related information of potential metabolic markers.
Metabolite AUC AUC Mean ± SD Specificity Sensitivity Class HMDB p-value

Suberic acid 1 1 ± 0.000 1 1 Fatty Acyls HMDB0000893 0.004540413
2′-O-methylcytidine 0.975 0.938 ± 0.165 0.875 1 Pyrimidine nucleosides HMDB0242132 0.000120391
3′-Sialyllactose 0.938 0.949 ± 0.151 1 0.900 Organooxygen compounds HMDB0000825 0.000445886
AUC, area under the curve; HMDB, Human Metabolome Database.

Fig. 4. Construction and prognosis analysis of molecular subtypes in HCC. (A) Consensus matrix heatmap of molecular subtypes.
When K = 2 is the optimal number of clusters. (B) KM survival curve of molecular subtype. Patients in the C1 subtype had significantly
shorter overall survival than those in the C2 subtype (log-rank test, p < 0.05). HCC, hepatocellular carcinoma; KM, Kaplan-Meier.

sults revealed that 1894 genes, including CA9, KRT19,
and DOK1, were upregulated, while 438 genes, including
HPR, APOC3, and RTP3, were downregulated. A cluster-
ing heatmap was utilized to illustrate the differential ex-
pression of metabolism-related regulatory genes between
the transcriptomic results of the C1 and C2 HCC molecu-
lar subtypes (Fig. 5B). Enrichment analysis using the Hall-
mark gene set revealed significant differences between the
molecular subtypes in core pathways, such as the cell cy-
cle and metabolic reprogramming (Fig. 5C). KEGG enrich-
ment analysis highlighted potential signaling pathways in-
volved (Fig. 5D). Gene Ontology (GO) enrichment analy-
sis provided insights into the primary molecular functions
(MF), cellular components (CC), and biological processes
(BP) associated with the differential genes between the two
molecular subtypes (Fig. 5E–G). These findings indicate
that the subtype-specific genes are significantly enriched in
Hallmark, KEGG, and GO pathways.

3.7 Differential Sensitivity to Immune Therapy and
Targeted Therapy in HCC Molecular Subtypes

The Tumor Immune Dysfunction and Exclusion
(TIDE, http://tide.dfci.harvard.edu/) scoring tool was uti-
lized to evaluate the potential for immune evasion in the
two HCCmolecular subtypes, derived from signatures of T-

cell dysfunction and T-cell exclusion scores. Compared to
the C2 subtype, the C1 subtype demonstrated significantly
higher TIDE, Exclusion, and myeloid-derived suppressor
cell (MDSC) scores, alongside a lower microsatellite insta-
bility (MSI) score (Fig. 6A–E). These results indicate that
the C1 subtype is associated with a higher risk of immune
evasion, potentially due to the presence of a greater number
of immunosuppressive cells. Conversely, the C2 subtype,
characterized by higher MSI, showed increased sensitivity
to immunotherapy, suggesting a higher likelihood of clini-
cal benefit. Consequently, the C2 subtype is associated with
a more favorable prognosis, a conclusion supported by our
KM survival analysis.

This study analyzed the transcriptomic data of HCC
samples from different molecular subtypes using the Ge-
nomics of Drug Sensitivity in Cancer (GDSC, https://ww
w.cancerrxgene.org/) database (Fig. 6F, p < 0.05). The re-
sults indicate that the half maximal inhibitory concentra-
tion (IC50) of sorafenib was lower in patients of C1 sub-
type compared to those in the C2 subtype, suggesting that
sorafenib may exhibit enhanced efficacy in C1 subtype pa-
tients (p < 0.05). These findings imply that the sensitivity
of HCC patients to targeted anti-tumor therapies may differ
across molecular subtypes.
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Table 4. Comparison of clinical and pathological characteristics between subtypes C1 and C2.
Item Characteristics C1 C2 p-value

Living conditions
Alive 31 210

0.010
Dead 31 99

Age Mean ± SD 59.1 ± 12.8 59.5 ± 13.7 0.820

Gender
Female 26 95

0.117
Male 36 214

Race

American Indian 1 1

0.266
Asian 31 127
Black 1 16
White 29 155

T stage

T1 16 165

0.005

T2 20 72
T2a 1 –
T2b 1 –
T3 13 32
T3a 6 23
T3b 2 4
T4 3 10
TX – 1

N stage
N0 43 209

0.148N1 2 2
NX 16 98

M stage
M0 49 217

0.266MX 13 88
M1 – 4

Clinical stage

I 15 156

0.001

II 19 67
III – 3
IIIA 17 48
IIIB 2 6
IIIC 4 5
IV – 2
IVA – 1
IVB – 2

Tumor grade

G1 2 53

<0.001
G2 23 154
G3 33 89
G4 3 9

4. Discussion

The global mortality rate of hepatitis B-related liver
disease is high, and the burden of PLC remains heavy. The
early diagnosis and effective treatment of HCC are criti-
cal areas of focus, but they remain challenging. Traditional
treatments often result in resistance and/or a high rate of re-
currence [10,11], as well as other challenges, including tu-
mor heterogeneity, the immunosuppressive tumor microen-
vironment, and the lack of effective biomarkers. HCC is
the only solid tumor that can be diagnosed based on imag-
ing and epidemiological data without the need for patho-
logical confirmation [12]. Accurate diagnosis and person-
alized treatment of PLC are crucial, as they facilitate early

intervention. This approach is key to improving therapeu-
tic efficacy, optimizing treatment regimens, and ultimately
enhancing patient survival rates.

This study revealed significant differences in urinary
metabolites between healthy individuals and patients with
hepatitis B-related liver cancer. Understanding the pat-
terns of these urinary metabolite changes could facilitate
disease identification and diagnosis. The non-invasive di-
agnosis using urinary biomarkers holds significant appli-
cation value in evaluating and determining an individual’s
metabolic functional status [13]. Our research indicates that
Suberic acid, 2′-O-methylcytidine, and 3′-Sialyllactose in
urine potential as non-invasive urinary biomarkers for hep-
atitis B-related liver cancer. However, the study based on
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Fig. 5. Analysis of gene expression differences between molecular subtypes. (A) Volcano plot of differentially expressed genes
between C1 and C2 subtypes. (B) Clustering heatmap of differential metabolites. (C–G) Hallmark, KEGG, GO gene enrichment dotplot.
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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Fig. 6. Treatment prediction of molecular subtypes. (A) TIDE, Tumor Immune Dysfunction and Exclusion. (B) Exclusion. (C)
Dysfunction. (D) MDSC, myeloid-derived suppressor cell. (E) MSI, microsatellite instability. (F) Drug sensitivity analysis of sorafenib.
The scatter points represent individual patients from different subtypes. G1 represents the C1 subtype, and G2 represents the C2 subtype,
p = 0.019. * p < 0.05. The diamond symbols denote outlier samples.

a relatively small size has inherent limitations and may be
subject to optimism bias. We performed ten-fold cross-
validation with k = 10 and times = 200, which aims to
minimize this bias, although this constitutes internal vali-
dation only. In future studies, we plan to incorporate an ex-
ternal validation cohort to further verify these findings by
expanding the sample size, refining disease classifications,
and conducting stratified analyses, while also assessing the
stability of these biomarkers.

Suberic acid is not only synthesized by plants but
also generated endogenously within the human body [14].
During the development of HCC, alterations in the levels
of suberic acid may be closely associated with mitochon-
drial dysfunction and disturbances in fatty acid metabolism.
Cancer cells exhibit aberrant fatty acid metabolism, which
may lead to altered accumulation of certain metabolic in-
termediates, such as suberic acid. Tumor-derived extracel-
lular vesicles and particle-associated fatty acid cargo pro-
mote liver inflammation and the development of fatty liver
[15]. Dysregulation of lipid metabolism, a central feature
of liver cancer, promotes tumor growth and survival, while
pro-protein convertase subtilisin/kexin type 9 (PCSK9) in-
hibition induces excessive lipid accumulation, thereby en-
hancing cancer cell susceptibility to ferroptosis [16]. 2′-
O-methylcytidine, as a modified nucleotide, plays a cru-
cial role as an epigenetic marker, particularly in the devel-

opment of tumors and cancer. Extensive dysregulation of
intracellular RNA modifications may influence the trans-
lation efficiency of oncogenes or tumor suppressor genes,
thereby contributing to the pathogenesis of liver cancer.
In hepatitis B-related liver cancer, the replication of the
virus and the expression of its genes may be regulated
by RNA modification mechanisms. 2′-O-methylcytidine
is an effective inhibitor of hepatitis C virus (HCV) RNA
replication [17]. Its levels are significantly reduced in the
serum [18] and early urine samples [19] of breast can-
cer patients, while they are elevated in colorectal cancer
organoids, particularly in response to 5-fluorouracil treat-
ment [20]. Research has revealed notable differences in
the levels of 2′-O-methylcytidine between cancerous and
non-cancerous tissues [21]. 3′-Sialyllactose is an important
human milk oligosaccharide with significant immunomod-
ulatory effects [22], and it exhibits specific physiological
and biochemical functions across various tissues. It has
been shown to alleviate inflammation and reduce the devel-
opment of atherosclerosis [23], as well as provide protec-
tive effects against lipopolysaccharide (LPS)-induced lung
injury [24]. The liver is a major site for 3′-Sialyllactose
distribution and metabolism [25]. 3′-Sialyllactose, in syn-
ergy with B. infantis, promotes the biosynthesis of short-
chain fatty acids, enhancing intestinal barrier function and
suppressing local inflammation [26]. 3′-Sialyllactose may
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ameliorate liver diseases via mechanisms mediated by the
gut-liver axis. An increase in sialylation modification is
closely associated with the metastatic potential of HCC
cells and the establishment of an immunosuppressive mi-
croenvironment.

This study found that compared with healthy people,
patients with hepatitis B-related liver cancer had significant
changes in metabolic pathways such as cofactors and vita-
mins, carbohydrates, and amino acids. The sevenmetabolic
pathways enriched in this study encompass several hall-
mark features of metabolic reprogramming in liver can-
cer, collectively reflecting the adaptive alterations in en-
ergy supply, biosynthesis, and redox balance in liver can-
cer cells. HBV infection is a major risk factor for liver cir-
rhosis and HCC [27], significantly altering the metabolic
state of hepatocytes. Pantothenate and CoA biosynthesis
represent the most significantly altered metabolic pathways
in this study. Pantothenate is a precursor for CoA synthe-
sis, and its deficiency can impair CoA production, disrupt-
ing the formation of acetyl-CoA and its mediation of vari-
ous core metabolic processes. Acetyl-CoA can regulate the
expression of HCC tumor-initiating cells associated genes
through epigenetic mechanisms, such as enhanced acetyla-
tion of Histone H3 Lysine 27 (H3K27), thereby promoting
the initiation and progression of HCC [28]. Its metabolic
accumulation further accelerates HCCmetastasis [29]. The
significant enrichment of this pathway not only reflects se-
veremetabolic dysregulation in hepatitis B-related liver dis-
ease but also underscores its critical pathological role in the
malignant transformation of hepatocytes and the develop-
ment of liver cancer.

This study indicates that urinary metabolic profiles
can effectively classify HCC patients. The identification
of cancer subtypes is a fundamental cornerstone for achiev-
ing personalized diagnosis and treatment in cancer patients
[30]. The use of metabolism-related genes expression pro-
files has defined a new classification system for HCC, pro-
viding a framework to understand its genetic diversity [31].
Based on Hallmark and KEGG pathways enrichment analy-
ses, two distinct molecular subtypes exhibit significant dif-
ferences in pathways related to the cell cycle, metabolism,
and tumor microenvironment. Our analysis revealed that
the C1 subtype was associated with more aggressive clini-
copathological features, including higher tumor grade and
more advanced T stage, which likely contributed to its sig-
nificantly poorer survival outcomes compared to the C2
subtype. These findings highlight the crucial prognostic
significance of subtyping in HCC and suggest that patients
with the C1 subtype may necessitate more intensive man-
agement and individualized therapeutic strategies. These
findings provide important insights into liver cancer hetero-
geneity and form an important foundation for developing
precision therapeutic strategies.

This study aimed to explore the relationship between
the liver cancer immune microenvironment and tumor im-

mune evasion based on urinary metabolic characteristics.
This review has shown that HCC tumors exhibit complex
interactions within the immune microenvironment [32], as
abnormal glucose metabolism enables cancer cells to adapt
to microenvironmental changes and evade immune surveil-
lance [33]. Nutrient deficiency and metabolic dysregula-
tion not only accelerate tumor progression but also com-
promise the functional capacity of immune cells [34]. The
metabolism of MDSC can regulate their immunosuppres-
sive functions [35], and the increase in these cells promotes
the immune-tolerant tumor microenvironment [36]. The
metabolic reprogramming within the tumor immune mi-
croenvironment, characterized by nutrient competition be-
tween tumor and immune cells, generates immunomodu-
latory metabolites. These molecules enter circulation and
may be renally filtered into urine, offering a rational basis
for using urinary metabolites as non-invasive biomarkers
of systemic and tumor immune microenvironment-specific
metabolic alterations. The metabolic profile of urinary
metabolites holds the potential to reflect the immune mi-
croenvironment of liver cancer, tumor dynamics, and ther-
apeutic responses, offering new possibilities for the study
of disease progression and therapeutic interventions in liver
cancer.

Although the metabolic biomarkers and associated
regulatory genes identified in this study were initially de-
rived from a hepatitis B-related liver cancer context, their
significant prognostic value in the general TCGA-LIHC co-
hort suggests that their relevance may extend beyond HBV-
driven hepatocarcinogenesis, likely reflecting a broader bi-
ologicalmechanism prevalent across HCCpopulationswith
diverse etiologies. HBV drives carcinogenesis by dis-
rupting the hepatic immune microenvironment, leading to
chronic inflammation and malignant transformation [37].
This is further exemplified by the specific finding that So-
lute Carrier Family 16 Member 3 (SLC16A3), a marker
for immunosuppressive Kupffer cells, is highly expressed
in HBV-positive HCC and linked to poor prognosis [38].
Thereby highlighting the significant impact of the distinc-
tive immune microenvironment in HBV-associated HCC
on tumor progression and patient outcomes. The presence
of HBV DNA is not merely a biomarker of infection but
a central driver that shapes the immunosuppressive HCC
microenvironment. DNA sensors play a pivotal role in
anti-tumor immunity, and alterations in their expression
significantly influence the HCC tumor microenvironment,
thereby shaping disease progression and patient prognosis
[39]. While we recognize that the tumor microenviron-
ment undoubtedly differs between HBV-infected and non-
infected individuals, our findings offer only a foundational
insight. Therefore, these results must be considered pre-
liminary and require future validation in larger, etiology-
stratified cohorts to confirm their generalizability and speci-
ficity.

11

https://www.imrpress.com


5. Conclusions
Our study indicates that Suberic acid, 2′-O-

methylcytidine, and 3′-Sialyllactose in urine demonstrate
good accuracy in distinguishing between hepatitis B-
related liver cancer and healthy individuals. Based on the
regulatory genes associated with differential metabolites,
our research identifies two distinct molecular subtypes of
HCC, aiming to advance the development of precision and
personalized diagnosis and treatment for PLC. However,
this study still has some limitations. Firstly, the sample
size is relatively small, and it is necessary to increase the
sample size to validate and explore the association between
metabolites and PLC, as well as potential biomarkers. Sec-
ondly, further validation and optimization of the stability
and reliability of the prognostic model are required.
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