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Abstract

Background: The expression profiles and function of exosomal long RNAs (exoLRs) in ischemic stroke remain unknown. This study
aimed to investigate the pathophysiologic responses reflected by exoLRs. Methods: The expression profile of exosomal messenger
RNA, long non-coding RNA and circular RNA in 9 patients with ischemic stroke and 12 healthy individuals were analyzed by sequenc-
ing. We assessed the immune cell landscape to reveal the pathophysiologic responses reflected by exoLRs and performed biological
process and pathway enrichment analyses. Competing endogenous RNA networks were constructed to explore the molecular functions
of exoLRs. Results: A total of 321 up- and 187 down-regulated messenger RNAs, 31 up- and 9 down-regulated long non-coding RNAs,
and 67 up- and 48 down-regulated circular RNAs were identified. The immune cell landscape analysis identified that the proportions of
exhausted and gamma delta T cells were statistically higher in patients with ischemic stroke. Bioinformatics analyses, including enrich-
ment and competing endogenous RNA network analyses, also indicated that exoLRs were associated with T- cell-mediated inflammatory
responses. Conclusions: The expression patterns of exoLRs highlighted the association between ischemic stroke and inflammatory re-
sponses mediated by T cells.
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1. Introduction
Stroke is the second most common cause of death and

themain cause of disability worldwide. It has been the lead-
ing cause of death in China in recent years, with new cases
reported every year amount to more than 2 million [1]. In
2020, the prevalence of stroke in China was 2.6%, with an
incidence rate of 505.2 and a mortality rate of 343.4 per
100,000 person-years, respectively [2]. Ischemic stroke is
the most common stroke subtype [3]. A combination of
genetic and environmental factors is involved in the patho-
genesis of ischemic stroke. However, there is still a lack
of clarity regarding the exact mechanisms underlying is-
chemic stroke development.

Exosomes are membrane-bound nanovesicles (30–
100 nm) produced in the endosomal compartments of nu-
merous cells under normal and pathological conditions [4].
They are present in various bodily fluids, such as the blood
[5], and transport various biomolecules including proteins,
messenger RNAs, and noncoding RNAs [4]. Recently mi-
croRNAs have been found to be associated with the occur-
rence of ischemic stroke [6–10] and to potentially serve
as novel risk factors [11]. However, the small quantity
and lack of specific production of microRNAs in exosomes
limit their extensive application [12]. Circular RNAs, long
noncoding RNAs (lncRNAs), and messenger RNAs are

long RNAs enclosed in exosomes and exhibit stable ex-
pression. Exosomal long RNAs (exoLRs) have numerous
clinical applications [13]. However, studies characterizing
their expression profiles are few, and the pathophysiologic
responses reflected by exoLRs in ischemic stroke remain
unknown, particularly in the Chinese population. There-
fore, further studies are urgently needed to provide novel
insights into the prevention, control, and treatment of is-
chemic stroke.

Based on available data, we speculated that ex-
oLRs might reflect pathophysiologic responses in ischemic
stroke. This study aimed to (1) characterize the expression
profiles of exoLRs in ischemic stroke and (2) investigate
their potential roles in stroke pathophysiology through com-
prehensive bioinformatics analyses.

2. Materials & Methods
2.1 Patients

This study was conducted at the Guangdong Provin-
cial People’s Hospital from August 2020 to January 2021.
It involved nine patients with ischemic stroke within
4 h of onset and two healthy individuals as a healthy
control group, all of whom were recruited for plasma
exoLR sequencing. The other 10 healthy individuals
from our previous study, whose data are available from
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the Gene Expression Omnibus database (Accession No.
GSE159657, https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE159657), were used as part of the healthy
control group, and the expression profiles were analyzed
[14].

The inclusion criteria for the ischemic stroke group
were patients aged more than 18 years and with a defi-
nite diagnosis of ischemic stroke. The diagnosis was per-
formed according to World Health Organization guidelines
and validated with computed tomography or magnetic reso-
nance imaging [15]. Conversely, individuals in the healthy
control group were required to display normal renal and
liver function, with no history of malignancy, rheumato-
logic disorders, recent cardiovascular or cerebrovascular
events, chronic heart failure, diabetes, acute or chronic in-
fectious disease, myocarditis, pulmonary embolism, aor-
tic dissection, or pericarditis. The exclusion criteria for
both groups included patients older than 80 years or di-
agnosed with acquired immunodeficiency syndrome. The
study was conducted according to the guidelines of the Dec-
laration of Helsinki and approved by the ethics committee
of the Guangdong Provincial People’s Hospital (approval
No. GDREC2019443H).Written informed consent was ob-
tained from all the study participants.

2.2 Extraction of Plasma Exosomal RNAs, Library
Construction, Sequencing and Analysis

The blood samples were taken within an hour of the
patients’ hospital admission and prior to thrombolytic ther-
apy. Venous blood (2 mL) was collected from each patient
in tubes containing ethylenediaminetetraacetic acid. For
extracting plasma, the blood was centrifuged for 10 min at
3000 g and 4 °C, and the supernatant was carefully trans-
ferred to a new tube for repeated centrifugation. Then, the
plasma was stored in cryogenic vials at –80 °C until fur-
ther use. Total RNA in exosomal vesicles was extracted
using an exoRNeasy serum/plasma kit (77023, QIAGEN,
Hilden, Germany) following the manufacturer’s protocol
[16]. The RNA-sequencing libraries were constructed us-
ing SMART technology (Clontech Laboratories, Mountain
View, CA, USA) [17]. RNA sequencing was performed by
Guangzhou Epibiotek Co., Ltd. (Guangzhou, China) on an
Illumina Nova-Seq 6000 System. The filter sequences and
adapters were trimmed using Cutadapt (version 2.5, Techni-
cal University of Dortmund, Ruhr region, Germany). Using
the “-rna-strandness RF” parameter, the remaining reads
were aligned against the humanEnsemble genomeGRCh38
[18]. Based on featureCounts (version 1.6.3, The Univer-
sity of Melbourne, Victoria, Australia), reads were mapped
to the genome [19]. Messenger RNAs and lncRNAs were
annotated using the GENCODE database (version 28, https:
//www.gencodegenes.org/) [20]. R software (version 4.1.2,
R Foundation for Statistical Computing, Vienna, Austria)
was used to generate principal component analysis (PCA)
plots from fragments per kilobase per million mapped frag-

ments. Unmapped reads were circular RNAs identified
using the pipeline (https://code.google.com/p/acfs/) [21].
The Gene Expression Omnibus database (Accession No.
GSE186844, https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE186844) contains raw data that supports the
results of this study.

2.3 Characterization of Exosomes
The morphological characteristics of the exosomes

were assessed using transmission electron microscopy
(JEM-1200EX, Japan Electron Optics Laboratory, Tokyo,
Japan). The sizes and distribution of the exosomes were
measured using a NanoSight NS500 instrument developed
by NanoSight Ltd. (Amesbury, UK). Exosomal tumor sus-
ceptibility gene 101 (TSG101), CD9, and CD63 protein
markers were detected using western blotting [22].

2.4 Differential Expression Analysis
The expression levels of plasma exoLRs were esti-

mated based on high-throughput sequencing through dif-
ferential expression analysis. The variance percentile rank
was filtered at 15% or lower, and at least four counts per
million were required to retain an RNA. As a result of fil-
tering the data, the counts were normalized using the M-
value normalization method. The COMBAT algorithm was
then used to remove the batch effect. The raw counts from
the sequence datasets were analyzed using the “DESeq2”
R package (version 1.16.1), with design models consider-
ing batch effects [23], to obtain differentially expressed ex-
oLRs. A log2 fold change≥|1.0| at a statistical significance
threshold of p < 0.05 was applied. These steps decreased
the influence of batch effects on experimental results. The
expression heat maps were generated using the “pheatmap”
package (version 1.0.10) in R.

2.5 Immune Cell Landscape
CIBERSORT (version 3.6.2) was used to quantify im-

mune cell abundance in plasma across study groups. The
standardized gene expression data were uploaded to a pub-
licly accessible online database (http://cibersort.stanford.e
du/). An analysis of 547marker genes was performed to de-
termine the plasma distribution of 22 human immune cells
[24].

2.6 Targeted Transcript Prediction Analysis of
Differentially Expressed Long Non-Coding RNAs

We predicted the targeted transcripts of differen-
tially expressed long noncoding RNAs (DElncRNAs)
based on antisense, cis-acting, and trans-acting analyses
to explore the roles of exosomal lncRNA in ischemic
stroke. For antisense DElncRNA analysis, RNAplex (ver-
sion 2.5.0, https://www.tbi.univie.ac.at/RNA/ViennaRNA
/doc/html/man/RNAplex.html) [25] was used to predict the
complementary correlations between antisense DElncR-
NAs and differentially expressed messenger RNAs (DEm-
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Table 1. Clinical baseline characteristics of participants recruited for plasma exoLRs sequencing.
Variables Control (n = 12) Ischemic stroke (n = 9) Standardized difference p value

Demographic
Sex (Female, %) 9 (75.00%) 1 (11.11%) 1.69 (0.68, 2.69) 0.008
Ages (years) 52.50 (41.25–56.00) 63.00 (55.00–65.00) 0.88 (–0.03, 1.78) 0.050

Clinical
Smoking (n, %) 1 (8.33%) 5 (55.56%) 1.17 (0.24, 2.11) 0.046
Alcohol consumption (n, %) 0 (0%) 0 (0%)
Hypertension (n, %) 0 (0%) 5 (55.56%) 1.58 (0.59, 2.57) 0.006
Diabetes (n, %) 0 (0%) 3 (33.33%) 1.00 (0.08, 1.92) 0.063

Laboratory
TG (mmol/L) 1.35 (1.04–2.24) 1.40 (0.97–1.48) 0.58 (–0.30, 1.47) 0.434
TC (mmol/L) 4.79 (4.15–5.83) 4.11 (3.60–5.56) 0.65 (–0.24, 1.53) 0.126
LDL-C (mmol/L) 3.16 (2.93–3.68) 2.90 (2.59–3.91) 0.39 (–0.48, 1.26) 0.434
HDL-C (mmol/L) 1.18 (0.97–1.47) 1.00 (0.96–1.06) 0.87 (–0.04, 1.77) 0.075
WBC (109/L) 6.13 (4.71–6.90) 8.11 (6.03–8.39) 0.59 (–0.29, 1.48) 0.227
Monocytes (%) 7.69 (0.07–0.08) 10.92 (0.09–0.13) 1.39 (0.43, 2.35) 0.003
Neutrophil (%) 59.04 (0.54–0.68) 59.46 (0.56–0.62) 0.05 (–0.82, 0.91) 0.831
CRP (g/L) 0.90 (0.50–2.10) 0.50 (0.47–5.42) 0.41 (–0.78, 1.60) 0.341

Results are presented as the median (interquartile range) for continuous variables and N (%) for categorical variables.
Count variables were analyzed using the Fisher’s exact probability test, whereas continuous variables were analyzed using
the Kruskal-Wallis rank-sum test. CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; WBC, white blood cell count; exoLRs, exosomal
long RNAs.

RNAs). For cis-acting analysis, lncRNAs located less than
100 kb upstream/downstream of a gene were considered
potential cis-regulators. For lncRNA trans-acting analysis,
the correlation coefficient between DElncRNAs and DEm-
RNAs was determined, and a value >0.95 was considered
to indicate trans-action.

2.7 Functions of Exosomal Long RNAs
Gene Ontology (GO) enrichment analysis for bi-

ological processes regulated by the differentially ex-
pressed exoLRs, including the DEmRNAs, target tran-
scripts of DElncRNAs, parental genes of differentially ex-
pressed circular RNAs (DEcircRNAs), and DEmRNAs
in the competing endogenous RNA (ceRNA) networks,
was performed using the ClusterProfiler package (version
3.10.1, https://bioconductor.org/packages/release/bioc/htm
l/clusterProfiler.html) [26] and Metascape (version 3.5, ht
tps://metascape.org/gp/index.html) [27]. As previously de-
scribed, the pathway enrichment analysis of the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) was used to
identify the pathways regulated by differentially expressed
exoLRs [28], with a statistical significance threshold of p
< 0.05.

2.8 Construction of the Competing Endogenous RNA
Networks of Differentially Expressed Long Non-Coding
RNAs and Circular RNAs

Based on the ceRNA hypothesis, ceRNA networks of
DElncRNA/DEcircRNA-microRNA-DEmRNA were built
by predicting microRNA-binding RNA. Thus, micro RNAs

regulated by DElncRNAs and DEmRNAs were predicted
and selected to construct the ceRNA network. First, the mi-
croRNAs targeted by DElncRNAs/DEcircRNA were pre-
dicted using the MiRcode database (http://www.mircode.
org) [29]. The potential messenger RNAs targeted by the
micro RNAs were retrieved from miRDB (http://www.mi
rdb.org/index.html) [30] and TargetScan (http://www.targ
etscan.org/vert_71/) [31]. The potential messenger RNAs
were intersected with the entire dataset of DEmRNAs. DEl-
ncRNAs/DEcircRNAs and targeted DEmRNAs in the op-
posite expression pattern were removed from the ceRNA
network. Cytoscape (version 3.9.0, Institute for Systems
Biology, Washington, WA, USA) [32] was applied to visu-
alize the constructed network.

2.9 Statistical Analysis
For analyzing the clinical characteristics, continu-

ous variables were expressed as the median (interquartile
range). A PCA plot was generated using R software by
transforming the data into a log2 scale and plotting it us-
ing the plot PCA function. Count variables were analyzed
using Fisher’s exact probability test, whereas continuous
variables were analyzed using the Kruskal-Wallis rank-sum
test. A p value < 0.05 indicated a statistically significant
difference. All data were analyzed in R software (ver-
sion 4.1.2, R Foundation for Statistical Computing, Vienna,
Austria).
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Fig. 1. Characterization of exosomes isolated from plasma. (a) Representative transmission electron microscopy image showing the
morphology of exosomes isolated from the plasma and vesicle size (scale bar = 100 nm). (b) NanoSight nanoparticle tracking analysis was
conducted to determine the size distribution of isolated exosomes. Most isolated extracellular vesicles had a size distribution consistent
with exosomes (30–100 nm). (c) Exosome marker proteins (CD63, TSG101, and CD9) detected by western blotting (S1 to S3: ischemic
stroke specimens; H1 and H2: control specimens). TSG101, tumor susceptibility gene 101.

3. Results
3.1 Clinical Characteristics of Patients at Baseline

The clinical characteristics of the study participants
are summarized in Table 1. In the sequencing group, no
differences were observed in age, alcohol consumption,
lipid profiles, white blood cell counts, neutrophils (%), and
C-reactive protein levels between patients with ischemic
stroke and healthy individuals. In the validation group,
no differences were observed in sex, lipid profiles, and C-
reactive protein levels. Overall, the proportions of partici-
pants with hypertension, diabetes, or smoking habits were
higher in the ischemic stroke group. Furthermore, an in-
crease in monocyte count was also observed in the ischemic
stroke group.

3.2 Properties and Expression Profiles of Plasma
Exosomal Long RNAs

Transmission electron microscopy indicated the
membrane-enclosed structures of exosomes (Fig. 1a).
The original transmission electron microscope image is
shown in Supplementary Fig. 1. The average diameter
of the isolated exosomes was 79.11 ± 18.55 nm (Fig. 1b).
Western blotting verified the presence of TSG101, CD9,
and CD63 membrane markers on the exosomal membrane

(Fig. 1c). The raw data for all western blots are provided
in Supplementary Fig. 2. The messenger RNAs (protein
coding), pseudogenes, circular RNAs, lncRNAs, and anti-
sense RNAs constituted approximately 68%, 8%, 7%, 6%,
and 7% of the total mapped reads, respectively (Fig. 2a).
Based on the screening criteria of log2 fold change ≥|1.0|
and p < 0.05, 508 exosomal messenger RNAs consisting
of 321 up- and 187 downregulated RNAs (Supplementary
Table 1), 40 exosomal lncRNAs consisting of 31 up- and
9 downregulated RNAs (Supplementary Table 2), and
115 exosomal circular RNAs consisting of 67 up- and
48 downregulated RNAs (Supplementary Table 3) were
screened as differentially expressed exoLRs. The results
of hierarchical cluster analysis revealed that the expression
patterns of messenger RNAs, lncRNAs, and circular RNAs
in circulating plasma were distinguishable (Fig. 2b–d).
The abundance of exosomal circular RNAs and lncRNAs
was relatively low, and their expression levels showed
individual differences even within the same group.

3.3 Plasma Immune Cells in Patients with Ischemic Stroke

Based on the exosomal sequencing data, we assessed
the proportions of 22 circulating immune cells using an es-
tablished computational resource (CIBERSORT) (Fig. 3a).

4

https://www.imrpress.com


Fig. 2. Overview of the expression profile of exoLRs. (a) Distribution of mapped reads to genes, with annotations showing the
proportions of different types of RNA. (b–d) Heat maps showing clustered expression patterns of differentially expressed exosomal
messenger RNAs (b), long noncoding RNAs (c), and circular RNA (d) between normal and ischemic stroke specimens. In the heat
maps, light yellow indicates low expression, whereas brown indicates higher expression. Abbreviations: circRNA, circular RNA; DE,
differentially expressed; lncRNA, long noncoding RNA.

The proportions of exhausted and gamma delta T cells
were statistically higher in patients with ischemic stroke
(Fig. 3b). PCA of the immunological profiles showed a
nonuniform distribution (Fig. 3c). The expression of ex-
oLRs might be closely associated with the T cell-mediated
inflammatory responses.

3.4 Biological Process and Pathway Enrichment Analyses
of the Differentially Expressed Messenger RNAs

An analysis and visualization of exosomal messenger
RNA functional profiles was performed using ClusterPro-
filer. A bar plot of the functional profile analysis results
(Supplementary Table 4) is shown in Fig. 4a. Among the
top 20 biological process enrichment terms, cell adhesion-
associated biological processes (cell adhesion, biological
adhesion, cell-cell adhesion, and regulation of cell adhe-
sion), metabolic processes (sphingomyelin metabolic pro-

cess, phospholipid metabolic process, and ammonium ion
metabolic process), and T cell regulation-associated pro-
cesses (T cell co-stimulation and positive regulation of T
cell proliferation) were significantly enriched. The top 20
pathway analysis enrichment terms are shown in Fig. 4b,
and further details are provided in Supplementary Table
5. Beyond metabolic pathways (ko01100) and cell adhe-
sion molecules (ko04514), immune disease pathways, in-
cluding ko05320, ko05330, ko05332, ko05310, ko05323,
and ko05322, accounted for themajority of the significantly
enriched human disease pathways (Fig. 4b).

3.5 Biological Process and Pathway Enrichment Analyses
of the Target Transcripts of Differentially Expressed Long
Non-Coding RNAs

Based on the DEmRNAs and DElncRNAs, we ob-
tained 375 trans-acting pairs, including 51 DEmRNAs and
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Fig. 3. exoLR reflecting relative fractions of different immune cell types. (a) Relative fraction of immunocytes identified using
the CIBERSORT algorithm, which estimated the relative subsets of 22 types of immunocytes from 12 normal and 9 ischemic stroke
specimens. (b) Comparison of the fractions of exhausted (p = 0.008) and gamma delta T cells (p = 0.016) between ischemic stroke
specimens and normal controls. (c) Two-dimensional region-based PCA plot obtained by including all studied samples and all types of
immune cells. Each dot indicates one sample. The red plot refers to normal control specimens, whereas the blue plot indicates ischemic
stroke specimens. Abbreviations: PCA, principal component analysis.

18 DElncRNAs (Supplementary Table 6). However, no
antisense or cis-acting pairs of DElncRNAs and DEmR-
NAs were found. These 51 DEmRNAs were considered
the potential targets of DElncRNAs. The results of biologi-

cal process enrichment analyses (Supplementary Table 7)
are shown as a bar plot (Fig. 5a). Among the top 20 bi-
ological processes, metabolic processes (response to fruc-
tose, response to vitamins, nor-spermidine metabolic pro-

6

https://www.imrpress.com


Fig. 4. Biological process and pathway enrichment analyses of differentially expressed messenger RNA (DEmRNAs). (a) Bar plot
ranking the top 20 biological processes enrichment terms of DEmRNAs. A lower q-value indicates significant enrichment, as indicated
by the blue scale bar (high: light, low: dark). (b) Circular plot of the top 20 pathway enrichment terms for DEmRNAs. In the red scale
bar, the higher the –log10 (q-value) the greater the enrichment score (high: dark, low: light). GO, Gene Ontology.

cess, and cellular carbohydratemetabolic process) were sig-
nificantly enriched. The results of the pathway enrichment
analysis are shown in Supplementary Table 8. Beyond
metabolic pathways and human diseases pathways, cellular
processes pathways, including phagosome (ko04145), fo-
cal adhesion (ko04510), and ferroptosis (ko04216), might
be closely associated with the regulation of the DElncRNAs
in trans (Fig. 5b).

3.6 Biological Process and Pathway Enrichment Analyses
of the Parental Genes of Differentially Expressed Circular
RNAs

The enrichment of the parental genes of DEcircRNAs
in GO biological processes was assessed (Supplementary
Table 9), and catabolism-associated processes, particularly
protein catabolic processes, were among the most signifi-
cantly enriched GO terms (Fig. 6a). The function of DEcir-
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Fig. 5. Biological process and pathway enrichment analyses of the target transcripts of differentially expressed long non-coding
RNAs (DElncRNAs). (a) Bar plot ranking the top 20 biological processes enrichment terms for DElncRNAs. A lower q-value indicates
significant enrichment, as indicated by the blue scale bar (high: light, low: dark). (b) Circular plot of the top 20 pathway enrichment
terms for DEmRNAs. In the red scale bar, the higher the –log10 (q-value) the greater the enrichment score (high: dark, low: light).

cRNAs might be closely associated with protein catabolic
processes in ischemic stroke. KEGG pathway enrichment
analysis revealed that metabolic pathways were closely as-
sociated with the expression of DEcircRNAs (Fig. 6b and
Supplementary Table 10).

3.7 Construction of a Competing Endogenous RNA
Network

A total of 158 DElncRNA predicted microRNA
pairs (Supplementary Table 11) and 441 predicted
microRNA-DEmRNA pairs (Supplementary Table 12)
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Fig. 6. Biological process and pathway enrichment analyses of the parental genes of the differentially expressed circular RNAs
(DEcircRNAs). (a) Bar plot ranking the top 20 biological processes enrichment terms for DEcircRNAs. A lower q-value indicates
significant enrichment, as indicated by the blue scale bar (high: light, low: dark). (b) Circular plot of the top 20 pathway enrichment
terms for DEmRNAs. In the red scale bar, the higher the –log10 (q-value) the greater the enrichment score (high: dark, low: light).

were obtained and combined to construct the lncRNA-
microRNA-messenger RNA-ceRNA regulatory network
(Supplementary Table 13). The lncRNA-related ceRNA
networks involving the top 10 up- and downregulated mes-
senger RNAs are shown in Fig. 7a. In the same way,
the relationships between 69 DEcircRNA-predicted mi-
croRNA pairs (Supplementary Table 14) and 318 pre-

dicted microRNA-DEmRNA pairs (Supplementary Ta-
ble 15) were obtained and combined to construct a cir-
cular RNA-microRNA-messenger RNA-ceRNA regulatory
network (Supplementary Table 16). The circular RNA-
related ceRNA networks involving the top 10 up- and
downregulated messenger RNAs are shown in Fig. 8a.
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GO biological process and KEGG pathway enrich-
ment analyses of the messenger RNAs involved in the
networks were investigated and are presented in Fig. 7b
and Fig. 8b, respectively. The messenger RNAs involved
in both ceRNA networks were significantly enriched in
the functions of cell-substrate adhesion, wound healing
and spreading of cells, extracellular matrix-receptor in-
teraction, and positive regulation of T cell proliferation.
Both ceRNA networks included the lncRNA-microRNA-
messenger RNA and circular RNA-microRNA-messenger
RNA networks, sharing 108 common DEmRNAs. We per-
formed GO biological process and KEGG pathway enrich-
ment analyses on the 108 common DEmRNAs to investi-
gate the co-regulatory mechanism. Collagen formation and
cell-substrate adhesion were significantly enriched terms.
The results are shown in Supplementary Fig. 3.

4. Discussion
The present study found that circulating exoLRs pri-

marily consisted of messenger RNAs. A total of 508 exoso-
mal messenger RNAs consisting of 321 up- and 187 down-
regulated RNAs, 40 exosomal lncRNAs consisting of 31
up- and 9 downregulated RNAs, and 115 exosomal circu-
lar RNAs consisting of 67 up- and 48 downregulated RNAs
were identified in patients with ischemic stroke. Three dif-
ferent bioinformatics analyses, including immune cell land-
scape, enrichment analysis, and ceRNA networks, were ap-
plied, revealing that exoLRs were closely associated with T
cell-mediated inflammatory responses. Our study provided
novel insights into the clinical value of exoLRs in ischemic
stroke.

Initially, the expression profiles of exosomal messen-
ger RNAs, long noncoding RNAs, and circular RNAs in
9 patients with ischemic stroke and 12 healthy individu-
als were analyzed through next-generation sequencing. Our
data indicated that many exosomal messenger RNAs were
significantly abnormally expressed in ischemic stroke, and
plasma exoLRs primarily consisted of messenger RNAs. In
most disease conditions, we observed substantially down-
regulated expression of exosomal RNAs, with high cell and
tissue specificity [33,34]. Recent studies have revealed that
long RNAs, including messenger RNAs, lncRNAs, and cir-
cular RNAs, in circulating exosomes have numerous clin-
ical applications [13,35]. Further study has demonstrated
that exosomal RNAs are promising diagnostic and treat-
ment targets for several diseases, such as cardiovascular and
cerebrovascular diseases, and tumors [5]. The distinguish-
able expression patterns of exoLRs in circulating plasma
and the high abundance of exosomal messenger RNAs in-
dicated that exoLRs might be used as potential biomark-
ers and reflect the pathophysiologic responses of ischemic
stroke.

Next, we applied multiple bioinformatics methods to
analyze the alterations and functions of exoLRs from three
different perspectives so as to comprehensively explore the

potential molecular function and pathophysiologic impor-
tance of circulating exoLRs in ischemic stroke. Further,
we applied CIBERSORT to estimate the abundance of im-
mune cell types in a mixed cell population. The results
showed that the proportions of exhausted and gamma delta
T cells were statistically higher in patients with ischemic
stroke. Subsequently, we analyzed the differentially ex-
pressed exoLRs and performed biological process enrich-
ment analysis of different exosomal messenger RNAs. T
cell regulation-associated processes were significantly en-
riched, including T cell co-stimulation and positive regula-
tion of T cell proliferation. Finally, based on the ceRNA
hypothesis, we constructed ceRNA networks by predicting
microRNA-binding RNAs. These two ceRNA networks
included the lncRNA-microRNA-messenger RNA and cir-
cular RNA-microRNA-messenger RNA networks, sharing
108 common DEmRNAs, and nodes in the network rep-
resented groups of genes with similar functions. In addi-
tion, the messenger RNAs involved in both ceRNA net-
works were significantly enriched in the positive regulation
of T cell proliferation. In this study, we applied three types
of bioinformatics methods, all of which revealed that the
alterations of circulating exoLRs in ischemic stroke were
closely associated with the inflammatory response medi-
ated by T cells. Ischemic stroke is characterized by the re-
cruitment and activation of inflammatory cells, which ex-
acerbate cerebral infarction [36]. The infiltration rate of T
lymphocytes influences infarct size in the early stages of
stroke [37]. Study has shown that FasL mutation attenuates
the cytotoxicity of CD8+ T cells in ischemic stroke [38].
Similarly, blocking the activation and infiltration of CD8+
T cells can reverse demyelination, even in late-phase is-
chemic stroke [39]. Furthermore, a recent study has demon-
strated that ischemic stroke induced the secretion of the
FasL-expressing monocyte population, which modulated T
cell apoptosis and drug inhibition, thus minimizing post-
stroke bacterial infections [40]. Although the precise physi-
ological role of exosomes in ischemic stroke remains poorly
understood, inflammation-associated dysregulated expres-
sion of exosomal RNAs may be associated with the biolog-
ical process of ischemic stroke.

5. Limitations
This study was novel in demonstrating that circulating

exoLRs reflected T cell-mediated inflammatory responses
in ischemic stroke. However, these preliminary results
were limited by small sample sizes and lacked generaliz-
ability, besides requiring further validation in different clin-
ical settings. Therefore, validation of the clinical value
using quantitative polymerase chain reaction in large co-
horts will be a promising direction in the future. This study
had several limitations. First, although blood samples were
collected immediately at the time of admission and before
thrombolytic therapy, the profile of exoLRs changed signif-
icantly after ischemic stroke in a time-dependent manner.
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Fig. 7. LncRNA-microRNA-messenger RNA regulatory network, and biological process and pathway enrichment analyses of
the differentially expressed messenger RNAs involved in the networks. (a) ceRNA regulatory network involving the top 10 up-
and downregulated messenger RNAs. Red dots represent upregulated messenger RNA, blue dots represent downregulated messenger
RNA, yellow dots represent upregulated lncRNA, green dots represent downregulated lncRNA, and beige dots represent microRNA. (b)
Bar plot ranking the top 20 biological processes and signaling pathways, based on enrichment scores [–log10 (p value)] from pathway
enrichment analysis of the messenger RNAs involved in the networks. ceRNA, competing endogenous RNA; lncRNA, long-noncoding
RNA; mRNA, messenger RNA.
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Fig. 8. Circular RNA-microRNA-messenger RNA regulatory network, and biological process and pathway enrichment analyses
of the differentially expressedmessenger RNAs involved in the networks. (a) ceRNA regulatory network involving the top 10 up- and
downregulated messenger RNAs. Red dots represent upregulated messenger RNA, blue dots represent downregulated messenger RNA,
yellow dots represent upregulated circular RNA, green dots represent downregulated circular RNA, and beige dots represent microRNA.
(b) Bar plot ranking the top 20 biological processes and signaling pathways, based on enrichment scores [–log10 (p value)] from pathway
enrichment analysis of the messenger RNAs involved in the networks.
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The influence of the time interval between stroke onset and
blood sampling on exoLR concentrations requires further
investigation. Second, this study analyzed only ischemic
stroke. Investigating the alterations in exLRs among pa-
tients with ischemic stroke of varying subtypes may consti-
tute a significant and promising avenue for future research.
Finally, circulating plasma exosomes interact with numer-
ous cell types and tissues; however, the specific physiolog-
ical roles of plasma exoLRs must be elucidated in future
experimental studies. The functionality of exoLRs depends
on the integrity of the vesicles. For instance, certain exo-
somal messenger RNAs are functional only if they remain
intact [41]. Given the paucity of data, further investigations
are needed to unravel the association between exoLRs and
ischemic stroke.

6. Conclusions
Many exoLRs, including exosomal messenger RNAs,

exosomal lncRNAs, and exosomal circular RNAs, are ab-
normally expressed in ischemic stroke. The expression pat-
terns of circulating exoLRs highlighted the association be-
tween ischemic stroke and inflammatory responses medi-
ated by T cells. These findings provided novel insights into
the roles of exoLRs in ischemic stroke pathogenesis, but the
molecularmechanisms require further systematic investiga-
tion.
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