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Abstract

Background: Primary membranous nephropathy (pMN) often progresses to end-stage renal disease (ESRD) in the absence of im-
munosuppressive therapy. The immunological mechanisms driving pMN progression remain insufficiently understood. Methods: We
developed a single-cell transcriptomic profile of peripheral blood mononuclear cells (PBMCs) from 11 newly-diagnosed pMN patients
and 5 healthy donors. Through correlation analysis, we identified potential biomarkers for disease stratification and poor prognosis.
Results: Expression levels of several proinflammatory factors were significantly increased in patients compared to healthy donors, such
as interleukins (/L1B, IL8, and IL15) and interferon G (/FNG). Multiple pattern recognition receptors involved in proinflammatory sig-
naling were also upregulated in patients, including NOD-like receptors (NLRs) (VLRP1, NLRP3, and NLRCS), RNA helicases (DDX58,
IFIHI, DHX9, and DHX36), cGAS (cyclic GMP-AMP synthase) and /F716 (interferon gamma inducible protein 16). Additionally,
human leukocyte antigen molecules HLA-DQAI and HLA-DRBI enriched in memory B cells were upregulated in patients. More im-
portantly, we found that the genes for antiviral defense response were significantly elevated in high-risk patients relative to the low-risk
group. More than twenty genes were negatively correlated with estimated glomerular filtration rate (¢GFR), such as BST2 (bone marrow
stromal cell antigen 2) and SLC35F 1 (solute carrier family 35 member F1). Their predicted values were confirmed in a larger popula-
tion with nephrotic syndrome or other chronic kidney diseases from a public database. Furthermore, we developed a series of scoring
systems for distinguishing high-risk patients from low- and moderate-risk individuals. Conclusions: Our study provides insight into
the immunological mechanism of pMN and identifies numerous biomarkers and signaling pathways as potential therapeutic targets for
managing the progression of high-risk pMN.

Keywords: primary membranous nephropathy (pMN); single-cell RNA sequencing; peripheral blood mononuclear cells (PBMCs);
immune imbalance; biomarkers

1. Introduction

Membranous nephropathy (MN) is a pathologically
diagnosed disease of the kidney glomerulus, which is the
leading cause of nephrotic syndrome in adults [1]. The
morphological feature of MN is the presence of immune
deposits in the subepithelial space of the glomerular fil-
tration barrier. The immune deposits consist of the rele-
vant antigens, autoantibodies and complement components,
which might trigger an inflammatory response, leading to
further damage and increased permeability of the glomeru-
lar basement membrane (GBM) [2]. Proteinuria and gener-
alized edema are major clinical manifestations of MN. Pa-
tients with MN may have also other concurrent diseases,
such as other autoimmune disorders, malignancies or in-
fections. These patients are often diagnosed as secondary
MN (sMN). Those without identifiable underlying cause
are considered to be primary MN (pMN) [3]. In our study,

we focus on newly-diagnosed pMN with circulating autoan-
tibodies against the phospholipase A2 receptor 1 (PLA2R1)
[4].

Prognosis of pMN is highly variable. Among patients
with persistent nephrotic syndrome, 40 to 50% of them will
progress into end-stage renal disease (ESRD) within 10—
15 years, in part due to an incomplete understanding of its
pathogenic mechanism [1]. Recent studies attempted to elu-
cidate the underlying mechanisms of pMN using single-cell
RNA sequencing of kidney biopsy tissues [5—7]. However,
due to few immune cells in these tissues, it remains unclear
about immune abnormalities in patients with newly diag-
nosed pMN, especially in those at high risk. Despite two
study analyzed B cells from patients with pMN, only three
blood samples with PBMCs were included [8,9]. No com-
prehensive single-cell immune profile of adult with pMN
has been reported to date.
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Peripheral blood contains a large number of immune
cells, making it ideal for mapping the single-cell immune
landscape of patients with pMN. In our study, we identified
a series of high-expression genes in high-risk patients com-
pared to low-risk population, which plays a critical role in
antiviral defense response. Meanwhile, we found a set of
novel biomarkers for distinguishing patients from healthy
donors.

2. Materials and Methods
2.1 Patients and Samples

In this study, we included 11 patients with newly di-
agnosed pMN, all of whom had circulating autoantibodies
against phospholipase A2 receptor 1 (PLA2R1). None of
the patients had a history of other diseases or treatment of
steroids and immunosuppressive drugs in the past year. One
patient refused to undergo kidney biopsy. Based on the
KDIGO 2021 guideline for the management of glomeru-
lar diseases [10], the patients were categorized into three
groups: low-risk group (3 patients), moderate-risk group (4
patients) and high-risk group (4 patients).

Peripheral venous blood samples were collected from
patients before treatment. PBMCs were isolated using
density gradient centrifugation with Ficoll-Paque from 5
milliliter fresh anticoagulated blood. The isolated cells
were resuspended in cryopreservation medium [900 pL of
fetal bovine serum supplemented with 100 puL of dimethyl
sulfoxide (DMSO)] for long-term storage liquid nitrogen.

2.2 Single-Cell RNA Library Preparation and Sequencing

Cryopreserved PBMCs from all patients were thawed,
and cell viability was assessed, consistently exceeding 90%.
Single-cell suspensions containing 10,000 to 20,000 cells
were loaded for library construction using the Chromium
Single Cell 3’ Library (10x Genomics, Inc., Pleasanton,
CA, USA) following the manufacturer’s protocol. The
quality of the purified libraries was evaluated, and sequenc-
ing was performed on an I[llumina NovaSeq X Plus platform
(Illumina, Inc., San Diego, CA, USA) using 150-bp paired-
end reads.

2.3 Single-Cell RNA-seq Data Processing

We performed single-cell RNA sequencing (scRNA-
seq) on PBMCs from 11 patients with pMN and integrated
a published scRNA-seq dataset from 5 healthy donors as
a control group [11]. Samples were stratified into four
groups correspondingly: normal (healthy donors), low
(low-risk patients), moderate (moderate-risk patients), and
high (high-risk patients). Raw sequencing data were pro-
cessed using the Cell Ranger Software Suite 7.1.0 (10x Ge-
nomics, Inc., Pleasanton, CA, USA), aligning reads to the
human reference genome (refdata-gex-GRCh38-2020-A).
Filtered count matrices were imported into Seurat 4.3 (http
s://satijalab.org/seurat/) for downstream analysis. Quality
control criteria included: 500-5000 detected genes per cell,

total unique molecular identifier (UMI) count <20,000, and
mitochondrial gene expression <10%. Doublets were iden-
tified and removed using DoubletFinder 2.0.3 (https://gith
ub.com/chris-mcginnis-ucsf/DoubletFinder). The cleaned
data were normalized and scaled using Seurat’s built-in
functions.

2.4 Batch Effect Correction and Cell Type Annotation

To integrate cells from different individuals and risk
levels, we employed Harmony 1.2 (https://github.com/imm
unogenomics/harmony) to correct batch effects and create a
shared embedding [12—15]. Dimensionality reduction and
clustering were performed using 2000 highly variable genes
and 30 principal components. Marker genes for each clus-
ter were identified using Seurat’s FindAllMarkers function
with default parameters. Initial cell type annotation was
performed using CellTypist 1.6.3 (https://www.celltypist.o
rg/) with the ‘Immune_All_Low.pkl’ model [16], followed
by manual refinement based on known marker genes from
the literature.

2.5 Differential Expression and Enrichment Analysis

To explore the differences between disease and con-
trol groups, we identified differentially expressed genes
(DEGs) for each cell type using Seurat’s FindMarkers
function, comparing patients (different risks) with healthy
donors. Genes with |log2FC| >0.5 and adjusted p-value
< 0.05 were considered significant DEGs. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed us-
ing the clusterProfiler 4.6.2 (https://github.com/YuLab-S
MU/clusterProfiler) package with default parameters to elu-
cidate the biological processes and pathways associated
with the identified DEGs.

2.6 Gene Set Signature Scoring and Comparison

To assess the expression of specific gene sets, we uti-
lized Seurat’s AddModuleScore function to calculate sig-
nature scores for each cell [13]. Comparisons of signa-
ture scores among different disease and control groups were
performed using analysis of variance (ANOVA) and the
Kruskal-Wallis test to identify statistically significant dif-
ferences.

2.7 Cell-Cell Interaction Analysis

To predict cell-cell communication, we employed
CellChat 1.6.1 (https://github.com/sqjin/CellChat) to ana-
lyze ligand-receptor pairs [17]. Interaction strength was
calculated for individual ligand-receptor pairs between each
pair of cell types and aggregated to determine the over-
all interaction strength of signaling pathways. Compara-
tive analyses were performed between disease groups (low,
medium, and high risks) and the control group to identify
alterations in cell-cell communication associated with dis-
ease progression. Significant signaling pathways were cal-
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Table 1. Baseline characteristics of patients with pMN.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Gender (F/M) M F F F F F F F F F M
Age (years) 67 49 39 59 30 40 27 41 36 56 44
Generalized edema yes yes  yes yes yes yes yes yes yes yes yes
MN stage I 11T I I -1 II TI-11T I 1I I I
Anti-PLA2R1 (RU/mL) 2583 37.3 211.0 373.1 25 159.1 100.6 160.2 71.1 278 51.9
Serum albumin (g/L) 254 250 346 250 34.7 30.0 27.7 315 303 33.1 31.5
Urinary protein (g/24 hours) 6.8 64 7.3 6.0 43 7.1 4.7 43 2.7 1.6 2.8
Serum creatinine (umol/L) 116 75 58 61 66 62 58 45 65 49 60
eGFR (mL/min/1.73 m?) 558 80.6 111.5 953 107.5 108.1 121.3 119.5 105.0 104.6 116.2
IgG4 deposition 2+ 2+ 2+ 2+ 2+ 2+ 3+ 3+ 2+ 3+ 3+
1gG3 deposition - - + - - 1+ 1+ - - - -
1gG2 deposition - - - - - - 2+ 2+ - - -
IgG1 deposition - - - - + - 2+ 2+ 1+ 1+ -
IgA deposition 1+ - - - - - 1+ - 3+ - -
IgM deposition 1+ + 1+ + + + 2+ 1+ 2+ - +
C3 deposition 1+ 1+ 2+ 2+ 1+ 1+ 1+ - 1+ - 1+
Clq deposition 1+ 1+ - 1+ - + - - 1+ - -
PLAZ2R staining 3+ 2+ 2+ 3+ 2+ 3+ 3+ 3+ 2+ 2+ 3+
Risk stratification high high high high moderate moderate moderate moderate low  low low
Crescent formation 0/45 024 0/20 0/19 0/16 0/13 0/12 0/64 0/9  0/27 0/33
Gromerular sclerosis 4/45 024 0/20 0/19 0/16 0/13 1/12 3/64 09  3/27 0/33
Tubularinterstitial injury (%) 5 <5 <5 <5 <5 <5 15 <5 <5 5 <5
Interstitial infiltration (%) <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25
Prior therapy no no no no no no no no no no no
Combined disease no no no no no no no no no no no

P1-11, patient 1 to 11; F, female; M, male; eGFR, estimated glomerular filtration rate; MN stage, membranous nephropathy stage; Anti-

PLA2R1, antibody against phospholipase A2 receptor 1.

culated and ranked based on differences in the overall infor-
mation flow within the inferred networks between disease
and control groups.

2.8 Statistical Analysis

All statistical analyses were performed using R 4.2.3
(https://www.r-project.org/). Differential expression test-
ing was conducted using FindMarkers with the Wilcoxon
Rank Sum test, and p-values were adjusted by the Bon-
ferroni correction method. Enrichment analyses were per-
formed using the clusterProfiler package with the permu-
tation test, and p-values were adjusted by the Benjamini-
Hochberg method. To assess the statistical significance of
signature score changes observed in a given cell subtype
among different groups, we employed Bonferroni’s test for
multiple comparison. To perform Pearson correlation anal-
ysis between candidate genes in high-risk patients and esti-
mated glomerular filtration rate (¢GFR), a linear regression
model was applied to estimate the slope of the regression
line and its 95% confidence interval. The data used for
correlation analysis were from our own study and a pub-
lic database Nephroseq v5 (https://nephroseq.org). An ad-
justed p-value < 0.05 was considered statistically signifi-
cant and annotated above the box plot as follows: p <0.05
*,p <0.01 ** p <0.001 *** and p <0.0001 ****,

&% IMR Press

3. Results

3.1 Landscape of Peripheral Blood Mononuclear Cells
Using Single-cell RNA Sequencing

Apart from the kidney biopsy tissue, peripheral blood
mononuclear cells are also important for dissecting the im-
munological mechanism of pMN. Using the 10x Genomics
scRNA-seq method, we obtained our own dataset from 11
patients (Fig. 1A), comprising 3 low-risk, 4 moderate-risk
and 4 high-risk individuals. Anti-PLA2R1 antibodies were
positive in all patients (Table 1). We compiled our data and
a published one with 5 healthy individuals, which served as
a negative control group (Supplementary Table 1). After
stringent quality control and filtration, a total of 178,185
single-cell transcript data of PBMCs were analyzed. Af-
ter correcting batch effects between the two datasets, we
integrated the data to perform unsupervised graph-based
clustering. Five major lineages (T cells, B cells, NK cells,
Monocytes and cDC2) were identified depending on a ref-
erenced automatically annotation (Fig. 1B,D) [16]. In addi-
tion, other kinds of immune cells were not used to perform
analysis due to their low abundance, including innate lym-
phoid cell 3 (ILC3), natural killer T cells (NKT), immature
lymphoid cells and platelets and so on (Fig. 1B). The pub-
lished data contained the same types of cells as ours. Cell
annotations were verified independently by two investiga-
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Fig. 1. Single-cell RNA analysis of PBMCs from individuals with pMN and healthy controls. (A) Overview of the participants
included and samples and data collected. (B) UMAP visualization of the five cell clusters (T, B, NK, monocytes and cDC2) in the
integrated single-cell transcriptomes of 178,185 cells derived from pMN and healthy donors, other cell clusters included innate lymphoid
cell 3, NKT and T cells, immature lymphoid cells and platelets and so on. (C) Bar plot of the proportion of cell types shown in healthy
controls (normal), low-risk (low), moderate-risk (moderate) and high-risk (high) patients with pMN. (D) Dot plot showing the expression
of selected signature genes in each cluster. (E) Gene ontology (GO) assignments of top GO terms that were upregulated or downregulated
in specific cell types from patients with pMN versus healthy control, respectively. PBMCs, peripheral blood mononuclear cells; pMN,
primary membranous nephropathy; cDC2, classical dendritic cell 2; UMAP, uniform manifold approximation and projection; NKT,
natural killer T cell.
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tors to ensure accuracy. No significant differences were ob-
served in the overall distribution of cell populations across
the four groups (Fig. 1C).

We conducted GO enrichment analysis on the five
kinds of immune cells, comparing patients with pMN to
healthy donors. Top up-regulated and down-regulated sig-
naling pathways were showed in individual type cells.
Immune-response related pathways were notably more ac-
tive in patients across all cell types (Fig. 1E). The average
capacity of antigen presentation was reduced in B cells from
patients (Fig. 1E).

In order to discovery more positive results, we de-
cided to divided specific type of immune cells into sev-
eral subtypes. Based on reference annotations, individ-
ual cell lineages were categorized as shown in Fig. 2.
CD4" T cells were divided into three subgroups, in-
cluding naive T (Tn) and central memory T (Tcm), ef-
fector T (Te) and effector memory T (Tem) and regula-
tory T cells (Treg). CD8™T T cells were classified into
three subgroups, including Tn and Tem, Tem and Temra
(CD45RA™), Tem and resident memory T cells (Trm)
(Fig. 2A—C). B cells included naive (Bn), activated B
(Ba), non-switched memory (Bnsm) and switched memory
B cells (Bsm) (Fig. 2D-F). NK cells included CD561/~
NK cells (or CD564™CD16"2") and CD56* NK cells (or
CD56MeCD16'%) (Fig. 2G-I). Monocytes consisted of
two subgroups, namely classical (CD14TCD16~) and non-
classical monocytes (CD14~CD16™) (Fig. 2J-L). Of note,
classical dendritic cell 2 (cDC2) and MAIT did not subdi-
vide further in our dataset (Fig. 1B).

3.2 Abnormal Expressions of Immunoglobulins and
Components of Complement System

As we know, circulating immunoglobulin G4 (IgG4)
are thought to bind to deposited autoantigens and form the
subepithelial complex. To investigate the potential corre-
lation between immunoglobulins and disease severity, we
analyzed the data of B cells. From naive to memory B cells,
expression levels of IGHD and IGHM gradually decreased,
confirming that our data was qualified (Fig. 3A). Consis-
tent with IgG4 deposition in glomerular biopsies, /IGHG4
expression in memory B cells was higher in patients than
in healthy donors (Fig. 3D). Similar trend was observed for
IGKC (Fig. 3F). Intriguingly, transcript levels of /GHG3 in
memory B cells were gradually upregulated from low-risk
to high-risk patients (Fig. 3A,B). Whereas expression lev-
els of IGHAI and IGHG? in activated and memory B cells
were lower in patients (Fig. 3C,E). Together, these results
suggest that IgG3 might participate into the progression of
pMN with antibodies against PLA2R1 [18].

Complement activation plays a central role in the
pathogenesis of pMN. Subepithelial deposition of circulat-
ing immune complexes promotes the formation of the ter-
minal complement component C5b-9, which subsequently
damaged the glomerular basement membrane (GBM) [18].
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To determine whether the complement system was active in
peripheral immune cells, we analyzed complement-related
markers in B cells. We found that complement receptor 1
(CR1) expression in B cells was higher in patients com-
pared to controls (Fig. 3G). Similar trend was showed in
patients with regard to C1S, C2 and C5. To provide a more
accurate assessment, we developed a score using a panel of
biomarkers up-regulated in patients, including C1S, C2, C5,
CR1, CD46, CD55 and ITGAX. Scores for memory B cells
and monocytes were significantly higher in patients than
in healthy donors (Fig. 3H). These findings indicate that
abnormal activation of complement system was present in
patients with pMN, potentially contributing to disease pro-
gression.

3.3 Activation of Proinflammatory Response in pMN

Chronic inflammation is a prominent feature of many
autoimmune diseases [19], including pMN. Numerous
proinflammatory pathways, involving interleukins, inter-
ferons, tumor necrosis factors, chemokines, growth factors
and their corresponding receptors, may contribute to the de-
velopment of pMN. Nevertheless, that the relationship be-
tween proinflammatory responses and pMN progression re-
mains poorly understood. To address this issue, we inves-
tigated the expression levels of these inflammatory factors
across different types of immune cells.

With regard to interleukin signalings, we found that
the levels of interleukin 1B (/L/B) and /L5 in monocytes
and cDC2 were significantly elevated in patients compared
to the control group (Fig. 4A—C). Whereas IL16 expres-
sion in lymphoid cells was significantly decreased in pa-
tients [20], similar results were showed about /L32 and
IL18 in T and cDC2 cells, respectively (Fig. 4D, Supple-
mentary Fig. 1A,B). Regarding interleukin receptors, we
found that /L2RG and IL6ST in lymphoid cells were sig-
nificantly higher in patients with pMN (Fig. 4E). The simi-
lar trends were observed in monocytes and cDC2 for /L6R
and /L10RB. Multiple scoring metrics further confirmed the
findings (Fig. 4F).

In terms of interferon signaling, expression levels of
interferon gamma (IFNG), IFNG antisense RNA1 (/FNG-
AS1) and interferon alpha and beta receptor subunit 2 (/F-
NAR?2) in specific type cells were significantly higher in pa-
tients (Fig. 4G-1, Supplementary Fig. 1C-F).

Regarding the tumor necrosis factor superfamily, we
noted that TNFRSF13C, TNFAIP3, TNFAIPS and TNFSF§
in T cells were significantly upregulated in patients, as
confirmed by specific score systems (Fig. 4J-N, Supple-
mentary Fig. 1G,I). In contrast, expression levels of T/N-
FSFI13B and TNFRSF14 in lymphoid cells were downreg-
ulated in patients (Fig. 4J,L,M, Supplementary Fig. 1H).

Additionally, several chemokines in monocytes were
higher in patients compared to healthy donors, including
CCL3L1, CXCLS (IL8) and CXCLI0 (Fig. 40-R, Supple-
mentary Fig. 1J), with a similar trend for CXYCR4 in lym-
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of cell subtypes among the four groups (normal, low-risk, moderate-risk and high-risk).
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Fig. 3. Gene expression of immunoglobulins and complement system across different groups. (A) Dot plot showing genes of
immunoglobulin heavy and light chains and B cell receptors in naive and activated B cells, non-switched and switched memory B cells.
(B,D,F) Expression of genes IGHG3, IGHG4 and IGKC were higher in patients than in healthy donors. Lines indicate means + SEM.
(C,E) Expression of genes [GHAI and IGHG?2 were lower in patients. (G) Dot plot showing genes of complement system in T, B, NK,
monocytes and cDC2. (H) Score of complement system included genes C1S, C2, C5, CR1, CD46, CD55 and ITGAX. Individual violin
plots containing a box plot, showing the median expression value of the score. **** p < 0.0001. IGHG3, immunoglobulin heavy
constant gamma 3; IGKC, immunoglobulin kappa constant; IGHA1, immunoglobulin heavy constant alpha 1; C1S, complement Cls.
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Dot plot showing expression of interleukin receptors in individual type cells. (F) Scores of interleukin receptors included genes /L2RG,

IL6ST and IL10RB. Individual violin plots containing a box plot, showing the median expression value of the score. (G) Dot plot showing
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(H,I) Average expression of IFNG in Tem and Temra (CD8") and NK

(CD56%/7) cells. (J) Dot plot showing expression of some tumor necrosis factors in individual type cells. (K) Violin plot showing score
of TNF family members including TFAIP3, TNFAIPS and TNFSF18 in total T cells. (L) Dot plot showing expression of TNF receptors in
four different groups. (M,N) The average expression of TNFRSF14 and TNFR13C in total B cells. (O) Dot plot showing expression of
chemokines and their receptors in individual type cells. (P-R) Average expression of chemokines such as CCL3L1, CXCL8 and CXCL10
in classical monocytes and total monocytes. (S) Dot plot showing expression of growth factors and their receptors in different type

cells. (T) Violin plots showing score of growth factors including
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phoid cells (Supplementary Fig. 1K). In contrast, expres-
sion levels of CX3CRI and CCRY7 in specific kinds of cells
were relatively lower in patients.

Growth factors also play an essential role in inflam-
matory responses. Scores of growth-factor family mem-
bers (TGFBRI1, TGFBR3, IGF2R and PDGFD) were sig-
nificantly higher in patients with pMN, with a similar
trend in high-risk patients compared to low-risk group
(Fig. 4S,T). Conversely, expression levels of some factors
(MIF, FGF23 and PDGFA) significantly decreased in pa-
tients than in the control group.

Taken together, these data indicate that a range of
proinflammatory pathways is activated, contributing to the
development of pMN with anti-PLA2R1 antibodies.

3.4 Pattern Recognition Receptor Signaling Participating
in The Development of pMN

It is well established that proinflammatory responses
are often activated by pattern recognition receptors (PRRs)
signalings [21], which includes toll-like receptors (TLRs)
[22], NOD-like receptors (NLRs) [23], RNA sensors (RIG-
I like receptors, RLRs) [24], DNA sensors (cyclic GMP-
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Fig. 5. Pattern recognition receptors involved into the development of pMN. (A) Dot plot showing expression of Toll-like receptors

in B cells, monocytes and ¢cDC2. (B,C) Average expression of 7LR! and TLRI0 in total B cells. (D) Dot plot showing expression of

NOD-like receptors in individual type cells. (E,F) Violin plot showing score of NLRs in monocytes and ¢cDC2, consisting of NLRP1,
NLRP3 and NLRCS5. (G) Dot plot showing expression of RNA sensors in different type of cells. (H) Violin plot showing score of RNA
sensors including DDX58, DHX9, DHX36 and IFIH1 in total B and NK cells. (I) Dot plot showing expression of DNA sensors in different
cells. (J-L) Average expression of cGAS and IFI16 in total T, Tem and Temra (CD8") and NK (CD561/ ™) cells. ¥ p <0.01; ¥ p <
0.0001. TLR, toll-like receptor; NLRP1, NLR family pyrin domain containing 1; DDX58, DExD/H-box helicase 58; DHX9, DExH-box
helicase 9; IFIH]1, interferon induced with helicase C domain 1; cGAS, cyclic GMP-AMP synthase.

AMP synthase (cGAS) receptors, cGLRs) and so on [25].
To investigate whether PRR pathways participate into the
development of pMN, we examined their expression in pa-
tients compared to healthy donors. Notably, many of the
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PRRs in specific type of cells were elevated in patients,
including NLRs (NLRPI, NLRP3 and NLRCY5) (Fig. SD—
F), RNA sensors (DDX58, IFIHI, DDX9 and DDX36)
(Fig. 5G,H), DNA sensors (cGAS and IFI16) (Fig. 51-L)
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and TLRI (Fig. 5A,B). In contrast, some were relatively
lower in patients, such as TLR10 (Fig. 5A,C) and TMEM173
(Supplementary Fig. 1L).

Given the downstream effects of PRR signalings, we
next examined the activation of transcript factors (TFs)-
related pathways that are often implicated in immune re-
sponse pathways. Interestingly, we found that several
TF-related pathways were upregulated in patients than in
healthy donors, including MAPKs, AP1 (FOS, JUN, JUNB
and JUND), janus kinase (JAK) and signal transducer
and activator of transcription (STAT) members (JAKI,
JAK?2 and STAT3), nuclear factor kappa B family (NFKB1,
RELB and NFKBIA), forkhead domain family (FOXO1 and
FOXO03), TRAF3, HIF1A and IRF1 (Supplementary Fig.
2) [26-28].

Together, these results suggest that a broad range of in-
nate immune signaling pathways in PBMCs may play a role
in the pathogenesis of pMN with anti-PLA2R1 antibodies.

3.5 Biological Processes Mediated Dysfunction of Immune
Cells in pMN

According to the data of different expression genes
(DEGs) between patients and healthy donors, we found sev-
eral interesting biological processes enriched in patients,
which might affect the function of immune cells. Cellu-
lar senescence plays a key role in chronic diseases, includ-
ing autoimmune diseases, metabolic diseases and tumors
[29]. We found that a senescence-related gene panel was
significantly enriched in patients than in the control group
(Supplementary Fig. 3A). Statistically, integrated score
of cellular senescent genes was higher in immune cells of
patients (Supplementary Fig. 3B-D). In terms of circa-
dian rhythm and chromatin remodeling, similar trends were
showed in patients (Supplementary Fig. 3E-K) [30-32].
Altogether, these functional abnormalities of immune cells
in pMN need to be explored comprehensively, which would
offer more potential therapy targets for patients with pMN.

3.6 Antiviral Defense Response Associated with The
Development of High-risk pMN

Although there are some biomarkers used for distin-
guishing high-risk patients from others, such as proteinuria,
serum albumin and eGFR [10], it is limited that our under-
standing of the immune pathogenesis in the development
of high-risk pMN. To address this issue, we analyzed the
DEGs between high-risk and low-risk patients.

Intriguingly, genes of defense response to viruses
in T, NK cells and monocytes were significantly upreg-
ulated in the high-risk group compared to the low-risk
group (Fig. 6A,B,G,H,J,K) [33,34]. Similarly, interferon-
mediated signaling pathway in B cells was more active in
high-risk group (Fig. 6D,E). In cDC2 cells, genes related to
antigen presentation were significantly increased in high-
risk patients (Fig. 6M,N), as confirmed by scores of up-
regulated gene sets (Fig. 6C,F,I,L,0). Of note, all of the

10

scores were also effective for distinguishing high-risk pa-
tients from moderate-risk population.

In order to develop a score system for identifying
high-risk patients in the overall population, we selected
upregulated genes in high-risk patients compared to low-
risk individuals in most types of immune cells, includ-
ing SLC35F1, AC105402.3, STATI, EPSTII, MXI and
EIF24K2 (Supplementary Fig. 4A,B). The gene TRIM22
was excluded due to its high expression in healthy donors
(Supplementary Fig. 4A). Importantly, this score system
was also effective in distinguishing high-risk patients from
moderate-risk individuals.

To further distinguishing moderate-risk patients from
high-risk and low-risk populations, we selected genes grad-
ually upregulated from low-risk to high-risk patients in
most types of immune cells to develop different score sys-
tems (Supplementary Fig. 4C,E-G). Notably, SLC35F1
in B cells was a valuable biomarker for distinguishing the
three risk groups (Supplementary Fig. 4D) [35,36].

3.7 The Predictable Effect of Biomarkers for Identifying
High-Risk Patients with pMN

To confirm the predictable value of upregulated
biomarkers in high-risk patients compared to low-risk pop-
ulation, we performed correlation analysis between these
biomarkers and eGFR in newly-diagnosed patients with
pPMN. As shown in Table 2 and Supplementary Fig. 5,
most effective biomarkers were negatively correlated with
eGFR. Of note, upregulation of SLC35F [ and BTS2 in most
types of PBMCs could effectively predict poor kidney func-
tion. Both GBPS5 and KLF6 also had the predictable role
in more than one type of immune cells. Conversely, only
two genes (LRMDA and MYOIF) were positively associ-
ated with eGFR in cDC2 cells.

Given the small sample size of our study, we at-
tempted to figure out whether the screened biomarkers en-
riched in high-risk patients had a robust capability of pre-
dicting declined eGFR in the development of nephrotic syn-
drome and other chronic kidney diseases (Nephroseq v5
database). Indeed, the predictable values of most biomark-
ers were confirmed in a larger population (Supplementary
Table 2). Despite the validated results were calculated
based on kidney tissues, this fact suggests that biomarkers
in blood cells have a similar effect on risk stratification.

In addition, we assessed the predictable values of
prior selected biomarkers upregulated in total patients with
PMN compared to healthy donors. Similarly, most of them
were negatively correlated with declined eGFR in patients
with nephrotic syndrome or other chronic kidney diseases
(Supplementary Table 3).

Altogether, we identified a series of effective biomark-
ers used for distinguishing high-risk patients from low-risk
individuals with pMN and for predicting declined eGFR of
patients.
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Fig. 6. The top 10 upregulated GO enrichment terms in immune cells from high-risk patients compared with low-risk individuals
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Fig. 7. Differential cell-to-cell communications between patients with pMN and healthy control. (A) Relative and absolute flows
of differentially active signaling pathways between patients with pMN and healthy donors (two-sided Wilcoxon test; FDR >0.05). blue
bars represented relative enrichment signalings in pMN, red bars indicated enriched pathways in healthy donors. (B-D) Chord plots
showing changes of MHC-I, MHC-II and CLEC signaling pathways in patients and healthy donors. The width of a band indicated the
predicted strength of a specific ligand-receptor pair interactions. The wider the band, the stronger relationship between the pairs. (E)
Comparison of the significant ligand-receptor pairs from NK (CD56+/-) or monocytes with HLA-I to T (CD8+) cells between patients
and healthy control. Dot color reflecting communication probabilities and dot size representing computed p-values. (F) Comparison
of the significant ligand-receptor pairs from B cells, monocytes or cDC2 with HLA-II to T (CD4+) cells between patients and healthy
donors. (G) Comparison of the significant ligand-receptor pairs from mature B or T cells with CLECs to NK (CD56+/-) cells between
patients and healthy donors. (H,J) Dot plot showing expression levels of HLA-I and molecules in all of B subsets across four groups,
respectively. (I) Violin plot showing score of HLA-I and HLA-II in total B cells. (K,L) Average expression of HLA-DQAI and HLA-
DRB1 in memory B cells across four groups. **, p < 0.01; **** p < 0.0001. MHC-I, major histocompatibility complex, class I; HLA-I,
human leukocyte antigen, class I; HLA-II, human leukocyte antigen, class 1I; HLA-DRB1, human leukocyte antigen, class II, DR beta
1; HLA-DQAT1, human leukocyte antigen, class II, DQ alpha 1; CLEC2B, C-type lectin domain family 2 member B; CLEC2C, C-type
lectin domain family 2 member C; CLEC2D, C-type lectin domain family 2 member D; KLRBI, killer cell lectin like receptor B1.
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Table 2. Biomarkers identified in high-risk patients predict

declined eGFR.
Gene Disease Cell type Samples (n) Outcome R p
B2M pMN  c¢DC2 10 eGFR —0.77 **
BST2 pMN T 10 eGFR —-0.83 **
NK 10 eGFR —0.90 ***
Mon 10 eGFR —0.89 *#**
cDC2 10 eGFR —-0.91 **
DNAJB4 pMN B 10 eGFR -0.70 *
DUSP1 pMN  c¢DC2 10 eGFR —0.77 **
ELL2 pMN B 10 eGFR -0.66 *
FGL2 pMN Mon 10 eGFR -0.65 *
FKBPS pMN NK 10 eGFR -0.73 *
GBP5 pMN T 10 eGFR -0.72 *
NK 10 eGFR -0.70 *
HSP90AA1 pMN Mon 10 eGFR -0.69 *
IRF1 pMN Mon 10 eGFR -0.82 **
KLF6 pMN T 10 eGFR -0.72 *
B 10 eGFR -0.69 *
LAMTOR2 pMN  ¢DC2 10 eGFR -0.76 **
LRMDA pMN  cDC2 10 eGFR  0.79 **
MTSSI pMN NK 10 eGFR -0.65 *
MYOIF pMN  cDC2 10 eGFR  0.79 **
NFKBIA pMN B 10 eGFR -0.64 *
PDCD2 pMN  c¢DC2 10 eGFR —0.87 *#**
PSMA4 pMN Mon 10 eGFR —0.77 **
PSMB9 pMN Mon 10 eGFR —0.87 **
PSME2 pMN Mon 10 eGFR -0.86 **
SAT1 pMN Mon 10 eGFR -0.71 *
SFRS7 pMN  ¢DC2 10 eGFR -0.86 **
SLC27A4  pMN  c¢DC2 10 eGFR -0.70 *
SLC35F1 pMN T 10 eGFR -0.80 **
B 10 eGFR —0.81 **
NK 10 eGFR -0.75 *
Mon 10 eGFR -0.77 **
SLFN5 pMN NK 10 eGFR -0.80 **
TNFAIP3 pMN Mon 10 eGFR -0.79 **
TSC22D3  pMN  ¢DC2 10 eGFR -0.71 *
TYMP pMN Mon 10 eGFR —0.83 **
WDR74 pMN  c¢DC2 10 eGFR -0.72 *

pPMN, primary membranous nephropathy; n, number of samples;
eGFR, estimated glomerular filtration rate; R, correlation coeffi-
cient; *, p < 0.05; **, p < 0.01; *** p < 0.001.

3.8 Abnormalities of Cell-Cell Communications in pMN

Prediction of intercellular communication networks is
also necessary for figuring out the pathogenic mechanism
of pMN. We analyzed potential cell-cell interactions by ex-
amining co-expression patterns of curated ligand-receptor
pairs (Fig. 7A and Supplementary Fig. 7).

With regard to the relative information flow, we
found that some interaction pairs increased significantly
in disease groups, such as cell chemokines (CCL) and
cytokines (TGFB and [FN-II) (Fig. 7A, Supplementary
Fig. 7A,B,D). And many up-regulated pairs correlated with
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functional changes in cell adhesion, such as CD6, CD226,
ALCAM, NECTIN and NCAM (Fig. 7A) [37]. TIGIT-
related pairs may facilitate the inhibition of monocytes
by regulatory T cells, suggesting a protective mechanism
that could prevent excessive monocyte-driven inflamma-
tion (Fig. 7A, Supplementary Fig. 7C) [38].

Conversely, information flow of some interaction
pairs decreased remarkably in patients, such as human
leukocyte antigen (HLA) molecules (major histocompati-
bility complex, class I and II) (Fig. 7A-C,E,F). All of the
HLA-I molecules from PBMCs were decreased in patients
compared to healthy donors (Supplementary Fig. 6A—-C,
Fig. 7H). Similar trends were showed in B cells for most
of the HLA-II molecules (Fig. 71,J). However, with regard
to memory B cells, expression levels of HLA-DQAI and
HLA-DRBI were significantly higher in patients (Fig. 7J—
L). Overall, these findings suggest that memory B cells may
play a role in the pathogenic mechanisms of pMN though
HLA-DQA1 or HLA-DRBI [39,40].

In addition, we found the putative CLEC2 (C-type
lectin domain family 2) and KLRB1 (killer cell lectin like
receptor B1) pairs were relatively activated in patients
(Fig. 7A,D,G). Indeed, the expression levels of CLEC2B,
CLEC2C (CD69) and CLEC2D in most cells were signifi-
cantly upregulated in patients compared to healthy donors
(Supplementary Fig. 6H) [41], as confirmed in CLEC
score system (Supplementary Fig. 6I). KLRBI was re-
garded as an inhibited receptors in CD561/~ NK cells
[42]. CLEC2B was expressed mainly in monocytes, T and
NK cells, CLEC2C and CLEC2D were expressed promi-
nently in T, B and NK cells (Supplementary Fig. 6H).
We speculated that B and T cells might inhibit cytotoxic
NK cells to prevent further kidney injury. This hypoth-
esis was supported by decreased expression of granzyme
M (GZMM) in NK (CD56+/-) cells (Supplementary Fig.
6C—-G). With regard to perforin 1 (PRF'1) and GZMB, simi-
lar expression patterns were showed in NK (CD56+/-), Tem
and Temra (CD8+) cells (Supplementary Fig. 6C). Fur-
thermore, we found that index of cytotoxicity was signif-
icantly lower in patients than in healthy donors using our
developed score (including GZMA, GZMB, GZMM, PRFI)
(Supplementary Fig. 6G). Abnormal expression of Fc
receptors in classical monocytes and cDC2 cells, such as
FCAR and FCGR2B (Supplementary Fig. 6J-L), which
may further disturb the antibody-dependent cell-mediated
cytotoxicity [43,44]. Altogether, these finding suggests that
the presence of a compensatory mechanism could mitigate
glomerular injury.

4. Discussion

Membranous nephropathy is the most frequent cause
of nephrotic syndrome in adults. Various kinds of autoan-
tibodies have been identified in about 80-90% cases with
MN. Patients with anti-PLA2R1 antibodies account for ap-
proximately 55% cases of total MN [45]. Recent studies
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mapped the single-cell profile of kidney tissue from adult
patients with pMN, which revealed functional abnormal-
ities of impaired glomerulus and local microenvironment
cells [5-8]. However, the immune pathogenic mechanism
of pMN has been elusive until now, partly because of few
immune cells in kidney biopsy tissues in these studies. One
recent study reported the abnormalities of PBMCs from pa-
tients with untreated pMN. However, only three samples
were involved in the study [9]. To our knowledge, our
study is the first one to depict comprehensively the single-
cell transcript profile of PBMCs from adult with newly-
diagnosed pMN.

The immune complex deposits consist of im-
munoglobulin G and its related autoantigen PLA2R1 and
complement components on the outer aspect of the base-
ment membrane. It is not well known about the expression
distribution of immunoglobulins in circulating B cells.
Intriguingly, we found that expression levels of IGHG3 in
memory B cells correlated positively with the severity of
pPMN, suggesting that IGHG3 is a good potential biomarker
for distinguishing high-risk from moderate and low-risk
patients with pMN [18]. More studies are required to
explore the precise roles of IGHG3 in the development of
pMN.

Persistent inflammation responses play a key role in
many autoimmune diseases. We found that numerous in-
flammatory signalings were implicated into the develop-
ment of pMN, including part members of interleulin, inter-
feron, tumor necrosis factor, chemokine and growth factor
families. As an upstream signaling, some pattern recogni-
tion receptor genes were up-regulated in patients. Similar
trends were present with regard to some classical transcript
factor signalings, such as MAPK, NF-xB and JAK-STAT
and AP-1 and so on [26-28,46]. Of course, it remains to be
determined how the innate immune pathways mediate the
initiation of pMN.

Unexpectedly, we discovered several novel biologi-
cal processes in patients including cellular senescence, cir-
cadian rhythm and chromatin remodeling [29-32]. These
conceptions have been proposed for decades. And they
widely participated into the development of autoimmune
disease and tumors. However, no relevant articles about
pMN have been published until now, which implies that
functional changes about peripheral-blood derived immune
cells need to be explored comprehensively in near future.

In clinical practice, it is extremely important for doc-
tors to distinguish high-risk patients from others effectively,
which would contribute to the decision of treatment strat-
egy. However, only few markers are used in practice,
such as quantitative proteinuria and eGFR. In this study,
we found that genes involved into the antiviral defense re-
sponse in monocytes and lymphoid cells were elevated sig-
nificantly in high-risk patients compared to low-risk popu-
lation. The result suggests that unknown virus infections
may play a critical role in the development of high-risk
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pMN. Blocking the signaling pathway may do good to con-
trolling the progression of high-risk pMN. Intriguingly, a
large number of screened genes upregulated in high-risk
patients correlated negatively with declined eGFP, such as
SLC35F1 (solute carrier family 35 member F1) and BST2
(bone marrow stromal cell antigen 2). These biomarkers
have a potential predictable value for assessing the severity
of patients with newly-diagnosed pMN [36]. And we val-
idated their predictable values in a larger population from
a public database. Intriguingly, we found that peripheral
blood cells have an equivalent role with kidney tissues for
predicting the prognosis of kidney diseases. Additionally,
we established a score system for distinguishing moderate-
risk patients from low-risk and high-risk population.

Regarding cell-cell communication, multiple signal-
ing pathways may contribute to the development of pMN,
including antigen presentation, immune inhibition, cell ad-
hesion and migration. First of all, all of the major histocom-
patibility complex (class I) molecules were significantly
decreased in monocytes and lymphoid cells, implying that
weakened interactions between HLA-I and CD8 might im-
pair the antigen presentation of monocytes and NK cells
to T (CD8+) cells. In terms of HLA-II and CD4 pairs, we
found a significant upregulation of HLA-DQAI and HLA-
DRBI in memory B cells in patients, indicating that the in-
teractions between memory B and T (CD4+) cells might
play a pivotal role in the pathogenesis of pMN [39,40].
Consistent with published articles, that the single nucleotide
polymorphism (SNP) of HLA-DQAI and HLA-DRBI are
associated with MN development. However, the relation-
ship between SNP of HLA molecules and their expression
levels requires further investigation. In addition, we discov-
ered an increased interaction intensity of CLEC2-KLRB1
pairs in patients, suggesting function of NK cells may be
suppressed by monocytes, T and B cells [41,42]. However,
the direct interaction between CLEC2 and KLRBI1 has yet
to be confirmed through functional experiments. Further
investigation is required to determine whether the inhibi-
tion of NK cells could potentially mitigate the progression
of pMN.

A primary limitation of our study is that the findings
need to be validated in a larger population. Additionally,
we did not include healthy donors as a negative control
group, which could have helped minimize batch effects be-
tween different datasets. To address this limitation, we uti-
lized high-quality scRNA-seq data from a previously pub-
lished study [11], where cryopreserved blood cells were
thawed under conditions similar to ours. While this miti-
gates some variability, the lack of a dedicated negative con-
trol group remains a constraint. Another limitation is the in-
ability to analyze single-cell profiles of kidney tissues from
the same patients included in our study. This prevented
a direct investigation of cell-cell communications between
PBMCs and glomerulus-derived cells, which would have
provided deeper insights into immune mechanisms and dis-
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ease pathology. Furthermore, while our study employed
various computational tools to analyze PBMC data, poten-
tial biases from cell clustering and annotation, as well as
noise inherent to scRNA-seq data, may have slightly influ-
enced the results. For example, the use of DoubletFinder
may inadvertently remove some normal single cells that
exhibit gene expression profiles similar to doublets. Such
false negative results could reduce the number of effective
cells used for further analysis. Another potential issue lies
in the use of the Harmony algorithm for batch effect cor-
rection. This method is highly effective in aligning datasets
and reducing technical variability, it may overcorrect batch
effects in some cases, potentially masking genuine biolog-
ical variations.

5. Conclusions

we conducted a comprehensive investigation into the
immune profile of PBMCs from patients with pMN. Our
findings indicate that antiviral defense response may play a
critical role in the development of high-risk pMN. Further-
more, we identified numerous biomarkers capable of pre-
dicting declined eGFR in patients with pMN. These will
give insight into the precise risk stratification of newly-
diagnosed pMN and the optimization of current treatment
strategies [4].
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