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Abstract

Acute macular neuroretinopathy (AMN) is a rare retinal condition that predominantly affects young females. The incidence of AMN
increased significantly during the COVID-19 pandemic, thereby providing a unique opportunity to elucidate the etiology of this disease.
In the present study, 24 articles reporting 59 patients were reviewed. The average age of the patients was 33.51 ± 14.02 years, ranging
from 16 to 75 years, with females comprising 71.19% of the cases. The average duration of ocular symptoms post-infection was 8.22±
10.69 days, ranging from 4 to 150 days. This study investigated the potential pathogenesis of AMN, including the impact of COVID-19
on retinal neurovascular structure and function, immune-mediated inflammatory factor production, blood-retinal barrier disruption, and
retinal microvascular damage, as well as potential clinical therapeutic interventions. This research provides a theoretical framework that
can inform further investigations of AMN.
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1. Introduction
Acute macular neuroretinopathy (AMN) is a rare reti-

nal disease first described by Bos and Deurman [1]. It
is most commonly observed in young and healthy fe-
males, and is characterized by the sudden onset of monocu-
lar or binocular symptoms that can progressively worsen
over days or weeks. AMN lesions often exhibit vary-
ing shades of reddish-brown, brown, or purple. Imag-
ing with frequency-domain optical coherence tomography
(OCT) reveals various abnormal findings, including rupture
of the ellipsoid zone, increased reflectivity of the outer nu-
clear layer, thinning of the outer nuclear layer, decreased
reflectivity of the photoreceptor/retinal pigment epithelium
(RPE) complex, and extensive loss of the outer retina [2–
4]. Clinical associations with AMN include the use of
oral contraceptives, and exposure to vasoconstrictive sub-
stances such as epinephrine or ephedrine, trauma, shock, in-
travenous contrast, preeclampsia, postpartum hypotension,
and caffeine intake [3,5–9].

An association between the development of AMN
and respiratory or influenza-like illnesses was reported pre-
viously [10]. COVID-19 has been the most prevalent
influenza-like respiratory disease in recent years, and an in-
creased incidence of AMNhas been observed in COVID-19
patients and in individuals who received COVID-19 vac-
cinations [4]. Although this suggests that COVID-19 in-
fection contributes to an increased prevalence of AMN, the
potential mechanisms linking these two conditions remain

unclear, thus presenting a challenge for the clinical preven-
tion and treatment of AMN. Investigation and elucidation of
the underlying mechanism for COVID-19-induced AMN is
therefore of considerable importance for the prevention and
treatment of AMN, as well as other ocular complications
caused by the COVID-19 pandemic.

Currently, most research suggests the primary mech-
anism of AMN involves vascular damage to the deep reti-
nal capillary plexus, leading to occlusion of the ocular mi-
crovessels. This results in ischemic retinopathy, which
triggers retinal hemorrhage, damage to photoreceptors and
macula, and ultimately induces AMN [11,12]. However,
some studies have reported that patients with AMN often
suffer decreased visual acuity, possibly indicating damage
to the retinal ganglia and disruption of the blood-brain bar-
rier, although the precise mechanism of AMN is still un-
clear [7,8,10]. A study has also shown that COVID-19 in-
duces the development ofmicrovascular thrombosis and en-
dothelial cell dysfunction, suggesting a potential link be-
tween COVID-19 and AMN [13]. Indeed, there is increas-
ing evidence of an association between COVID-19 and oc-
ular diseases [14]. Transmission of COVID-19 via the oc-
ular surface was postulated during the early stages of the
pandemic, with recent findings supporting this hypothesis
[15]. Nevertheless, the clinical features, pathogenesis, and
treatment of COVID-19-related AMN have yet to be fully
characterized.
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Fig. 1. PRISMA flow diagram showing the process of data collection and selection.

The aim of this review was therefore to compile and
analyze the clinical manifestations and diagnostic features
of AMN associated with COVID-19, and to compare our
findings with those of previous reports. Based on exist-
ing studies, we investigated the effects of COVID-19 on
the structure and function of the retinal neurovascular unit.
These effects may underline potential pathogenic mecha-

nisms involving the secretion of immune storm factors, dis-
ruption of the blood-retinal barrier (BRB), and damage to
the retinal microvasculature. Our objectives were to pro-
vide a theoretical framework and foundation for further in-
vestigation of AMN, and to identify areas for possible ther-
apeutic intervention.
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Table 1. Clinical presentation in a series of reports on COVID-19-associated AMN.

Article Sex
Age
(years)

Symptoms
1 Time of
onset (days)

Severity of
COVID-19

Unilateral or
bilateral

Imaging
Follow-up
(days)

Ajaz S et al. [16] Female 28 Paracentral scotoma NR NR OU OCT, OCTA 35
Female 22 Paracentral scotoma NR NR OD OCT, OCTA 60
Female 27 Paracentral scotoma NR NR OU OCT, OCTA NR

Jalink and Bronkhorst [17] Female 29 Scotomas 14 Moderate OS OCT, VF NR
Female 40 Scotomas 150 Mild OD OCT, VF NR
Female 21 Scotomas, photopsias 42 Mild OD OCT, VF 90
Female 42 Scotomas 45 Mild OD OCT, VF NR

Preti et al. [18] Male 70 Scotomas, diaphoresis 4 Severe OS OCT 30

Aidar et al. [19] Female 71 Blurry vision 14 Moderate OS OCT 60

David and Fivga [20] Female 22 Scotomas 14 Moderate OU OCT, OCTA, ICGA 280

Zamani et al. [21] Female 20 Scotomas 9 Mild OD OCT 6

Gascon et al. [22] Male 53 Scotoma NR NR OS OCT, ICGA 11

Virgo and Mohamed [23] Male 32 Paracentral scotoma 16 Moderate OD OCT, VF NR
Female 37 Paracentral scotoma 35 Mild OD OCT, VF NR

Giacuzzo et al. [24] Female 23 Paracentral scotoma 14 Moderate OU OCT, VF 30

Masjedi et al. [25] Female 29 Paracentral scotoma 14 Moderate OS OCT 90

Bellur S et al. [26] Female 64 Persistent central vision loss 3 Severe OU OCT, OCTA 14

Capuano V et al. [27] Female 37 Paracentral scotoma NR NR OU OCT 30
Male 27 NR NR NR OU OCT 30

Goyal M et al. [28] Male 32 Paracentral scotoma 120 Mild OU OCT NR

El Matri et al. [29] Female 75 Paracentral scotoma 30 Moderate OD OCTA NR

Macé and Pipelart [30] Female 39 Paracentral scotoma, photopsia 2 Mild OU OCTA 30

Diafas A et al. [31] Male 59 Paracentral scotoma NR NR OU OCTA 42

Strzalkowski et al. [32] Female 18 Central scotomas NR NR OU OCTA 30
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Table 1. Continued.

Article Sex
Age
(years)

Symptoms
1 Time of
onset (days)

Severity of
COVID-19

Unilateral or
bilateral

Imaging
Follow-up
(days)

Liu YC et al. [33] Male 19 NR 5 Moderate OU OCTA NR
Male 35 Paracentral scotoma 5 Moderate OU OCTA, OCT NR
Female 17 NR 4 Moderate OU OCT NR
Male 28 Scotomas 4 Moderate OU OCTA, OCT NR
Male 37 Decreased vision 2 Moderate OU OCT NR
Female 49 Blurred vision 5 Moderate OU OCTA, FFA NR
Female 23 Scotoma, decreased vision 1 Moderate OU OCTA, FFA 20
Female 32 Decreased vision 4 Moderate OU OCTA NR
Male 16 NR 2 Moderate OU OCTA NR

Kovalchuk et al. [34] Female 16 Paracentral scotomas 1 Severe OU OCTA, OCT 30

Hawley and Han [35] Female 21 bilateral Paracentral scotomas 2 Severe OU OCT NR

Reddy S et al. [36] Female 24 scotomas 5 Moderate OU OCT, OCTA NR

Sonmez et al. [37] Female 41 Paracentral scotoma 30 Moderate OD OCTA 30

Feng et al. [38] Male 34 Paracentral scotoma 2 NR NR OCT, OCTA 56
Male 42 Blurred vision 3 NR OU OCT, OCTA 84
Male 37 Central Scotomas 10 NR NR OCT, ICGA 84
Female 39 Blurred vision, Paracentral scotoma 1 NR OU OCT, OCTA 112
Female 36 Central scotoma 2 NR OU OCT, OCTA 105
Female 41 Decreased vision 3 NR OU OCT, ICGA 56

Tang J et al. [39] Male 27 Scotoma, photopsia 2 Mild OU OCT NR
Female 25 Scotoma, photopsia 2 Mild OS OCT NR
Female 27 Scotoma, Decreased vision 2 Severe OU OCT NR
Female 29 Scotoma, Decreased vision 10 Mild OU OCT NR
Female 16 Scotoma 2 Severe OS OCT NR
Female 54 Scotoma NR NR OS OCT NR

Average 33.5 8.22 Mild: 28.57% OU 67.79% 59.51
(SD 14.02) (SD 10.69) Moderate: 54.28% OS 32.21% (SD 40.71)

Severe: 17.14%
1 Time of onset: number of days after COVID-19 diagnosis until AMN was identified.
Abbreviations: OCT, Optical Coherence Tomography; OCTA, Optical Coherence Tomography Angiography; FFA, Fluorescein Fundus Angiography; VF, Ventricular Fibrillation; ICGA,
Indocyanine Green Angiography; NR, Not Reported; AMN, Acute macular neuroretinopathy; OU, oculus unati; OS, oculus sinister; OD, oculus dextrus.
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2. Clinical Features of COVID-19-Associated
AMN
Inclusion and Exclusion Criteria for AMN Cases

The inclusion criteria for this literature search were:
(1) studies on AMN caused by COVID-19 or SARS-CoV-
2 infection; (2) publication between April 2021 and April
2024; (3) original research or case reports. The exclusion
criteria were: (1) studies on AMN that were not associated
with COVID-19 or SARS-CoV-2 infection; (2) studies re-
lated to AMN following COVID-19 vaccination.

The pathogenesis of a disease is closely associated
with its clinical manifestations. To elucidate the molecu-
lar mechanisms of AMN, it is essential to investigate and
identify the epidemic-like characteristics of AMN within
the context of the COVID-19 pandemic. The clinical fea-
tures of AMN induced by COVID-19 were studied by con-
ducting a comprehensive review of relevant articles pub-
lished in the PubMed database between April 2021 and
April 2024. The keywords used in the search were “SARS-
CoV-2”, “COVID-19”, and “acute macular neuroretinopa-
thy”. All articles containing these keywords were systemat-
ically screened and evaluated, together with their references
(Fig. 1). In all, 24 articles [16–39] containing 49 AMN
patients were identified. The data collected included the
number of cases, patient age and gender, clinical charac-
teristics, time of disease onset after COVID-19 diagnosis,
and disease duration (Table 1, Ref. [16–39]). This data was
subsequently analyzed using IBM SPSS Statistics software
V27.2.1 (IBM Corp., Armonk, NY, USA).

The demographic and clinical characteristics of the pa-
tients are shown in Table 1. Among the 49 participants,
females predominated and comprised 71.19% of the study
cohort. The mean age of patients was 33.51 years, with a
range of 16 to 75 years. Data on the time of onset of ocu-
lar symptoms post-infection was available for 42 patients.
Of these, 39 developed ocular symptoms after a mean of
8.22 days, with a range of 4 to 150 days. In the 3 remain-
ing patients, ocular symptomsmanifested concurrently with
COVID-19. All patients underwent OCT or OCTA imag-
ing, which revealed abnormalities in all cases. Moreover,
we have observed that the severity of COVID-19 is related
to the incidence of AMN. Among the 49 patients, 35 pa-
tients had reported COVID-19 severity, including 10 mild
cases (10/35, 28.57%), 19 moderate cases (19/35, 54.28%),
and 6 severe cases (6/35, 17.14%), further indicating the
correlation between the incidence of AMN and COVID-19.

The most prevalent ocular manifestation was acute
onset of a scotoma (32/49, 65.30%), occasionally associ-
ated with blurred vision (6/49, 12.24%), decreased vision
(6/49, 12.24%), and photopsia (5/49, 10.20%). Additional
reported symptoms included persistent and central vision
loss [26]. Among the patients with follow-up data (average
follow-up period: 59.51± 40.71 days, range 6 to 180 days),
3 recovered completely, 21 experienced a partial recovery,
5 demonstrated no clinical or imaging improvement, and

1 patient succumbed. In most cases, the macular hypo re-
flectance focus (arrow) was observed by infrared (Fig. 2A),
and the corresponding macular optical coherence tomogra-
phy showed the high reflection of the outer plexiform layer,
thinning of the outer nuclear layer (arrow) and interruption
of the continuity of the ellipsoid zone (arrow) (Fig. 2B).

The incidence of AMN increased substantially during
the COVID-19 pandemic, accompanied by a concomitant
rise in related conditions. Because the neurological and vas-
cular clinical manifestations of AMN are more obvious in
patients with COVID-19, we hypothesized these may be re-
lated to alterations in the retinal neurovascular unit (RNVU)
and in the BRB. The specific pathogenesis of AMN is ex-
plored in detail in subsequent sections.

3. Pathogenesis of the Retinal Neurovascular
Unit is Mediated by COVID-19
3.1 The Retinal Neurovascular Unit is the Primary Target
of COVID-19 Infection

The neurovascular unit (NUV) concept was formu-
lated during the initial Stroke Progress ReviewGroupmeet-
ing organized by the National Institute of Neurological
Disorders and Stroke, a division of the National Insti-
tutes of Health (https://www.ninds.nih.gov).This concept
was developed to highlight the intricate interplay between
cerebral cellular components and the brain’s vascular net-
work, whose structural and functional impairments underlie
many neurodegenerative and neuroinflammatory disorders
[40,41]. The NVU denotes the functional coupling and in-
terdependence among neurons, glial cells, and the vascular
system [42]. As an extension of the brain, the eye has a
similar structure to the NVU, referred to as the RNVU. This
consists mainly of retinal neurons, neuroglia and the retinal
microvascular system distributed within the corresponding
retinal structures [43,44].

COVID-19 enters host cells mainly via the spike (S)
protein, which exists as a homotrimer on the viral sur-
face [45,46]. The S protein interacts with angiotensin-
converting enzyme 2 (ACE2), which serves as the host re-
ceptor for COVID-19. After this interaction, the virus en-
ters the cell through a mechanism facilitated by transmem-
brane serine protease 2 (TMPRSS2) [47]. Expression of
ACE2 has been detected on the surface (cornea and con-
junctiva) and on the inside of the eye (iris, trabecular mesh-
work, and retina) [48–51]. The virus can invade all struc-
tures in the retinal tissue, and COVID-19 virus particles
have been found in autopsy samples of retinopathy [52].
The S protein interacts with ACE2 and is detected within
the deeper ocular structures, specifically in the retinal gan-
glion cell layer, inner plexiform layer, inner nuclear layer,
and outer segment of the photoreceptor [53]. The ACE2
receptor has also been detected at the mRNA and protein
levels in rat and porcine retinas [54,55], and its expression
in the retina hasbeen demonstrated by in situ hybridization.
These observations suggest that COVID-19 is located in
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Fig. 2. Infrared and optical coherence tomography images of patient. The infrared image (A) of the eye showed the macular hypo-
reflectance focus (arrow), and the corresponding right macular optical coherence tomography (B) showed the high reflection of the outer
plexiform layer, thinning of the outer nuclear layer (arrow) and interruption of the continuity of the ellipsoid zone (arrowhead). The scale
bar is 200 μm.

the RNUV following infection, and that the interaction be-
tween COVID-19 and ACE2 may result in retinal inflam-
mation and significant upregulation of inflammatory cy-
tokines, including TNF-α, IL-6, IL-10, and IL-23 [56,57].
Thus, COVID-19 invasion of the retina, leading to struc-
tural and functional alterations in the RNVU, may be a po-
tential mechanism for the pathogenesis of AMN.

3.2 Involvement of Retinal Neurons and their Subsequent
Damage

3.2.1 Retinal Ganglion Cell Involvement

Five types of neurons exist in the RNVU: photore-
ceptors, horizontal cells, bipolar cells, amacrine cells, and
ganglion cells. Photoreceptor cells detect light stimuli and
transmit signals to bipolar and ganglion cells, which sub-
sequently convey these signals to the central nervous sys-
tem (CNS) via the optic nerve [58]. Retinal ganglion cells
(RGCs) are neural retinal elements that connect visual re-
ceptors to the brain to form the neurovisual system. The
functional and morphological involvement of RGCs is es-
sential for retinal function, making them critical targets for
protective strategies in retinal diseases [59]. The ACE2 re-
ceptor is readily detected in eye and brain tissues, and is
expressed ubiquitously throughout the human visual system

and CNS [60–63]. COVID-19 exhibits a preferential infec-
tion and replication pattern in the RGCs of human retina-
like organs. A comparative analysis of differentially ex-
pressed genes in retinal organoids revealed the enrichment
of TGF-β-responsive genes. TGF-β signaling plays a cru-
cial role in maintaining the immune status of the eye. RGCs
inhibit T-cell activation through the secretion of TGF-β.
COVID-19 infection of the retina results in apoptosis and
damage to RGCs, leading to an increased number of T cells.
This process induces the upregulation of immune factors
and triggers AMN [64,65].

The optic nerve and the visual circuit of the brain con-
tain significant amounts of ACE2 receptor mRNA and pro-
tein [66]. The abundance of ACE2 receptors correlates with
the propensity to attract and bind COVID-19, thereby facil-
itating entry of the virus into human host cells. Elevated
expression of ACE2 receptors on the outermost surface of
the eye and extending through the RGCs into the brain could
potentially impact vision and the CNS, thus contributing to
the development of AMN.

3.2.2 Retinal Photoreceptor Involvement

In retinopathy, the vascular system is considered to
be the primary site of pathology and is therefore the prin-
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cipal focus of research for elucidating visual dysfunction.
However, the potential contribution of photoreceptor cells,
which comprise the majority of retinal structures and drive
metabolic activity, remains largely overlooked in the con-
text of vascular disease. Even under conditions that induce
the degeneration of photoreceptor cells, little attention has
been directed towards damage to retinal capillaries result-
ing from the decline of photoreceptor cells [48–51,67–69].

The photoreceptor is the predominant cell type in
the retina and the most metabolically active neuron in the
RNUV, containing at least 75% of the retinal mitochon-
dria. Photoreceptors serve a unique function in the body
by absorbing light and transducing it into electrical energy,
thereby facilitating vision. Research has found that alter-
ations or impairment of photoreceptors in the retina are re-
lated to the pathogenesis of AMN [70–72].

Studies have revealed the presence of defects in the
junction between the inner and outer segments of the pho-
toreceptor, attenuation of the outer nuclear layer (ONL)
[73–76], thinning of the photoreceptor outer segments, and
localized hyper-reflectivity in the outer retina, which subse-
quently progress to degenerative changes [76–78]. Hansen
et al. [79] employed adaptive optical scanning ophthal-
moscopy (AOSLO) and SD-OCT to examine photoreceptor
chimeras in patients with AMN and to evaluate the struc-
tures of rods and cones. SD-OCT images showed that the
two bands in the outer retina, which are usually associ-
ated with the photoreceptor structure, exhibited diminished
intensity. Moreover, AOSLO imaging revealed the cone
cells exhibited significant structural deterioration in regions
with diminished retinal sensitivity, as determined by mi-
croperimetry. In retinal organoids infected with COVID-
19, the S protein of the virus was predominantly localized
in photoreceptors, leading to their structural and functional
impairment and consequent retinal dysfunction [63].

The COVID-19 targeting and degeneration of retinal
photoreceptors subsequently damages the retinal capillar-
ies, thus potentially affecting the normal functioning of the
retina and initiating AMN.

3.3 Retinal Glial Cell Involvement

The glial component of the RNVU is comprised of
macroglia (astrocytes and Müller cells), microglia, and
oligodendrocytes. These encompass neurons, establish reti-
nal defense structures, and contribute to the maintenance
of retinal homeostasis. Glial cells serve as the interface
between neurons and the vascular system, and are criti-
cal regulators of functional communication [80]. COVID-
19 affects not only cells within the retina, but also other
retinal cells including Müller cells, microglia, and astro-
cytes. In patients with COVID-19, binding of ACE2 pro-
tein to COVID-19 S protein results in the activation of
Müller cells [81–85]. A significant correlation has been
observed between Müller cell activation and cone cell al-
terations [86,87].

Microglial activation is also prominent in the retina
following COVID-19 infection. Albertos et al. [88] re-
ported the presence of microglial nodules surrounding reti-
nal blood vessels in the superficial vascular plexus, anal-
ogous to those observed in the brain tissue of COVID-19
patients. They also noted an increase in the perivascular
periphery of all vascular plexuses, and a higher proportion
of microglia. Increased levels of pro-inflammatory factors
in the blood of COVID-19 patients may facilitate the acti-
vation and migration of microglia, potentially affecting the
development and function of retinal photoreceptors, RPE,
and ganglion cells. This may lead to impaired retinal out-
comes and function, thereby inducing AMN [89,90].

The potential mechanism for COVID-19-induced
AMN may therefore involve neuronal and glial damage in
the RNUV that alters its structure and function, which in
turn triggers AMN.

3.4 Involvement of the Retinal Microvasculature and
Damage to the BRB

Changes to the retinal microvasculature and disrup-
tion of the BRB have been implicated in the pathogenesis
of AMN. Inflammatory responses following COVID-19 in-
fection may trigger vascular or embolic events that lead to
ischemia in the deep retinal capillary plexus, thereby dis-
rupting the BRB and manifesting as relatively hypodense
regions in the retina [91–93]. OCT and OCTA have re-
vealed the presence of superficial or deep capillary plexus
(DCP) and choroidal capillary ischemia in AMN [94–97].

Approximately 30% of COVID-19 patients experi-
ence complications caused by thrombosis. Inactivation of
ACE2 can disrupt the equilibrium of the renin-angiotensin
system, resulting in vasoconstriction and inadequate retinal
vascular perfusion [98]. This makes patients vulnerable to
retinal ischemia, which can potentially lead to AMN. Azar
et al. [99] proposed that virus-induced endothelial injury
may be the primary mechanism underlying the pathogene-
sis of AMN caused by COVID-19, which could correspond
to microvascular damage in the DCP. Using OCTA, Liu et
al. [100] observed decreased vascular density in the su-
perficial capillary plexus (SCP), DCP, choriocapillaris, and
large vessel layer in all AMN cases, with DCP exhibiting
the most decrease. This suggests that pathogenesis of the
acute phase of AMNmay be associated with decreased vas-
cular density resulting from microvascular contractions in
the deep retina. A prospective study utilizing OCT to ana-
lyze the retinal microcirculation found that changes in mac-
ular microvessel density in the plexiform layer served as a
clinical marker for the severity of COVID-19, and also in-
dicated possible immune thrombosis [101]. Based on these
findings, it was hypothesized that AMN is associated with
decreased microvascular circulation.

Damage and destruction of vascular endothelial cells
(ECs) plays a crucial role in the impairment of microvascu-
lar function. A recent study found that markers associated
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with endothelial inflammation and injury pathways, includ-
ing IL-6, TNF-α, ICAM-1, and caspase-1, were elevated in
the pulmonary tissues of individuals with COVID-19 com-
pared to individuals with 2009 H1N1 influenza and to con-
trol groups [102]. Motta et al. [103] reported that human
brain microvascular ECs infected with COVID-19 showed
increased cysteine cleavage and apoptotic cell death. Ad-
ditionally, analysis of RNA sequencing data revealed in-
creased expression of endothelial activation markers such
as RELB (p50) and TNF-α. Vascular ECs infected with
COVID-19 are stimulated to produce substances that en-
hance inflammation and form new blood vessels. This
increases the expression of certain tight junction proteins
(ZO-1, occludin, and claudin-5) and decreases permeabil-
ity of the blood-brain barrier [104,105]. The resulting in-
crease in plasma angiogenic markers such as VEGF-A en-
hances endothelial leakage and the infiltration of inflamma-
tory cells [106,107]. Consequently, the damage and death
of vascular ECs results in dysfunction of the microvascu-
lar circulation, thereby altering the structure of the retina,
impairing its function, and inducing AMN.

Microvascular dysfunction is significantly affected
by the senescence of vascular ECs. COVID-19 infection
specifically elicits this process, which functions as a crit-
ical stress response. The aggregate effects of COVID-
19-induced senescence and angiogenesis may vary de-
pending on the disease phase. Treatment of human ECs
with both TNF-α and IFN-γ enhances the expression of
ACE2 receptor, thereby facilitating viral entry through the
JAK/STAT1 pathway [108]. Additionally, fluid from virus-
infected cells stimulates the formation of neutrophil extra-
cellular traps and platelet activation [109]. D’Agnillo et
al. [110] reported elevated levels of cellular senescence-
related markers, including PAI-1, p21, and sirtuin-1, in the
serum and lung ECs of COVID-19 patients. Furthermore,
cellular senescence was associated with vascular endothe-
lial inflammation characterized by ICAM-1 and increased
VCAM-1 expression, which play crucial roles in promoting
leukocyte adhesion to activated ECs [111].

Consequently, one of the potential mechanisms for
AMN is that COVID-19 infection induces the senescence
or secondary senescence of ECs. This leads to vascular
endothelial inflammation and the expression of associated
factors, as well as disruption of the BRB, resulting in dys-
function of microvascular circulation and alterations in the
structure and function of the retina.

RPE cells are essential for various aspects of eye func-
tion, including nutrient transport, light absorption, and the
production of cytokines and chemokines. Impairment of
RPE function can lead to visual disturbances and potentially
trigger the onset of AMN. A recent study of COVID-19-
associated AMN found distinctive OCT features, including
increased reflectivity in the macular outer plexiform and
outer nuclear layers, as well as disruptions in the ellipsoid
and interphalangeal regions, as well as in the RPE layers.

Of note, the enhanced reflectivity observed by OCT in the
outer retinal layers may be an indirect indicator of damage
to nearby photoreceptors and the RPE [112]. These clinical
observations suggest that COVID-19 may have a detrimen-
tal effect on the RPE, potentially contributing to the devel-
opment of AMN.

COVID-19 and its spike proteins can induce cellular
senescence. Zhang et al. [113] demonstrated the S protein
of COVID-19 could induce senescence of ARPE-19 cells
in vitro by increasing the level of cytosolic reactive oxy-
gen species (ROS), endoplasmic reticulum (ER) stress, and
activating the NF-κB pathway. Under stressful conditions,
ROS is the primary cause of cellular senescence. COVID-
19 infection induces ER stress in cells, which is crucial for
viral replication and damage to host cells [114,115]. Fur-
thermore, activation of the NF-κB pathway is closely as-
sociated with COVID-19-induced acute inflammation and
the expression of senescence-associated inflammatory fac-
tors [116,117]. Based on this evidence, a hypothesis to
explain the AMN manifestations of COVID-19 has been
proposed. In addition to direct viral damage, the spike
proteins of COVID-19 may stimulate increased production
of senescence-associated inflammatory factors or acute in-
flammation, resulting in RPE senescence and injury [118].

3.5 The Immune Response and Cytokine Storm

When the immune system fails to recognize specific
body components, it can produce autoantibodies that tar-
get cells, tissues, or organs. This phenomenon results in
inflammatory reactions, and ultimately leads to the de-
velopment of autoimmune diseases [119]. The specific
pathogenic mechanism associated with COVID-19 infec-
tion has yet to be fully elucidated. However, a study has
shown that COVID-19 can induce excessive production of
inflammatory cytokines [120]. This immune response can
facilitate the fight against the virus, or contribute to exces-
sive production of inflammatory chemokines, potentially
leading to a “cytokine storm” that exacerbates the patient’s
severe condition [121].

COVID-19 infection also damages mitochondrial
structure and function, thereby promoting the production
of inflammatory cytokines and triggering AMN. Ajaz et
al. [16] found that COVID-19 appropriates the host mito-
chondria, which is an essential organelle in innate immune
signaling. COVID-19 then induces mitochondrial dysfunc-
tion, resulting in oxidative stress and the production of pro-
inflammatory cytokines, and subsequently causing damage
that affects retinal function.

Finally, the mechanism of COVID-19-induced AMN
may not be limited to single cell damage. Rather, COVID-
19 could potentially inflict varying degrees of harm on
multiple retinal cell types, thus affecting the structure and
function of the retina and consequently leading to disease
(Fig. 3).
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Fig. 3. Proposed mechanisms for AMN caused by COVID-19 infection. COVID-19 infects the inner retina (ganglion cells, photore-
ceptors, RPE) and recruits TGF-β to the retina. This leads to T-cell activation, mitochondrial dysfunction, and endoplasmic reticulum
stress. Subsequently, the upregulation of inflammatory factors triggers a cytokine storm, causing damage to the retinal microvasculature
and blood-brain barrier. This affects the visual system and leads to AMN. Created whit biorender.com (https://www.biorender.com).

4. Current Therapeutic Options
At present, no established treatment exists for

COVID-19-related AMN. Consequently, the pharmacolog-
ical interventions discussed below have proven effective
against COVID-19, or represent potential therapeutic ap-
proaches.

4.1 Corticosteroids

Corticosteroids have been used extensively to treat cy-
tokine storm syndrome, which is characterized by excessive
inflammation resulting from the overproduction of immune
cells and cytokines [122]. This syndrome can manifest dur-
ing various infections or autoimmune conditions, and a sig-
nificant increase in several cytokines has been observed in
a subset of COVID-19 patients [123]. The primary mecha-
nism of corticosteroid action involves the inhibition of viral
entry and replication by targeting viral proteins, or by mod-
ulating the host immune response to reduce hyperinflam-
mation caused by COVID-19 infection [124–127]. This is
achieved by decreasing the expression of two principal pro-
teins utilized by COVID-19 for cellular uptake: TMPRSS2
and ACE2 [128].

Nevertheless, the high dosage and prolonged course
of corticosteroids required to treat severe cases can result in
adverse effects and undesirable reactions, including longer

virus elimination and increased susceptibility to opportunis-
tic infections. Consequently, attention has turned to the
development of corticosteroid-reducing medications (im-
munomodulators) and novel corticosteroid administration
methods aimed at reducing the required dosage and hence
the associated drug-induced risks [129].

4.2 Interferons

Interferons are a group of cytokine-signaling media-
tors that exhibit critical antiviral activity and play signifi-
cant roles in innate and adaptive cellular immune responses
[130]. Their immunomodulatory and antiviral activities are
thought to involve activation of the innate immune response
after viral infection, inhibition of viral replication, and stim-
ulation of protein synthesis through interaction with toll-
like receptors [131]. Interferons are widely used in ophthal-
mology for the treatment of ocular surface tumors, macular
edema, and other anterior and posterior chamber patholo-
gies. Recombinant forms of interferon have also been em-
ployed to treat various viral infections and neoplastic dis-
eases [132,133]. The efficacy of interferon β (IFN-β) in
treating MERS indicates that it may have potential as an al-
ternative therapy for COVID-19, especially when used in
conjunction with other medications. Interferon β1 (IFN-
β1) is a powerful coronavirus inhibitor and may also be a
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safe and effective treatment for COVID-19. Its therapeutic
impact can be amplified when administered with drugs such
as lopinavir/ritonavir, ribavirin, or remdesivir [134,135].

4.3 Arbidol Hydrochloride
Arbidol hydrochloride is an antiviral drug that inhibits

interaction between the spike protein and ACE2 [136]. It
has been used extensively in the prevention and treatment
of influenza, and is currently being investigated for its po-
tential efficacy against COVID-19 using an identical dosing
regimen (200 mg every 8 h). Although preliminary results
from a small, non-randomized study has shown promise,
further research is needed to comprehensively evaluate its
effectiveness [137]. As with other pharmaceutical agents,
no ocular adverse effects associated with its use have been
reported. Arbidol is a non-nucleoside antiviral agent that
prevents viral entry into host cells by inhibiting the virus
lipid envelope from fusingwith the host cell membrane. Ar-
bidol can also boost the host immune system by inducing
the production of interferons and activating macrophages
[138].

4.4 Camostat Mesylate
Carmustine mesylate exerts its effect on the host en-

zyme TMPRSS2, a member of the serine protease fam-
ily. This mechanism inhibits viral entry and impedes virus-
cell membrane fusion, thereby effectively suppressing viral
replication [139]. Regulatory approval for this pharmaceu-
tical agent has been received for the treatment of pancre-
atitis in Japan, and it also exhibits some efficacy against
other coronaviruses. However, definitive evidence for its
effectiveness against COVID-19 remains to be established
[140].

4.5 Tocilizumab
Tocilizumab is an immunomodulatory drug recently

approved by the U.S. Food and Drug Administration for
Phase III clinical trials of critically ill COVID-19 patients.
COVID-19 infection results in compromised vascular in-
tegrity, activated coagulation, and increased inflammation
due to IL-6 trans-signaling. The therapeutic mechanism
of tocilizumab involves the targeting of endothelial IL-6
signaling transduction to mitigate COVID-19-induced cy-
tokine storm symptoms [141]. This medication is typically
administered either as a monotherapy or in combination
with other drugs to manage various autoimmune disorders,
including rheumatoid arthritis [142,143].

5. Conclusions and Perspectives
The presence of COVID-19 in the eye can result in

various ocular diseases. AMN is a rare retinal disorder with
few cases reported prior to the COVID-19 pandemic. How-
ever, the incidence of AMN is significantly higher in pa-
tients with COVID-19. This observation suggests the virus
plays a crucial role in the increased prevalence of AMN,

highlighting the need for further investigation into its un-
derlying mechanisms in order to improve disease manage-
ment. In this study, we examined the demographic and
clinical characteristics of COVID-19-induced AMN utiliz-
ing the existing literature. We comprehensively analysed
the potential mechanisms of COVID-19-induced AMN, fo-
cusing not only on microvascular damage but also the ef-
fects of COVID-19 on immunological factors and the BRB.
We posit that COVID-19 induces damage to the retina and
retinal cells, resulting in impairment of the microvascular
circulation and subsequently triggering the development of
AMN. This hypothesis provides a theoretical foundation
for further investigation of the specific pathophysiological
mechanisms underlying AMN.

The continuous mutation of COVID-19 enhances its
immune escape and transmission capabilities, thus under-
scoring the importance of clinical prevention and treatment
strategies. This review examined agents that can effectively
reduce viral infection and associated toxicity in COVID-
19. However, certain drugs exhibit varying adverse effects
that necessitate careful consideration in the clinical setting.
These therapeutic interventions may provide a foundation
for future clinical treatments.
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