
Front. Biosci. (Landmark Ed) 2025; 30(4): 33422
https://doi.org/10.31083/FBL33422

Copyright: © 2025 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

A Novel Signature Composed of Hypoxia, Glycolysis, Lactylation
Related Genes to Predict Prognosis and Immunotherapy in
Hepatocellular Carcinoma
Feng Yi1 , Shichao Long1,2, Yuanbing Yao1 , Kai Fu1,3,4,5,*
1Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya
Hospital, Central South University, 410083 Changsha, Hunan, China
2Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410083
Changsha, Hunan, China
3Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410083 Changsha,
Hunan, China
4National Clinical Research Center for Geriatric Disorders, 410114 Changsha, Hunan, China
5Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 410083 Changsha, Hunan, China
*Correspondence: fu_kai@csu.edu.cn (Kai Fu)
Academic Editor: Jordi Sastre-Serra
Submitted: 30 November 2024 Revised: 17 March 2025 Accepted: 21 March 2025 Published: 21 April 2025

Abstract

Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. The hypoxic microenvironment
in HCC enhances glycolysis and co-directed lactate accumulation, which leads to increased lactylation. However, the exact biological
pattern remains to be elucidated. Therefore, we sought to identify hypoxia-glycolysis-lactylation (HGL) prognosis-related signatures
and validate this in vitro. Methods: Transcriptomic data of patients with HCC were collected from The Cancer Genome Atlas (TCGA),
International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Differentially expressed HGL
genes between HCC and normal tissues were obtained by DEseq2. The consensus clustering algorithm was employed to stratify pa-
tients into two distinct clusters. Subsequently, the single sample Gene Set Enrichment Analysis (ssGSEA), Tumor Immune Estimation
Resource (TIMER) and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms were utilized to assess immune infiltration and
immune evasion. Least Absolute Shrinkage and Selection Operator (LASSO) and COX regression analysis were used to identify an HGL
prognosis-related signature. Based on spatial transcriptome and histological data, we analyzed the expression of these genes in HCC and
explored the function of Homer Scaffold Protein 1 (HOMER1) in HCC cells. Results: We identified 72 differentially expressed HGL
genes and two HGL clusters. Cluster2, with better survival (p < 0.001), was significantly enriched in metabolic-related pathways. The
HGL prognosis-related signature exhibited great predictive efficacy for patients in TCGA, ICGC, and GSE148355 databases (3-year
area under the curve (AUC) = 0.822, 0.738, and 0.707, respectively). The elevated expression of HOMER1 in HCC was revealed by the
combination of spatial transcriptome and histological data. Knocking down HOMER1 significantly inhibited the malignant progression
of HCC cells. Conclusions: We identified a signature with great predictive efficacy and discovered a gene, HOMER1, that influences
the malignant progression of HCC with the potential to become a novel therapeutic target.
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1. Introduction
Hepatocellular carcinoma (HCC) is the major his-

tologic subtype of liver cancer, the third most common
cause of cancer-related mortality worldwide [1]. At
present, surgical treatment along with ablation, radiother-
apy, chemotherapy, immunotherapy and targeted therapy,
constitute the main form of treatment [2]. Accurate and
effective classification can help to select the most suitable
treatment for patients with HCC [3]. Along with the rapid
development of multi-omics, the molecular characteristics
along with immune and metabolic microenvironment helps
tomeasure precise and effective treatments for patients with
HCC [4,5]. However, the independent prognostic factors
for HCC are still limited.

Metabolic reprogramming is one of the hallmark fea-
tures of tumors. In the process of continuous proliferation
[6], invasion and metastasis, the microenvironment gradu-
ally becomes nutrient-deficient. In order to cope with the
nutrient-deficient microenvironment, the tumor constantly
changes its metabolic characteristics to adapt. HCC is char-
acterized by a variety of metabolic changes: first, changes
in energy metabolism occur. The hypoxic environment
and tumor characteristics lead to enhanced glycolysis and
lactate accumulation; increased fatty acid synthesis sup-
ports the production of cell membranes and energy storage.
Amino acid metabolism is also altered, resulting in an in-
creasing in glutamine, which plays a role in cellular energy
metabolism and antioxidant responses [7].
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Hypoxia is one of the common features of malignant
solid tumors [8], which also promotes themalignant process
of HCC. The malignant proliferation of HCC will consume
an increased supply of oxygen and create a hypoxic tu-
mor microenvironment. Hypoxia can activate the Hypoxia-
Inducible Factor (HIF) signaling pathway, which is a core
transcription factor in the hypoxic response. HIF sense low
oxygen levels and regulate the expression of various genes,
promoting the survival and proliferation of tumor cells in
the hypoxic environment [9]. Hypoxia also plays a crucial
role in the development of chemoradiotherapy resistance
and immune evasion [9–12]. As a major form of glucose
metabolism, glycolysis is the primary energy source for tu-
mor cells. It is also key in driving malignant proliferation,
invasion, metastasis, and drug resistance in HCC [7,10–13].
These processes interact with each other and collectively
play an important role in the progression of HCC.

Hypoxia promotes glycolysis which produces lactate,
which is the substrate for lactylation. It is a new form of
protein post-transcriptional modification, which regulates
the proteins by covalently coupling lactyl to lysine residues.
The lactylation of histones can affect the binding ability
of histones to DNA and alter the structure and function of
chromatin. In the past two years, a growing body of re-
search has begun to reveal the link between lactylation and
tumor progression. It plays an important role in regulating
DNA damage repair pathways, thus affecting the formation
of chemoradiotherapy resistance [14,15]. It also has been
reported that lactylation can promote the proliferation and
metastasis of HCC [16]. Employing hypoxia, glycolysis,
or lactylation genesets alone to predict survival in hepato-
cellular carcinoma has been reported [12,17,18]. However,
considering the relevance of three metabolic processes, it is
worth exploring whether combining genesets could make
more accurate predictions for HCC patients.

HOMER1 (also known as Homer Scaffold Protein 1)
is a protein that is mainly expressed in the nervous system
[19] and belongs to the Homer protein family. HOMER1
regulates a variety of signaling pathways in cells, includ-
ing calcium signaling, G protein-coupled receptor signal-
ing, and N-Methyl-D-Aspartate receptor function, mainly
by interacting with other proteins. Recent studies have
found that HOMER1 not only plays an important role in
the nervous system, but also is closely related to the occur-
rence and development of tumors [20,21]. HOMER1 has
also been reported to be associated with HCC tumorigene-
sis and maybe a potential therapeutic target for HCC.

In this study, we divided HCC patients into two
clusters based on the hypoxia-glycolysis-lactylation (HGL)
gene set. Based on the two clusters of differentially ex-
pressed genes, we identified a signature with great pre-
dictive power and also found a malignant target gene,
HOMER1. We have verified that the expression of
HOMER1 is elevated in HCC by a combination of spatial
transcriptome and histological data. Cell assays have re-
vealed that it can affect the malignant progression of HCC.

2. Materials and Methods
2.1 Acquisition of Transcriptome and Spatial
Transcriptome Data

Transcriptomic data and clinical information of HCC
patients were obtained from TCGA-LIHC (The Cancer
Genome Atlas database-Liver Hepatocellular Carcinoma,
n = 370; https://www.cancer.gov/ccg/research/genome-seq
uencing/tcga), the International Cancer Genome Consor-
tium (ICGC-LIHC, n = 232), which were downloaded from
UCSC XENA (https://xenabrowser.net/). GSE148355 (n
= 52) was derived from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Hy-
poxia and glycolysis-related gene sets were obtained from
theMolecular Signature Database (GSEA |MSigDB (https:
//gsea-msigdb.org)), and lactylation-related gene sets were
obtained from a previously published study [17]. To inves-
tigate the spatial expression of each gene in the signature,
spatial transcriptomic data was downloaded from a previ-
ous study [22] (https://ngdc.cncb.ac.cn/gsa-human/browse/
HRA000437), and subsequent analysis was performed us-
ing the ‘Seurat’ R package (https://cran.r-project.org/web/p
ackages/Seurat/index.html, v5.1.0).

2.2 Differential HGL Genesets

The hypoxia, glycolysis and lactylation genesets were
derived from a previously published study [17] and the
Molecular Signature Database (GSEA |MSigDB (https://gs
ea-msigdb.org)). We obtained the differentially expressed
genes (DEGs) in HCC patients versus normal individuals
with the ‘DEseq2’ R package (https://github.com/thelove
lab/DESeq2, v1.38.3), by the criteria of FDR <0.05 and
|log2fc| ≥1.

2.3 Enrichment Analysis and Consensus Clustering
Analysis

Employing univariate COX analysis, prognostic
HGL genes were obtained, then Kyoto Encyclopedia of
Genes and Genomes (KEGG, https://www.genome.jp/kegg
/), Gene Ontology (GO, https://www.geneontology.org/),
Gene Set Enrichment Analysis (GSEA, https://www.gsea
-msigdb.org/gsea/index.jsp) enrichment analysis were per-
formed.

The TCGA-LIHC patients were divided into two clus-
ters with prognostic HGL genes using the ‘CancerSub-
types’ R package (https://github.com/taoshengxu/Cancer
Subtypes, v.1.24.0).

2.4 Assessment of Immune Infiltration and Immune
Evasion

To compare the immune microenvironment between
the two clusters, we predicted differences in infiltration
of 6 immune cells using the Tumor Immune Estimation
Resource (TIMER) algorithm (http://cistrome.org/TIMER
/). The difference of immune function was predicted by
the ‘GSVA’ R package (https://github.com/rcastelo/GSVA,
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v1.46.0) [23]. The immune evasion ability of the two clus-
ters was evaluated by the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/).

2.5 Prediction of Drug Sensitivity
To assess the guiding potential of HGL clustering

for clinical drug use, we measured the ‘PRROPHETIC’
R package (https://github.com/paulgeeleher/pRRophetic,
v0.5) to predict IC50 values for each drug and compared
differences between the two clusters for commonly used
drugs in HCC.

2.6 Establishment and Validation of HGL Signature
We obtained DEGs between 2 clusters with the

‘Limma’ R package (https://www.bioconductor.org/pac
kages/release/bioc/html/limma.html, v3.54.2), the criteria
were |log2fc| ≥1, p < 0.05; then measured COX LASSO
regression screening for genes to construct the optimal
model. The ‘Survminer’ R package (https://cran.r-project
.org/web/packages/survminer/index.html, v0.5.0) was used
for Kaplan-Meier (K-M) survival analysis to compare the
difference of Overall Survival (OS) between high-risk and
low-risk groups in different data sets. The predictive abil-
ity of this signature was further evaluated using ‘time-
ROC’ R package (https://cran.r-project.org/web/packages/
timeROC/, v0.4.0) to calculate the receiver operating char-
acteristic (ROC) curve and the area under the curve (AUC).

We explored the association between the HGL signa-
ture (HGLs) and clinical features, finding that HGLs had
an independent ability to predict patients’ outcomes by K-
M analysis.

2.7 Tissue Acquisition of HCC Patients
A total of 8 pairs of HCC adjacent and tumor tissues

were obtained from the Xiangya Hospital, Central South
University. The Central South University Xiangya Hospi-
tal Ethics Committee approved this study. All patients or
their families/legal guardians obtained their informed con-
sent to use their materials. The patient’s clinical informa-
tion is presented in Supplementary Table 1.

2.8 Real Time Quantitative PCR (RT-qPCR) and Western
Blotting

The tissue samples from patients were cryogenically
ground, followed by RNA extraction using the TRIZOL
reagent (ET101-01-V2, Transcript®, Beijing, China). The
extracted RNA was then reverse transcribed into cDNA us-
ing the reverse transcription kit (E047-01B, NovoScript®,
Suzhou, China). Finally, the PCR reaction system mixed
with primers and cDNA was prepared. Primers used are
listed in Supplementary Table 2. To calculate the rela-
tive expression of HOMER1, we used β-actin as a refer-
ence gene, the 2−∆∆Ct method is used: ∆Ct = CtHOMER1 –
Ctβ−actin, ∆∆Ct = ∆CtTumor – ∆CtNormal, Relative Expres-
sion = 2−∆∆Ct.

Tissue or cell lysates were prepared using lysis buffer
and protein concentrations were measured. The protein was
separated by SDS-PAGE and transferred to a nitrocellulose
membrane. The membrane was blocked with 5% milk, fol-
lowed by incubation with the primary antibody overnight
at 4 °C. After washing with Tris-Borate-Sodium Tween-20
(TBST) buffer, the membrane was incubated with the sec-
ondary antibody for 2 hours. Protein was visualized using
chemiluminescent detection. Antibodies used were as fol-
lows: HOMER1 (1:1000, db12743, Diagbio, Hangzhou,
China), β-Tubulin (1:10,000, 66240-1-Ig, Proteintech,
Wuhan, China), Peroxidase-conjugated AffiniPure Goat
Anti-Mouse IgG (H+L) (1:5000, 115-035-003, Jackson,
West Grove, PA, USA), Peroxidase-conjugated AffiniPure
Goat Anti-Rabbit IgG (H+L) (1:5000, 111-035-003, Jack-
son, West Grove, PA, USA).

2.9 Cell Culture and Transfection
LM3 and Hep3B in this study were purchased from

BDBIO (Zhejiang, China). The two types of cells have
been successfully authenticated by STR profiling and have
passed mycoplasma testing. They were cultured in DMEM
medium (10% FBS) under 5% CO2 at 37 °C.

According to the knocking down ofHOMER1, Hep3B
and LM3 cell lines were transfected with lipofectamine
2000 following the manufacturer’s instructions. All small
interfering RNA (siRNA) fragments were designed and
synthesized by Gene Pharma (Shanghai, China); and are
listed in Supplementary Table 3.

2.10 Flow Cytometry Measures the Cell Cycle
After knocking down HOMER1 in Hep3B and LM3

cells as mentioned above, they were incubated for 72 hours.
Then the cells were digested and collected in a cell suspen-
sion, and washed with PBS. The cells were fixed by incu-
bating with 70% ethanol for 12 hours. After removing the
ethanol, the cells were permeabilized using 0.1% Nonidet
P-40 (NP-40) (N8030, Solarbio®, Beijing, China). Finally,
the cells were stained with propidium iodide for 30 min-
utes (The propidium iodide solution is prepared by com-
bining 3 mL of staining buffer, 150 µL of 20× propidium
iodide staining solution, and 60 µL of 50× RNase A), and
analyzed at different cell cycle stages using flow cytometry
based on the fluorescence intensity.

2.11 Wound Healing Assay
Hep3B and LM3 cells were seeded in 6 cm dishes,

and transfected with a mixture of 2 µL of lipofectamine
2000, 200 µL of Opti-MEM, and 3 µL of siHOMER1 to
knock down the expression of HOMER1 in both cell lines;
subsequently 1 × 105 cells were seeded into each six-well
plate; scratches were made with 10 µL pipette until cells
were 100% the following day. The images were taken at
0 h and 24 h. The statistical results were analyzed by Im-
ageJ (V1.54g, National Institutes of Health, Bethesda, MD,
USA).
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2.12 Colony Formation Assay

After transfected with HOMER1 siRNA or random
control, 500 cells were seeded into six-well plates, and 10
days later fixed with 4% paraformaldehyde (G1101, Ser-
vicebio, Wuhan, China) and stained with crystal violet so-
lution. The statistical results were analyzed by ImageJ.

2.13 Transwell Assay

We used a 24-hole Transwell chamber (Transwell,
Corning Costar, Corning, NY, USA). For migration as-
says, 2 × 104 cells were seeded in the upper chamber, cul-
tured in serum-free DMEM, and 20% serum DMEM was
added in the lower chamber. For the invasion assay, 30
µL Matrigel was used to coat the superior compartment,
and then 2 × 105 cells were seeded into the superior com-
partment. After 48 hours of culture, the cells were fixed
with 4% paraformaldehyde, stained with crystal violet, then
swabbed to remove the upper cells. The statistical results
were analyzed by ImageJ.

3. Results
3.1 Expression and Pathway Enrichment of HGL Genesets
in HCC

We obtained 149 HGL-DEGs between tumor and nor-
mal tissues (Fig. 1A,B). Univariate COX regression showed
that 72 genes were significantly associated with the prog-
nosis of HCC. The GO and KEGG enrichment analyses re-
vealed that prognostic-associated HGL genes were associ-
ated with metabolism-related pathways, including glycoly-
sis, the HIF-1 signaling pathway, and organic acid catabolic
and carboxylic acid catabolic processes (Fig. 1C,D). It re-
veals that both hypoxia, glycolysis and lactylation effect the
prognosis of HCC.

3.2 Construction of HGL Clusters and TME Signatures of
HGL Clusters

Based on the prognostic-associated HGL genes, we
conducted a consensus clustering algorithm on the TCGA-
LIHC dataset to further investigate the effect of HGL
on HCC. When K = 2, we obtained the appropriate
clustering result (Fig. 2A). Principal component analy-
sis (PCA) also displayed that the two clusters were sep-
arated visibly (Fig. 2B). K-M curves revealed that pa-
tients in cluster1 had better median survival time than
those in cluster2 (Fig. 2C, p < 0.001). GSEA analysis
revealed that pathways enriched in cluster1 were mainly
metabolic-related pathways, while cluster2’s were related
to the malignant process of HCC. These pathways in-
clude: E2F_TARGETS, G2M_CHECKPOINT, EPITHE-
LIA_MESENCHYMAL_TRANSITION (Supplementary
Fig. 1A,B).

There were variances in immune cells between the two
clusters (Fig. 2D). The check-point function of cluster2 was
significantly higher than that of cluster1 (Fig. 2E, p< 0.05).

PDCD1, CLTLA4, LAG3, andHavcr2, themajor inhibitory
immune checkpoint receptors in HCC [24], were highly ex-
pressed in cluster2 (Fig. 2F, p < 0.001). A TIDE score of
cluster2 was also higher than that of cluster1 (Fig. 2G, p
< 0.01), which suggests that cluster1 may have a better re-
sponse to immunotherapy.

3.3 Drug Sensitivity Prediction

Chemotherapy and immunotherapy are both impor-
tant therapeutic methods for HCC. After IC50 prediction
of chemotherapeutic drugs, we found that patients in clus-
ter1 were more sensitive to sorafenib than patients in clus-
ter2 (p < 0.001). The same is true for other drugs, such
as: 5-Fluorouracil, etoposide, cytarabine, docetaxel, cis-
platin, doxorubicin, nilotinib, paclitaxel, gemcitabine, gefi-
tinib, sunitinib, vinblastine (p < 0.001). Overall, the drug
sensitivity of cluster1 was superior to cluster2 (Fig. 3).

3.4 Construction and Validation of HGL
Prognosis-Related Signature

We performed differential analysis between the two
clusters, and after conducting univariate COX regres-
sion analysis on the differentially expressed genes, we fi-
nally identified these 123 survival-related differential genes
(Fig. 4A). Using LASSO and multivariate COX regres-
sion, we acquired 13 genes to construct the signature
(Supplementary Fig. 2A). The riskScore calculation was
as follows: riskScore = (0.20233 × CDCA8) + (0.140306
× GAGE2D) + (0.0913041 × S100A9) + (–0.08057605
× SLC16A11) + (–0.1422534 × SOCS2) + (0.0711202 ×
FAM163A) + (–0.08746885 × LGSN) + (0.09041832 ×
FRMD1) + (0.09532562 × HOMER1) + (–0.1636347 ×
CD8B) + (–0.1596561 × CD27) + (0.1255294 × E2F5) +
(01694574 × PGF).

The patients in the TCGA training set were divided
into a high-risk group (N = 185) and low-risk group (N
= 185) based on the riskScore, while the OS of the low-
risk group was significantly better than the high-risk group
(Fig. 4B, p< 0.001). The risk curve also showed that as the
risk score increases, the survival rate decreases (Fig. 4C).
At 1–5 years, the AUC of the ROC curve for risk signa-
ture was 0.818, 0.824, 0822, 0.829, and 0.821, respectively,
which indicates a great predictive accuracy for HCC pa-
tients (Fig. 4D).

To further validate the predictive effectiveness of the
signature, we grouped the ICGC and the GSE148355 to-
gether, since the validation set was similar: ICGC high-
risk group (N = 105), ICGC low-risk group (N = 127),
and GSE148355 high-risk group (N = 27), low-risk group
(N = 25). Patients in the low-risk group still had sig-
nificantly better OS than those in the high-risk group
(Fig. 4E,F, p < 0.001/p = 0.01). At 1–4 years, the AUC
of the ROC curve for ICGC-LIHC were 0.700, 0.720,
0.738, 0.750 (Supplementary Fig. 2B), respectively; the
AUC for GSE148355 were 0.758, 0.689, 0.707, 0.710
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Fig. 1. HGL associate genes differentially expressed in TCGA-LIHC. (A) The volcano plot showing the HGL-DEGs between tu-
mor and normal samples in TCGA dataset. (B) Heatmap showing top 30 DEGs. (C) The bar plot of KEGG enrichment pathway of
prognostic-associated HGL genes. (D) GO enrichment analysis bubble plot. HGL, hypoxia-glycolysis-lactylation; TCGA-LIHC, The
Cancer Genome Atlas database-Liver Hepatocellular Carcinoma; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GO, Gene Ontology; NS, no significance.
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Fig. 2. HGL clusters based on consensus clustering. (A) Consensus clustering divides 370 patients in TCGA dataset into two distinct
clusters. (B) PCA analysis shows that the two clusters of patients are significantly segmented. (C) Kaplan-Meier (K-M) curve analysis of
cluster1 and cluster2. (D) Infiltration differences of six immune cells between cluster1 and cluster2. (E) The levels of immune function
of the two HGL clusters. (F) The immune checkpoint receptor genes are highly expressed in cluster2. (G) Cluster2 has higher TIDE
score. Statistical significance was denoted as follows. *p< 0.05, **p< 0.01, ***p< 0.001. PCA, principal component analysis; TIDE,
Tumor Immune Dysfunction and Exclusion.
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Fig. 3. The drug sensitivity of cluster1 is better than cluster2. **p < 0.01, ***p < 0.001.
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(Supplementary Fig. 2C), respectively. The signature
also exhibited good prediction ability for these external val-
idation cohorts.

3.5 HGL RiskScore is an Independent Predictor of HCC
HGL signature exhibits predictive power, thus we de-

sired to explore whether it can be used as an independent
prognostic factor for HCC patients. Age, gender, alpha-
fetoprotein level (AFP), microvascular invasion (MVI), and
pathological stagewere crucial factors affecting the progno-
sis of HCC patients, riskScore could also accurately predict
the prognosis. In the K-M curve, patients in different ages,
different sex, and in different pathological stages, with dif-
ferent expression of AFP, whether with microvascular in-
vasion or not, showed a significant variance in OS between
the high and low risk group (Fig. 5A, p< 0.01). Univariate
and multivariate COX analysis showed that the riskScore
and pathologic stages were related with the OS of patients
according to the univariate COX analysis (Fig. 5B); while
the multivariate COX analysis revealed they are also the in-
dependent predictors (Fig. 5C).

3.6 Construction and Validation of Nomogram
To obtain a better prediction of prognosis, we incorpo-

rated the above clinical factors together with the riskScore
to construct a nomogram. Patients with a higher score rep-
resent worse survival (Fig. 6A, p< 0.001). The C-index of
each factor suggests that the riskScore still contributes the
most to the nomogram (Fig. 6B). The survival ROC analy-
sis shows that the AUCwere 0.822, 0.676 for riskScore and
pathologic stage, which were superior to other clinical fac-
tors. The prognostic ability of gender and age is relatively
poor, and there are also fewer patients with MVI data in the
TCGA-LIHC cohort. As a result, the AUC of these clini-
cal prognostic factors is not ideal (Fig. 6C). The calibration
curve revealed that the predicted OS and observed OS have
great consistency, and that nomogram has good predictive
ability (Fig. 6D).

3.7 The Spatial Transcriptome Data Revealed HOMER1
was Concentrated on HCC

To explore the expression patterns in HCC, we incor-
porated a set of spatial transcriptomic data to investigate
genes in HGL signature from both the expression level and
spatial orientation [22]. The organization of four sets of
spatial transcriptomes were taken from the junction of tu-
mor and normal tissue, and cells obtained from these sam-
ples were divided into 14 cell clusters (Fig. 7A). Based
on the annotations that come with the spatial transcriptome
data, these cells could be defined as five kinds of localized
cell populations, namely: Hepatocytes, Immune infiltration
region (IIR), Transition, Tumor, Others (Fig. 7B).

As shown in the bubble diagram, among the genes
in the signature, HOMER1 is mainly expressed in tumor-
derived cells (Fig. 7C). To further validate our findings, we
performed spatial transcriptomic analysis on these four sets

of samples. From the spatial distribution of the cell clus-
ters and the spatial distribution of HOMER1, we found that
HOMER1 highly coincides with the distribution of tumor
cells (Fig. 7D,E). The differential expression of HOMER1
indicates that this protein may play a key role in the malig-
nant process of hepatocellular carcinoma.

3.8 HOMER1 is Elevated in HCC Patients and Affects the
Proliferation, Invasion and Metastasis of Hepatocellular
Carcinoma Cell Lines

The mechanism of HOMER1 in HCC has not been ex-
plored, thus we sought to explore the actual expression of
HOMER1 in HCC. Eight pairs of adjacent and tumor tis-
sues from HCC patients were obtained. Western blot re-
vealed HOMER1 was elevated in tumor tissues (Fig. 8A,B,
p< 0.01); RT-qPCR also confirmed its presence at the tran-
scription level (Supplementary Fig. 2D).

To explore its function in hepatocellular carcinoma
cell lines, we knocked down HOMER1 in LM3 as well as
in Hep3B cell lines, with Western-Blot demonstrating that
HOMER1 knock down was very successful (Fig. 8C; Sup-
plementary Fig. 2E,F). We observed that knocking down
HOMER1 significantly inhibited the proliferation of LM3
and Hep3B. The colony formation assay clearly exhibited
the difference of cell proliferation between untreated and
si-HOMER1 cells (Fig. 8D, p < 0.0001). Cell cycle anal-
ysis further revealed that knocking down HOMER1 in-
creased the proportion of cells arrested in the G2/M phase
(Fig. 8E). These results suggested that HOMER1 may play
an important role in the cell cycle of hepatocellular car-
cinoma cell lines. The wound healing assay showed that
HOMER1 knock down also inhibited the migration of LM3
and Hep3B cells (Fig. 9A, p < 0.01), while the Tran-
swell assay confirmed both migration and invasion of LM3
and Hep3B cells were decreased after knocking down of
HOMER1 (Fig. 9B,C, p < 0.01). These experiments re-
vealed knocking down HOMER1 could inhibit the prolif-
eration of hepatocellular carcinoma cell lines by blocking
the cell cycle, and also affect the invasion and metastasis of
hepatocellular carcinoma cell lines.

4. Discussion
The lactylation of histones is a newmethod for protein

modification. In the past two years, it has been reported that
lactylation has a definite regulatory effect on tumor progres-
sion, chemoradiotherapy resistance, and immune evasion.
Lactylation has also been reported in hepatocellular carci-
noma: Lactylation at K28 inhibits the function of Adenylate
kinase and promotes the proliferation andmetastasis of hep-
atocellular carcinoma cell; while the lactylation of Aldolase
A (ALDOA) at the K230/322 site can affect its binding to
DEAD-box helicase 17 (DDX17), thus regulating the stem-
ness of hepatocytes.

Lactylation is vital to tumor progression. There have
been numerous studies on constructing prognosis signa-
ture based on lactylation genesets: Huang et al. [25] de-
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Fig. 4. Construction of HGL signature in LIHC. (A) Parameter selection for LASSO. (B) Kaplan-Meier survival curve analysis
between high risk and low risk groups in TCGA-LIHC datasets. (C) Risk curves: overall survival status, and the heatmap of the expression
of 13 HGL signature associate genes. The dotted line represents the division of the median. (D) ROC curves of the 1–5 years survival rates
of TCGA-LIHC dataset. (E) Kaplan-Meier survival curve analysis between high risk and low risk groups in ICGC-LIHC datasets. (F)
Kaplan-Meier survival curve analysis between high risk and low risk groups in GSE148355 datasets. LASSO, Least Absolute Shrinkage
and Selection Operator; ROC, receiver operating characteristic.
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Fig. 5. HGL riskScore is an independent prognostic factor. (A) The Kaplan-Meier survival analysis was performed based on HGL
risk signature for patients with different gender, with different ages, different AFP values, different MVI and pathological stages. (B)
Forest plot showing Univariate-COX analysis of the TCGA-LIHC cohort including age, AFP, MVI, pathologic stage, and riskScore as
variables. (C) Forest plot showing Multivariate-COX analysis including Pathologic stage, and riskScore as variables in the TCGA-LIHC
cohort. AFP, alpha-fetoprotein level; MVI, microvascular invasion.
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Fig. 6. Construction and validation of the nomogram. (A) Nomogram for predicting 1-, 3-, and 5-year OS. (B) Time-dependent
C-index of riskScore and other clinical factors. (C) ROC curves of riskScore and other clinical factors predicting 3-year OS of patients.
(D) Calibration curve for nomogram. *p < 0.05, ***p < 0.001. OS, Overall Survival.
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Fig. 7. Spatial transcriptome data revealing HOMER1 significantly enriched in hepatocellular carcinoma cell. (A) Four spatial
transcriptome samples taken from the junction of hepatocellular carcinoma and para-carcinoma were analyzed by dimensionality reduc-
tion and cluster analysis, 14 different clusters were identified. (B) We identified clusters derived from Hepatocytes, Tumor, Immune
infiltrate region (IIR), Transition, Others these five regions. (C) Bubble diagram showing genes expression in each region. (D) Spatial
distribution of different cell clusters. (E) Spatial distribution of HOMER1 is concentrated in tumor cells. UMAP, uniform manifold
approximation and projection.
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Fig. 8. HOMER1 is highly expressed in tumor tissues and affects the malignant proliferation of hepatocellular carcinoma cell
lines. (A) Western Blot revealed that the expression of HOMER1 was evaluated in tumors and in adjacent tumors at the protein level.
(B) The comparison of HOMER1 protein expression levels between normal and tumor tissues. (C) HOMER1 was successfully knocked
down in LM3 and Hep3B cell lines. (D) The proliferation ability of LM3 and Hep3B decreased after knock down of HOMER1. (E)
Knock down of HOMER1 blocked the cell cycle of LM3 and Hep3B. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Fig. 9. The knocking down of HOMER1 affected the ability of metastasis and invasion of hepatocellular carcinoma cell lines. (A)
The wound healing assay showed that knocking down of HOMER1 significantly decreased the migration ability of Hep3B and LM3.
Scale bars = 100 µm. (B) The Transwell migration assay showed that knocking down of HOMER1 decreased the migration ability of
Hep3B and LM3. Scale bars = 50 µm. (C) The Transwell invasion assay showed that knocking down of HOMER1 decreased the invasion
ability of Hep3B and LM3. Scale bars = 50 µm. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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veloped a 23-gene lactylation-related risk signature pre-
dicting the prognosis of colorectal cancer patients by the
multi-dimensional approach; Cheng et al. [17] also con-
structed a 6-lactylation-related gene signature in gastric
cancer; Cheng et al. [17] constructed an 8-gene signature
using LASSO regression analysis in HCC, which revealed
that lactylation-related signature can be used as biomarkers
for effective clinical treatment of HCC. Several metabolites
can act as substrates for histone modifications, while lactate
is the product of glycolysis and also the substrate for lacty-
lation. The hypoxic microenvironment in HCC promotes
enhanced glycolysis, which may lead to lactate accumula-
tion; and drives the transcription changes of genes related
to the degree of histone modification and the malignant bi-
ological behavior of HCC.

In view of the crosstalk between metabolic repro-
gramming with lactylation, we co-included the hypoxia-
glycolysis-lactate genesets in this study. Since lactylation
plays a key role in a variety of cancers, we believe that such
a signature will have great predictive significance for pa-
tients and also assistant in identifying genes associated with
lactylation for further study.

We divided patients in TCGA-LIHC into two clus-
ters based on the prognosis-associated HGL genes. There
are significant differences in OS between the two clusters
which reveals the HGL gene set is capable of increased
stratification in patients with HCC, which also has impli-
cations for the use of drugs such as sorafenib, immune
checkpoint inhibitors, and others. In order to indepen-
dently predict the prognosis of each patient, we performed
LASSO COX regression analysis on the differential ex-
pressed genes between clusters and obtained a 13-gene
HGL signature (CDCA8, GAGE2D, S100A9, SLC16A11,
SOCS2, FAM163A, LGSN, FRMD1, HOMER1, CD8B,
CD27, E2F5, PGF). The signature has good prediction ac-
curacy in the TCGA-LIHC training set, also in the test set
ICGC-LIHC with a slightly smaller number of patients, in
the external validation set GSE148355. Due to the small
number of patients in this dataset, the AUC at the first year
is not satisfactory, but still shows some prognosis for the
long-term survival of patients. In terms of prediction accu-
racy and specificity, this signature is superior to previously
reported hypoxia-related signatures [26], glycolysis-related
signatures [12,27], and lactylation-related signatures [17].
It is also an independent prognostic factor for HCC patients.

The spatial transcriptome data revealed that, among
the 13 genes, HOMER1 was mostly expressed in tumor
cells and was concentrated most in tumor regions, suggest-
ing that HOMER1 may have a critical role in the progres-
sion of hepatocellular carcinoma. It has been reported that
circ-HOMER1 could regulate the growth and aggressive-
ness of hepatocellular carcinoma cells [28]. However, circ-
HOMER1, as a circular RNA, is structurally and function-
ally different from the protein-coding HOMER1 gene. Al-
though HOMER1 has been reported to be associated with
tumor biology and also has potential clinical application in

Hepatitis B Virus (HBV)-related HCC [29], there is still
a lack of experimental verification for its mechanism. To
investigate the effect of HOMER1 on HCC, we knocked
it down in two cell lines, LM3 and Hep3B. We observed
that knocking down of HOMER1 significantly inhibited
cell proliferation which was confirmed by colony forma-
tion assays, while cell cycle analysis suggested that knock-
ing down of HOMER1 effectively blocked the cell cy-
cle. Wound healing assay and Transwell assay showed that
knocking down of HOMER1 also inhibited the migration
and invasion of LM3 and Hep3B. It is a novel discovery
that HOMER1 affect the growth and invasiveness of HCC
by blocking the cell cycle, which also reveals the possibility
of HOMER1 as a potential therapeutic target for HCC.

However, this study still has some limitations. First,
it does not provide specific guidance for the treatment of
HCC patients. Second, we only investigated the effect of
HOMER1 on the malignant progression of HCC, but didn’t
explore its mechanism, nor did we explore the relationship
between HOMER1 and lactylation.

5. Conclusion
In this study, we constructed an HGL prognosis-

related signature to predict the prognosis of HCC patients,
which has great predictive effect for patients in multiple
data sets. We also found that HOMER1 can block the cell
cycle and malignant progression of hepatocellular carci-
noma, suggesting its potential as a new therapeutic target
for hepatocellular carcinoma.
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