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Abstract

Background: m6Am is a specific RNA modification that plays an important role in regulating mRNA stability, translational efficiency,
and cellular stress response. m6Am’s precise identification is essential to gain insight into its functional mechanisms at transcriptional
and post-transcriptional levels. Due to the limitations of experimental assays, the development of efficient computational tools to predict
m6Am sites has become a major focus of research, offering potential breakthroughs in RNA epigenetics. In this study, we present a
robust and reliable deep learning model, DTC-m6Am, for identifying m6Am sites across the transcriptome. Methods: Our proposed
DTC-m6Am model first represents RNA sequences by One-Hot coding to capture base-based features and provide structured inputs
for subsequent deep learning models. The model then combines densely connected convolutional networks (DenseNet) and temporal
convolutional network (TCN). The DenseNet module leverages its dense connectivity property to effectively extract local features and
enhance information flow, whereas the TCN module focuses on capturing global time series dependencies to enhance the modeling
capability for long sequence features. To further optimize feature extraction, the Convolutional Block Attention Module (CBAM) is used
to focus on key regions through spatial and channel attention mechanisms. Finally, a fully connected layer is used for the classification
task to achieve accurate prediction of the m6Am site. For the data imbalance problem, we use the focal loss function to balance the
learning effect of positive and negative samples and improve the performance of the model on imbalanced data. Results: The deep
learning-based DTC-m6Am model performs well on all evaluation metrics, achieving 87.8%, 50.3%, 69.1%, 41.1%, and 76.5% for
sensitivity (Sn), specificity (Sp), accuracy (ACC),Mathew’s correlation coefficient (MCC), and area under the curve (AUC), respectively,
on the independent test set. Conclusions: We critically evaluated the performance of DTC-m6Am using 10-fold cross-validation and
independent testing and compared it to existing methods. TheMCC value of 41.1%was achieved when using the independent test, which
is 19.7% higher than the current state-of-the-art prediction method, m6Aminer. The results indicate that the DTC-m6Ammodel has high
accuracy and stability and is an effective tool for predicting m6Am sites.
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1. Introduction

RNA modifications are chemical alterations to RNA
nucleotides that have profound effects on RNA structure
and function. To date, more than 170 RNA modifica-
tions have been identified in all classes of RNA molecules
[1]. In contrast, N6,2′-O-dimethyladenosine (m6Am) is a
widespread RNA modification that was first identified at
the 50 ends of viral and animal cell mRNAs in 1975 [2] and
catalyzed by the Phosphorylated CTD Interacting Factor 1
(PCIF1) [3]. A recent study suggests that m6Am may play
an important role in the pathogenesis of type 2 diabetes mel-
litus (T2DM), making it a future target for next-generation
antidiabetic drug research [4].

As a dynamic and reversible epigenetic marker,
m6Am plays a variety of functional roles in disease re-
search, viral infection, cancer biology, and other related
fields. m6Am modification plays an important role in
gene expression regulation, mainly by affecting precur-

sor mRNA splicing, mRNA stability, and translation ef-
ficiency [5]. In disease-related studies, m6Am modifica-
tion has been shown to be associated with weight regula-
tion. For example, reduced m6Am modification accom-
panied by weight loss was observed in a PCIF1 knockout
mouse model [6]. In addition, m6Am-modified messenger
ribonucleic acids (mRNAs) were enriched in a variety of
metabolism-related processes in lean and obese mice [7],
suggesting that m6Am may be involved in the regulation
of processes such as energy homeostasis and fat storage.
m6Am has likewise been shown to play a critical role in
viral infections. The RNAs of certain viruses such as vesic-
ular stomatitis virus (VSV), rabies virus (RABV), and hu-
man immunodeficiency virus (HIV) undergo m6Am modi-
fications, and these modifications can either enhance or in-
hibit viral gene expression, which in turn affects the sus-
ceptibility of host cells to viral invasion [8,9]. In particu-
lar, during SARS-CoV-2 infection, PCIF1 promotes m6Am
modification of ACE2 and TMPRSS2 mRNAs, increasing
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host cell susceptibility to entry of this virus [10], whereas
HIV infection reduces m6Am levels within about one-third
of the modified genes [9]; in cancer biology, m6Am mod-
ification also demonstrates a complex dual effect. On
the one hand, it can promote tumor growth by stabilizing
proto-oncogenes such as Fos mRNA; on the other hand,
it can resist anti-PD-1 therapy by destabilizing STAT1 and
IFITM3 mRNA [11]. Therefore, m6Am modification not
only plays an important role in the development of vari-
ous cancer types, such as gastric and colorectal cancers, but
may also be a potential target in future precision medicine
strategies [11,12]. Regarding the identification techniques
of the m6Am site, early studies mainly relied on chemi-
cal analysis methods, which could confirm the presence of
m6Am but could not comprehensively resolve its distribu-
tion and dynamic changes in the transcriptome. With tech-
nological advances, high-throughput sequencing methods
based on immunoprecipitation were gradually introduced,
such as m6A individual-nucleotide-resolution cross-linking
and immunoprecipitation (miCLIP) [13] and m6ACE-seq
[14]. These techniques have initially achieved the localiza-
tion of the m6Am site in the transcriptome by using anti-
m6A/m6Am antibodies combined with RNA immunopre-
cipitation and high-throughput sequencing. However, due
to the chemical similarity betweenm6Am and the neighbor-
ing m6A, these methods have difficulty distinguishing be-
tween the two. To address this problem, researchers have
developed several m6Am-specific recognition techniques,
such as m6Am-seq [15] and m6Am-Exo-seq [3]. m6Am-
seq achieves precise localization of m6Am by optimizing
the enzyme reaction conditions of FTO (Fat Mass and Obe-
sity Associated Proteins), which selectively demethylates
m6Am without affecting m6A. The m6Am-Exo-seq further
improved the resolution of m6Am-specific sites by remov-
ing RNA fragments not protected by cap structures through
pretreatment. These methods significantly improved the
resolution of m6Am site identification and revealed the dy-
namics of m6Am modifications and their roles in different
biological contexts. Although continuous technological ad-
vances have greatly facilitated the development of m6Am
research, some limitations still exist. For example, many
current methods rely on antibodies, whose specificity for
m6Am may be disturbed by other similar modifications. In
addition, it is still difficult for existing techniques to distin-
guish the site distribution of m6Am from that of m6A in the
region of high-density modifications.

With the deepening of m6Am modification research,
machine learning-based, especially deep learning, methods
are playing an increasingly important role in m6Am site
identification. Thesemethods can significantly improve the
accuracy and efficiency of prediction through feature ex-
traction and pattern analysis of large-scale, high-throughput
sequencing data. In the field of RNA modification re-
search, several deep learning methods have been applied
to different types of modification site prediction. For ex-

ample, Shaon et al. [16] proposed GRUpred-m5U com-
bined gated recurrent unit (GRU) and convolutional neural
networks (CNNs) to achieve excellent performance in m5U
site prediction, while Zhao et al. [17] proposed Moss-m7G
to utilized the Transformer structure to extract deep fea-
tures from motif information of RNA sequences to achieve
highly accurate m7G Site Prediction. These studies show
that deep learning methods can effectively integrate RNA
sequence information, structural features, and other epige-
netic modification data to improve the comprehensiveness
and accuracy of modification site identification. Compared
with traditional methods, deep learning has significant ad-
vantages in processing complex and high-dimensional data
and can automatically learn key features of RNA modifica-
tions, reducing the reliance on manual feature engineering.
Therefore, deep learning has become an important tool for
advancing m6Am research, providing powerful computa-
tional support for in-depth exploration of RNA modifica-
tions. To date, related researchers have proposed a vari-
ety of computational methods based on traditional machine
learning and deep learning to predict m6Am sites. In 2021,
Song et al. [18] developed MultiRM, a multi-label neural
network approach based on the attention mechanism, which
is not only capable of predicting m6Am sites but also iden-
tifying a variety of other RNA modifications at the same
time, which significantly extends the functional range of
prediction tools. Subsequently, in 2022, Jiang et al. [19]
proposed m6AmPred, a prediction tool based on the XG-
Boost algorithm and a hybrid electron-ion interaction po-
tential (EIIP) and pseudo-EIIP (PseEIIP) coding strategy,
marking the initial exploration of m6Am site prediction.
In the same year, Luo et al. [20] introduced DLm6Am,
a deep learning tool that further improved the accuracy of
m6Am site identification by combining three sequence fea-
ture encoding schemes: one-hot, nucleotide chemical prop-
erty (NCP), and nucleotide density (ND). In 2023, Jia et al.
[21] proposed EMDL_m6Am, a prediction model based on
stacked integrated deep learning. It used one-hot coding
to express RNA sequence features and integrated different
CNN models, demonstrating the potential of deep learn-
ing in m6Am site prediction. By 2023, Liu et al. [22]
published m6Aminer, a prediction tool based on the Cat-
Boost algorithm, which incorporates a variety of sequence-
derived features and provides a user-friendly web server,
making m6Am site prediction more convenient and practi-
cal. These research efforts not only demonstrate the trajec-
tory of m6Am site prediction techniques but also reflect the
continuous optimization in feature extraction, model con-
struction, and prediction accuracy. Despite the significant
progress, there is still room for improving the accuracy and
generalization ability of m6Am site prediction. Both the
EDMDL_m6Am and the DLm6Am use an integrated learn-
ing approach to improve prediction performance by build-
ing a multi-model architecture. However, this strategy re-
quires parallel training of multiple base learners, leading to

2

https://www.imrpress.com


a significant increase in computational resource consump-
tion, especially when dealing with large-scale epitranscrip-
tome data where the training cost is particularly promi-
nent. Whereas m6Aminer demonstrated high sensitivity in
m6Am site prediction, there are still limitations in its ability
to recognize negative samples. Existing models may result
in high false-positive rates due to the underrepresentation of
negative samples or limited feature differentiation, making
it difficult to meet the demand for accurate identification in
practical applications. Based on the above considerations,
we propose an innovative hybrid neural network architec-
ture, DTC-m6Am, which builds a multi-scale feature learn-
ing framework by deeply fusing densely connected convo-
lutional networks (DenseNet), temporal convolutional net-
work (TCN), and attention mechanisms (CBAMs). The
model utilizes DenseNet to extract local semantic features
of RNA sequences and passes their high-dimensional fea-
tures to the TCN module through a cascade to achieve an
efficient fusion of local features with global context. The
TCN extends the temporal dependency perception range
to capture long program column associations, and then
CBAM dynamically filters the key modification features
through the channel-space attention mechanism. Finally,
the full connectivity layer integrates and nonlinearly maps
the calibrated features, outputs the classification probability
of m6Am sites, and completes the accurate discrimination
from sequence features to functional sites.

Second, we used various RNA sequence coding tech-
niques, such as one-hot, nucleotide chemical property
(NCP), and nucleotide density (ND), which were experi-
mentally tested to show that the use of one-hot coding as the
model input can propose the features of the sequences in a
relatively simple and efficient way. The whole flowchart is
displayed in Fig. 1. To address the class imbalance problem
in the training set, we also used the focal loss function to
control the training process, a practice that effectively pre-
vents training from being biased toward the majority class.
Finally, we conducted ablation experiments to verify the ef-
fectiveness of each module in the model. The code is avail-
able in the GitHub repository (https://github.com/hhui0/DT
C-m6Am).

2. Materials and Methods
2.1 Benchmark Dataset

The benchmark dataset is derived from the recently
published single nucleotide resolution m6Am sequencing
data [3,13], which was used by Jiang et al. [19] to con-
struct the m6Ampred machine learning classifier; however,
they do not remove redundant sequences from the bench-
mark dataset, which may result in similar or duplicate se-
quences potentially dominating the training process, caus-
ing the model to rely on repetitive patterns rather than learn-
ing a wider, more robust set of features. Therefore, to re-
move sequence redundancy, Liu et al. [22] used CD-HIT
[23] (a fast clustering tool based on short-word filtering) to

Table 1. Distribution of the benchmark data set.
Dataset Positive Negative

Training 3700 37,000
Independent 320 320

filter the baseline dataset with a strict threshold of 0.8, and
then efficiently clustered the similar sequences and retained
the representative sequences through short-word frequency
analysis, which significantly reduced the sequence redun-
dancy in the dataset. After the above operation, the train-
ing dataset was allocated with 3700 positive samples and
37,000 negative samples, and the ratio of positive samples
to negative samples was 1:10. Whereas the independent test
dataset consisted of 320 positive samples and 320 negative
samples, all of which are 41 nt in length.

To evaluate DTC-m6Am and compare it with other
predictors, we used the benchmark and independent
datasets adopted by Liu et al. [22]. In this study, the unbal-
anced training data are all used as the training set to ensure
that the features in the samples are fully extracted, and the
dataset size is shown in Table 1.

2.2 Feature Extraction Methods
Feature coding technology is an important part of deep

learning training, and choosing the appropriate sequence
coding method is crucial for the recognition of m6Am sites.
In this paper, we used three of the more pervasive and
widespread RNA coding techniques in deep learning, in-
cluding one-hot, NCP, and ND, and experimented with the
combination of the three coding techniques.

2.2.1 One-Hot Encoding
One-hot coding is a commonly used feature coding

method, which is mainly used to convert category data into
numerical data for easy processing by machine learning
models. In one-hot coding, each category is represented as
a binary vector, the length of the vector is equal to the total
number of categories, and only one position in the vector
is 1 (representing the category), and the other positions are
0. The mRNA contains four different nucleotides, A, U, C,
and G, and their one-hot coding is as follows:

A → (1, 0, 0, 0)

U → (0, 1, 0, 0)

G → (0, 0, 1, 0)

C → (0, 0, 0, 1)

(1)

In this study, after one-hot coding each sequence is
transformed into a 41 × 4 feature matrix, this coding has
the advantage of avoiding the numerical order relationship
between the categories, so that the model will not misinter-
pret the size relationship between the categories.
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Fig. 1. An overview of the DTC-m6Am model. (A) Data preprocessing: RNA sequences (41 bp) were one-hot coded and converted
to a model-acceptable input format. (B) Feature extraction (DenseNet): local feature extraction was performed using the DenseNet
structure, consisting of a DenseBlock, Transition and BatchNorm1d layers to optimize feature flow and reduce computational cost.
(C) Temporal Convolutional Network (TCN): sequence modeling via temporal convolutional networks to extract deep features. (D)
Convolutional Block Attention Module (CBAM): combines Channel Attention and Spatial Attention to enhance key features and uses
residual connectivity to optimize information flow. (E) Classification Layer: the fully connected layer classifies the extracted features
and finally outputs the prediction results. Created using draw.io.

2.2.2 NCP Encoding

Nucleotide Chemical Property encoding, proposed by
Bari et al. [24], is a widely used feature extraction method
in computational biology studies of RNA and DNA se-
quences, based on the chemical properties of bases [25,26].
Its core idea is to transform each nucleotide (A, U, G, C)
into a biologically meaningful numerical vector reflecting
its chemical properties. These properties typically include
the number of hydrogen bonds, polarity, molecular vol-
ume, and other physicochemical attributes, thus providing a
richer representation of features for sequence analysis tasks.
In NCP encoding, each nucleotide is mapped to a vector
based on its chemical properties, where each dimension
corresponds to a specific chemical characteristic. Purines
(A, G) and pyrimidines (C, U) are both ring-containing
compounds, where purines contain two rings while pyrim-
idines have only one ring. Therefore, they can be attributed
to the same x-coordinate position. Similarly, amino (A,
C) and keto (G, U) groups can be attributed to the same
y-coordinate position because they have the same chemi-

cal functionality. Finally, the z-coordinate is determined
based on the strength of the hydrogen bonds: strong (C,
G) and weak (A, U). Specifically, the i-th nucleotide of an
RNA sequence of length L can be represented by the vector
Pi = (Xi, Yi, Zi) where i = 1, 2, 3, · · · , L. In this study L
= 41, if X denotes the ring structure, Y denotes the hydro-
gen bond, and Z denotes the chemical functional group, the
sequence is transformed into a 41 × 3 feature matrix after
NCP encoding, and the NCP feature expression and calcu-
lation formula are as follows:

Xi =

{
1, if Pi ∈ A,G

0, if Pi ∈ C,U

Yi =

{
1, if Pi ∈ A,U

0, if Pi ∈ C,G

Zi =

{
1, if Pi ∈ A,C

0, if Pi ∈ G,U

(2)
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2.2.3 ND Encoding
Nucleotide Density Encoding (NDEncoding) is a sim-

ple and effective method of sequence feature representa-
tion, which transforms a sequence into a numerical feature
by calculating the cumulative frequency distribution of nu-
cleotides (A, U, C, G) in the sequence. Specifically, for a
sequence R1R2R3· · ·RL of length L, the ND encoding di
at position i is calculated as:

di =
1
i

∑i
j=1 f (Rj) , f (Rj) =

{
1, if Rj = Ri

0, otherwise , i = 1, . . . , L

(3)
For example, for the sequence “ATCGA”, there is an

“A” nucleotide at the fifth position, and there are five nu-
cleotides from the beginning to that position, of which there
is two “A”, so the ND value of that position is 2/5 = 0.4. A
sequence of length 41will be converted into a 41× 1 feature
matrix after ND coding. In the field of DNA/RNA modifi-
cation site prediction, ND coding combined with machine
learning models has demonstrated high prediction perfor-
mance. Site prediction field, ND coding combined with
machine learning models, has shown high prediction per-
formance. Several studies [27,28] have shown that using
ND coding in combination with other coding methods can
significantly improve prediction accuracy.

2.3 Classification Model

Choosing the right model is crucial for predicting the
m6Am site. We used an innovative hybrid neural net-
work that combines the efficient feature reuse capability of
DenseNet, the long-range dependency modeling advantage
of Temporal Convolutional Network (TCN) for sequence
data, and the adaptive attention capability of Convolutional
Block Attention Module (CBAM) for important features.
By integrating these three mechanisms, the model is able
to extract and understand the multidimensional features of
RNA sequences more comprehensively, improving the ac-
curacy and generalization of the predictions.

2.3.1 DenseNet
Densely Connected Convolutional Networks

(DenseNet) [29] is a popular deep learning architecture that
demonstrates powerful feature extraction capabilities with
its unique dense connectivity mechanism. Wang et al. [30]
focused on the prediction of lysine succinylation sites and
proposed MDCAN-Lys, a multi-pathway deep learning
framework based on DenseNet and CBAM. DenseNet en-
hances the interaction between high and low-level features
through the dense connectivity mechanism, effectively
reduces information loss, and optimizes the ability to focus
on key regions for feature extraction by combining the
CBAMmodule. On the other hand, Jia et al. [31] proposed
a deep learning framework for the recognition of 5mC
modification sites in DNA by combining the improved
DenseNet, bi-directional GRU (BiGRU), and self-attention

mechanism in the study of i5mC-DCGA. DenseNet is
mainly used to extract local features efficiently in this
framework, and the number of layers and growth rate of
different DenseBlock will directly affect the number of
model parameters, feature reuse efficiency and gradient
propagation effect, which will lead to the difference in
computational performance and generalization ability.

The phenomenon that the training error increases in-
stead as the network deepens is called the degradation prob-
lem of deep learning. To solve this problem, ResNet [32]
adds a skip connection to bypass the nonlinear transforma-
tion with an identity function:

xl = Hl (xl−1) + xl−1 (4)

The jump connection provides a path for the gradient
without nonlinear activation and prevents the gradient from
disappearing in backpropagation, thus improving the train-
ing efficiency and stability of the deep network. On the
basis of ResNet, in order to improve the feature informa-
tion extraction ability, DenseNet uses a dense connection
method for feature multiplexing, as shown in Fig. 2, for the
output xl of layer l can be expressed as:

xl = Hl ([x0, x1, . . . , xl−1]) (5)

That is, from the input [x0, x1, . . . , xl−1] of the pre-
vious 1 − l layer through Hl (·) can be obtained from the
output of the lth layer, xl, where Hl (·) can be expressed
as Batch Normalization (BN) [33], rectified linear units
(ReLU) [34], Pooling [35], or Convolution. The charac-
teristic of DenseNet dense connection makes the feature in-
formation fully reused in the network, which can effectively
alleviate the problem of gradient vanishing and, at the same
time, reduce the network parameters.

2.3.2 Temporal Convolutional Networks
TCN [36] is a neural network architecture for process-

ing sequential data designed with the goal of efficiently
modeling long-range dependencies in time series. TCN is
based on a one-dimensional convolutional operation that
combines causal convolution [37] and dilated convolution
[38] to achieve efficient capture of time-dependent proper-
ties.

Causal convolution is a convolution operation that is
mainly used in sequence modeling to ensure that the out-
put at the current moment depends only on the current and
previous inputs to avoid future information leakage. The
output yt for time t can be calculated by the following equa-
tion:

yt =

k−1∑
i=0

wi · xt−i + b (6)
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Fig. 2. The structure of a dense block. The inputs of each layer are integrated by channel splicing (Concat) to integrate the output
feature maps of all previous layers, and 1 × 1 convolutional dimensionality reduction (Bottleneck layer) is used within dense blocks to
reduce the number of parameters. Created using draw.io.

Where wi denotes the weight of the convolution ker-
nel, b is the bias, k is the filter size, and t−i denotes the past
direction. TCN adds dilated convolution to this by using a
larger dilation to make the output of the top layer represen-
tative of a wider range of inputs. For the output Yt at time t,
the dilatation coefficient d is introduced over yt, and math-
ematically, the expression is:

Yt =

k−1∑
i=0

wi · xt−d·i + b (7)

Through the design of dilated convolution, TCN is
able to capture long-range dependencies in a shallower net-
work structure, which is suitable for processing sequence
data with long time spans. Furthermore, as shown in Fig. 3,
combined with residual connectivity [32], TCN effectively
mitigates the gradient vanishing and gradient explosion
problems, making the training of deep networks more sta-
ble. What is more, TCN can process data at all time steps
in parallel, which significantly improves the speed of train-
ing and inference compared to Recurrent Neural Network
(RNN).

2.3.3 CBAM Attention

Convolutional Block Attention Module [39] (CBAM)
is a lightweight and efficient attention module designed to
enhance the neural network’s attention to important fea-
tures while suppressing irrelevant or distracting information
through channel and spatial dimensional attention mecha-
nisms. It mainly consists of two parts, the Channel Atten-

tion Module and the Spatial Attention Module, which aug-
ment the input features in sequential order.

The channel attention module is shown in Fig. 4,
where CBAM first compresses the input features in the spa-
tial dimension by global average pooling and global max-
imum pooling to generate two-channel feature vectors de-
scribing the global information. Subsequently, these two
vectors are fed into a two-layer fully connected network
with shared weights to learn the importance of different
channels. After fusion by weighting, the generated channel
weight vectors are used to realign the importance of each
channel of the Input feature map. Specifically, for Input
feature F , a channel attention function Mc ∈ Rc×1×1 is
defined with the following formula:

Mc(F ) = σ(MLP(Avgpool(F )) +MLP (MaxPool(F )))

= σ
(
W1

(
W0

(
F c
avg

))
+W1 (W0 (F

c
max))

)
(8)

Where σ is the sigmoid function, F c
avg , F c

max denote the
average pooling and maximum pooling, respectively, and it
is worth noting thatW0 andW1 are shared by two inputs.

The spatial attention module is shown in Fig. 5. Af-
ter compressing the feature maps in the channel dimension,
the spatial attention module generates two feature maps by
max-pooling and mean-pooling, which are spliced together
and undergo a convolution operation to obtain the spatial at-
tention weight map. This weight map is used to emphasize
the saliency of a particular spatial location. Specifically, for
Input feature F , a spatial attention function Ms ∈ RH×W

is defined with the following formula:
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Fig. 3. TCN residual block and an example of residual connection in a TCN. Created using draw.io.

Fig. 4. Channal attention module structure. Created using draw.io.

M(F ) = σ
(
f7×7([Avgpool(F );MaxPool(F )])

)
= σ

(
f7×7

([
F s
avg ;F

s
max

])) (9)

Where f7×7 denotes a convolution operation with a filter
size of 7 × 7. By combining the channel and spatial at-
tention mechanisms, CBAM can select key features more
effectively and improve the network’s understanding of the
target task.

2.4 Focal Loss Function

Focal loss function is a loss function designed to
solve the problem of category imbalance proposed by Lin
et al. [40] in 2018. The traditional cross-entropy loss
is prone to being dominated by the majority class when

dealing with datasets with extremely uneven class distri-
bution, which makes it difficult for the model to focus on
hard-to-categorize samples. Focal loss effectively reduces
the weights on easy-to-categorize samples by introducing
a modulating factor and a focusing parameter in the loss
function, which effectively reduces the weight of easy-to-
classify samples and makes the model focus more on the
learning of difficult samples, its formula is as follows:

FL (pt) = −αt (1− pt)
γ log (pt) (10)

Where pt ∈ [0, 1] indicates the probability that the pre-
dicted sample belongs to 1, αt is called the weighting fac-
tor, which serves to control the shared weight of the positive
and negative samples to the total loss, and the smaller the
value represents the lower the weight of the negative sam-

7

https://app.diagrams.net/
https://app.diagrams.net/
https://www.imrpress.com


Fig. 5. Spatial attention module structure. Created using draw.io.

ples, γ is called the focusing Parameter, whose role is to
make the model more focused on the hard-to-classify sam-
ples by reducing the weight of the easy-to-classify samples,
thus making the model more focused on the hard-to-classify
samples during the training. It is to reduce the weight of
easy-to-categorize samples, thus making the model more
focused on difficult-to-categorize samples during training.

2.5 Performance Evaluation
In this model evaluation, we used six indicators: ac-

curacy (ACC), sensitivity (Sn), specificity (Sp), F1 score,
Matthews correlation coefficient (MCC), and area under
the ROC curve (AUC). These metrics can comprehensively
evaluate the performance of the model from different per-
spectives to ensure the comprehensiveness and validity of
the assessment. In particular, the MCC is more comprehen-
sive and reliable than accuracy and F1 score in the category
imbalance dataset, and it is suitable for dichotomous clas-
sification problems that need to accurately identify positive
and negative class samples at the same time and it has per-
formed well in the field of genomics [41]. Therefore, the
use of these indicators can effectively assess the compre-
hensive performance of the model and ensure the rationality
and validity of the evaluation results. The specific formulas
of the six indicators are as follows:



Sn = TP
TP+TN

Sp = TN
TN+FP

Acc = TP+TN
TP+TN+FP+FN

F1 = 2×TP
2×TP+FP+FN

Mcc = TP×TN−FP×FN√
(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

(11)
Where TP, FP, TN, and FN denote the number of true posi-
tives, false positives, true negatives, and false negatives, re-
spectively, and the sensitivity and specificity are calculated
using a threshold of 0.5. AUC, as a commonly used met-
ric, effectively eliminates the effect of category imbalance,
and the higher the value, the better the model performance
is, and an AUC of 1 denotes a perfect classifier, and 0.5
denotes a random classifier.

2.6 Instructions for Setting Hyperparameters

To ensure that the training results of the DTC-m6Am
model can be fairly compared with existing studies, we
trained it on the same dataset and used NVIDIA GeForce
RTX 4080 GPU (NVIDIA Corporation, Santa Clara, CA,
USA) to accelerate the computation. During the training
process, we chose AdamW as the optimizer to improve the
stability of the gradient update and prevent the loss func-
tion from falling into a local optimum. At the same time,
we use the focal loss function to adjust the gradient prop-
agation to better handle the category imbalance problem.
To avoid model overfitting, we combine regularization, dis-
card and early stopping strategies. In addition, we optimize
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Table 2. Description of the hyperparameters in the
DTC-m6Am model.

Parameters Number

Dense block 1
Convolution layer number of a dense block 4
Convolution kernel size 3
Growth rate 30
Dilation rate 2
Dropout ratio 0.1

the hyperparameter configuration through comparative ex-
periments to obtain the best performance. The whole model
implementation relies on Python 3.10 (Python Software
Foundation, Wilmington, DE, USA) and PyTorch 2.0.0 +
cu11.8 (Meta AI, Menlo Park, CA, USA), and the specific
hyperparameter settings are shown in Table 2.

3. Results and Discussion
3.1 Contrasting Various Feature Extraction Techniques

This section explores in detail the effects of different
coding styles on the experimental results, using One-Hot
coding, ND coding, NCP coding, and various combinations
of these coding styles, with the aim of evaluating their abil-
ity to express the features and their impact on themodel per-
formance when processing the data. In order to comprehen-
sively compare the effects of these coding approaches, we
conducted 10-fold cross-validation and independent tests
on the dataset. The experimental results show that One-Hot
coding is the most balanced and stable in terms of overall
performance, and the results of both cross-validation and
independent tests are slightly better than the other coding
approaches, as shown in Fig. 6 and Table 3. However, it is
worth noting that on individual metrics (e.g., Sp), other cod-
ing methods (e.g., ND and NCP) sometimes show some ad-
vantages, but in this experiment, the training process of the
model is affected by the problem of extreme imbalance be-
tween positive and negative samples in the training set, and
the ND and NCP coding may be limited by the redundancy
of features and the tendency of overfitting, which leads to
the bias of its training process to learn more information
about negative samples resulting in insufficient feature ex-
traction for the feature extraction of positive samples is in-
sufficient. In contrast, One-Hot coding, with its compre-
hensive feature expression capability, can provide a better
learning basis for the model, thus achieving a more com-
prehensive performance. The results of this study provide
a strong rationale for the choice of the encoding method,
suggesting that One-Hot encoding is a reliable choice for
the task at hand, although it may need to be optimized in
combination with other encoding methods in some specific
scenarios.

Table 3. Ablation studies of the feature encoding ways on the
independent testing dataset.

One-hot √ √ √ √

NCP √ √ √ √

ND √ √ √

Sn 0.878 0.856 0.837 0.873 0.794 0.856
Sp 0.503 0.516 0.553 0.484 0.578 0.506
ACC 0.691 0.686 0.695 0.681 0.686 0.681
MCC 0.411 0.396 0.407 0.394 0.381 0.387
AUC 0.765 0.763 0.761 0.742 0.752 0.766
F1 0.739 0.732 0.733 0.734 0.717 0.729
The symbol “√” indicates that this module is included in the
model of the experiment. NCP, nucleotide chemical property;
ND, nucleotide density; ACC, accuracy; MCC, Matthews cor-
relation coefficient; AUC, area under the curve. The bold font is
used to distinctly indicate the highest values achieved for each
evaluation metric.

3.2 Analysis of Model Structure
In order to explore the effect of the number of Dense-

Block in the DenseNet module on the model performance,
we selected the number of DenseBlock as 1, 2, 3, and 4 to
conduct the experiments, respectively. The experimental
results are shown in Fig. 7, where the DenseBlock number
of 1 performs best in several indicators, among whichMCC
and AUC reach 0.541 and 0.910, respectively, showing
strong overall prediction ability. As the number of Dense-
Block increases, the MCC metric, which reflects the over-
all performance of the model, is relatively low. This sug-
gests that too many DenseBlocks may lead to an increase
in model complexity without effectively extracting addi-
tional useful features, instead introducing noise or overfit-
ting problems. In the current task, the 1-block DenseNet
structure can better balance the prediction demand of posi-
tive and negative class samples, which is suitable for model
accuracy optimization.

In addition, we conducted comparative experi-
ments between the CBAM attention mechanism and the
Multi-head self-attention (MHSA) [42] and Squeeze-and-
Excitation Networks (SENets) [43] attention mechanisms
to evaluate their impact on model performance. According
to the experimental results in Table 4, CBAM outperforms
the other two attention mechanisms in several metrics, es-
pecially achieving higher values in MCC and AUC. This
indicates that CBAM is able to capture key feature infor-
mation more efficiently while reducing the interference of
irrelevant or redundant features, thus improving the over-
all prediction ability of the model. In contrast, MHSA,
while modeling longer-range dependencies, may introduce
too much noise in the current task, while SENet focuses
primarily on channel attention and fails to fully utilize spa-
tial information. Therefore, in this study, CBAM is more
suitable for optimizing the performance of the m6Ammod-
ification site prediction model.
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Fig. 6. Performance comparison of One-hot encoding with NCP encoding and ND encoding on the training dataset. The inde-
pendent feature representation of One-Hot coding maintains the linear divisibility of the feature space and presents a relatively balanced
performance between specificity (Sp) and sensitivity (Sn) metrics. ND, NCP coding resulted in a slight increase in Sp but a significant
decrease in Sn due to the interference of feature redundancy. NCP, nucleotide chemical property; ND, nucleotide density; ACC, accu-
racy; MCC, matthews correlation coefficient; AUC, area under the curve. Generated using Python, specifically with the matplotlib and
seaborn libraries.

Table 4. The performance of models with different attention mechanisms.
Attention methods ACC AUC Sn Sp F1 MCC

MHSA 0.903 ± 0.008 0.905 ± 0.008 0.704 ± 0.030 0.923 ± 0.011 0.571 ± 0.018 0.531 ± 0.019
SENets 0.903 ± 0.010 0.907 ± 0.007 0.714 ± 0.035 0.922 ± 0.013 0.572 ± 0.021 0.534 ± 0.022
CBAM 0.904 ± 0.007 0.910 ± 0.007 0.724 ± 0.032 0.922 ± 0.010 0.579 ± 0.016 0.541 ± 0.017
Each value in the table is expressed as mean± SD. where the mean is the average of the 10-fold cross-validation results and SD
is their standard deviation. The best experimental results are highlighted in bold. MHSA, Multi-head self-attention; SENets,
Squeeze-and-Excitation Networks; CBAM, Convolutional Block Attention Module.

3.3 Model Architecture Ablation Experiment

In order to verify the role played by each module in
the overall performance of the model, we conducted ab-
lation experiments in 10-fold cross-validation as well as
independent tests, the results of which are shown in Ta-
bles 5,6. First, as can be seen visually from Fig. 8, the
DenseNet module performs well in negative class iden-
tification with specificity (Sp) of 0.962, which is much
higher than the other module combinations, indicating that
DenseNet has an advantage in correctly identifying nega-
tive samples. This may be due to the fact that the deep struc-
ture of DenseNet is able to capture more complex features
and, thus, is more accurate in the distinction of negative

samples. On the other hand, the role of the TCN module in
positive example recognition cannot be ignored. From Ta-
ble 5, we can see that the sensitivity (Sn) of the combined
model after the introduction of the TCN module reaches
0.710, indicating that the TCN is very effective in identify-
ing positive samples. This property of the TCN may be re-
lated to its ability to capture long-term dependencies when
dealing with sequence data.

When considering the combination of modules, the
DenseNet + CBAM configuration shows excellent per-
formance in ten-fold cross-validation, especially in terms
of accuracy (ACC) and Matthews correlation coefficient
(MCC). However, when we compare this combination with
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Fig. 7. The performance of models with different numbers of dense blocks. This figure shows the 10-fold cross-validation results
on six metrics (ACC, AUC, Sn, Sp, F1, and MCC) for different number of DenseBlocks (1, 2, 3, and 4), with the bars representing the
mean of the corresponding metrics, and the error line indicating the standard deviation. Generated using Python, specifically with the
matplotlib and seaborn libraries.

the combination of all three modules (all), we find that the
latter performs better in terms of AUC and Sn scores. In an
independent test, the all combination achieved Sn, MCC,
and F1 scores of 0.878, 0.411, and 0.739, which are the
highest of all combinations.

Taken together, the combination of DenseNet, TCN,
andCBAMcan give full play to their respective advantages,
enabling the model to achieve a better balance between sen-
sitivity (Sn) and specificity (Sp). Specifically, DenseNet
extracts complex features through the deep network struc-
ture, which improves the recognition ability of negative
samples and excels in specificity; TCN enhances the recog-
nition ability of positive samples by capturing long-range
dependency information and improves the model’s sensi-
tivity; and CBAM further optimizes the feature extraction
process, which enables the model to focus on key features
more effectively, thus improving the overall prediction per-
formance. The experimental results show that the model
combining the three models has the best performance in
the comprehensive indexes such asMCC and F1, indicating
that it is more balanced and accurate in distinguishing be-
tween positive and negative samples. Therefore, DenseNet
+ TCN + CBAM was finally selected as the optimal con-
figuration to ensure that the model has stronger prediction
ability and more stable performance in recognizing m6Am
modification sites.

3.4 Comparison of Two Balancing Strategies
In Focal Loss, alpha and gamma are two key hyperpa-

rameters that play a crucial role in the model training pro-
cess. Since the settings of these two parameters directly af-
fect the model’s learning of different types of samples, we
first conducted a comparison of the model performance un-
der different alpha and gamma parameter settings to explore
the best hyperparameter combination. In this test, we sys-
tematically tested the parameter combinations of weighting
factor α (0.2, 0.4, 0.6, 0.8) and focusing Parameter γ (0,
1, 2, 3) by grid search method, and chose the MCC value
as the key index for selection. The MCC value under each
parameter combination is shown in Fig. 9. Through our ex-
periments, we found that the model performs best in the
comprehensive evaluation metric MCC when γ = 2 and
α = 0.8, and the MCC value reaches 0.541 in the 10-fold
cross-validation. Choosing α = 0.8 reduces the weight on
the dominant negative samples, thus alleviating the cate-
gory imbalance problem, while γ = 2 enhances the focus on
the difficult-to-categorize samples, making the model more
focused on the positive samples, which enhances the sen-
sitivity and improves the overall prediction performance.
Therefore, this parameter combination can effectively bal-
ance the model’s focus on difficult-to-classify samples and
the weights between categories and significantly improves
themodel’s performance on the unbalanced performance on
the dataset.

11

https://www.imrpress.com


Fig. 8. Ablation results of DTC-m6Am on the training dataset. Generated using Python, specifically with the matplotlib and seaborn
libraries.

Table 5. Ablation experiments results for DTC-m6Am.
Module combination ACC AUC Sn Sp F1 MCC

DenseNet 0.930 ± 0.004 0.899 ± 0.010 0.602 ± 0.040 0.962 ± 0.008 0.608 ± 0.012 0.571 ± 0.012
TCN 0.903 ± 0.008 0.907 ± 0.010 0.710 ± 0.035 0.922 ± 0.012 0.571 ± 0.015 0.532 ± 0.016
CBAM 0.867 ± 0.010 0.885 ± 0.013 0.721 ± 0.019 0.881 ± 0.012 0.498 ± 0.017 0.460 ± 0.017
DenseNet + TCN 0.902 ± 0.007 0.909 ± 0.008 0.722 ± 0.030 0.920 ± 0.010 0.573 ± 0.015 0.535 ± 0.015
DenseNet + CBAM 0.931 ± 0.010 0.897 ± 0.010 0.581 ± 0.030 0.966 ± 0.016 0.605 ± 0.017 0.572 ± 0.019
TCN + CBAM 0.902 ± 0.004 0.909 ± 0.010 0.722 ± 0.034 0.920 ± 0.007 0.573 ± 0.008 0.535 ± 0.110
All 0.904 ± 0.007 0.910 ± 0.007 0.724 ± 0.032 0.922 ± 0.010 0.579 ± 0.016 0.541 ± 0.017
Each value in the table is expressed as mean ± SD. where the mean is the average of the 10-fold cross-validation results and SD
is their standard deviation. The best experimental results are highlighted in bold.

In addition, to demonstrate the advantages of Focal
Loss, we also explore the performance of the model under
the downsampling strategy versus Focal Loss. Downsam-
pling is usually used to solve the category imbalance prob-
lem by reducing the number of majority class samples to
balance the category distribution. In this experiment, we
adopt the downsampling strategy consistent with Liu et al.

[22]. The experimental results are shown in Table 7. By
comparing the experiments, we find that the model with Fo-
cal Loss retains the diversity of the data better than the tra-
ditional downsampling method and significantly improves
the model’s prediction ability for the minority class sam-
ples. However, downsampling may lead to information
loss, which in turn affects the performance of the model.
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Table 6. Ablation studies of the models on the independent testing dataset.
DenseNet √ √ √ √

TCN √ √ √ √

CBAM √ √ √ √

Sn 0.712 0.831 0.834 0.828 0.831 0.859 0.878
Sp 0.678 0.533 0.512 0.534 0.550 0.487 0.503
ACC 0.695 0.683 0.673 0.681 0.690 0.673 0.691
MCC 0.391 0.383 0.366 0.379 0.397 0.374 0.411
AUC 0.771 0.738 0.76 0.732 0.778 0.735 0.765
F1 0.700 0.724 0.718 0.722 0.729 0.725 0.739
The symbol “√” indicates that this module is included in the model of the
experiment. The bold font is used to distinctly indicate the highest values
achieved for each evaluation metric.

Table 7. Comparison of two balancing strategies in independent testing.
Balancing strategies ACC AUC Sn Sp F1 MCC

Downsampling 0.680 0.754 0.623 0.736 0.660 0.361
Focal loss 0.691 0.765 0.878 0.503 0.739 0.411
The best experimental results are highlighted in bold.

Fig. 9. MCC values for different combinations of parame-
ters. This figure shows the effect of different combinations of
α (0.2, 0.4, 0.6, 0.8) and γ (0, 1, 2, 3) on the predicted MCC val-
ues of m6Am. Darker colors indicate higher MCC. Generated us-
ing Python, specifically with the matplotlib and seaborn libraries.

As a result, the Focal Loss function shows superior perfor-
mance when dealing with unbalanced datasets.

3.5 Comparative Analysis of Other Models

To demonstrate the effectiveness of DTC-m6Am,
we compared it to the current state-of-the-art m6Aminer
model. We performed ten-fold cross-validation on the train-
ing dataset and performance evaluation on an independent
test dataset in which the cross-validation was repeated ten

times. Based on the data results in Tables 8,9 (Ref. [22]),
the DTC-m6Am model shows significant superiority over
the state-of-the-art m6Aminer model in several key perfor-
mance metrics. First, the 10-fold cross-validation results
in Table 8 show that DTC-m6Am achieves 0.904 in Accu-
racy (ACC), which is higher than m6Aminer’s 0.891, in-
dicating that DTC-m6Am performs more consistently and
has higher prediction accuracy on the training set. In ad-
dition, DTC-m6Am also performs more prominently on
specificity (Sp), reaching 0.922, which is significantly bet-
ter than m6Aminer’s 0.904, implying that DTC-m6Am has
a stronger ability to correctly identify negative samples,
which helps to reduce the false-positive rate. Fig. 10 pro-
vides a clear visual comparison between DTC-m6Am and
existing predictors.

Observing the results of the independent tests in
Fig. 11, DTC-m6Am again demonstrated its advantages in
various metrics. DTC-m6Am reached 0.878 in accuracy
(Sn) compared to the m6Aminer model to remain com-
petitive, and in the five metrics of specificity (Sp), accu-
racy (ACC), matthews correlation coefficient (MCC), area
under the curve (AUC), and F1 respectively amounted to
0.503, 0.691, 0.411, 0.765, and 0.739, which were im-
proved by 6.8%, 1.6%, 19.7%, 3.6%, and 24.1% compared
with m6Aminer. Its accuracy (ACC) of 0.691 was higher
than that of m6Aminer of 0.647, indicating better predic-
tion on unseen data. Especially in specificity (Sp), DTC-
m6Am significantly improved to 0.503, which showed
higher negative sample recognition ability compared to
0.420 of m6Aminer. That is, it is shown that in practi-
cal applications, our model can effectively reduce the false
positive rate, shorten the validation period and significantly
save the experimental resources and time cost compared
with the existing tools. More importantly, DTC-m6Am is
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Fig. 10. Comparison of the DTC-m6Am model with state-of-the-art prediction models. The figure illustrates the performance
distribution of the four models under 10-fold cross-validation. DTC-m6Am (red) performs better in several metrics, especially in the
MCC and F1 scores. Generated using Python, specifically with the matplotlib and seaborn libraries.

Table 8. 10-fold cross-validation on imbalanced training sets for various models.
Predictor ACC AUC Sn Sp F1 MCC

m6AmPred 0.885 ± 0.005 0.903 ± 0.010 0.738 ± 0.026 0.900 ± 0.005 0.539 ± 0.016 0.503 ± 0.019
DLm6Am 0.895 ± 0.006 0.895 ± 0.009 0.705 ± 0.029 0.914 ± 0.007 0.551 ± 0.019 0.511 ± 0.022
m6Aminer 0.891 ± 0.005 0.914 ± 0.009 0.756 ± 0.025 0.904 ± 0.005 0.557 ± 0.014 0.523 ± 0.017
DTC-m6Am 0.904 ± 0.007 0.910 ± 0.007 0.724 ± 0.032 0.922 ± 0.010 0.579 ± 0.016 0.541 ± 0.017
Each value in the table is expressed as mean ± SD. where the mean is the average of the 10-fold cross-validation results
and SD is their standard deviation. The best experimental results are highlighted in bold.

also ahead of m6Aminer in terms of Matthews correlation
coefficient (MCC), reaching 0.411, whilem6Aminer is only
0.331. The higherMCCvalue of DTC-m6Am indicates that
it can recognize negative samples in all types of data.

In both ten-fold cross-validation and independent
tests, the DTC-m6Am model shows excellent prediction
performance, which is significantly better than tools such
as m6Aminer. The core advantage lies in the powerful fea-
ture extraction capability of DenseNet, which can capture
the negative sample information more adequately, thus im-
proving the discriminative ability of the model. In addition,

we introduce Focal Loss (α = 0.8, γ = 2) during the training
process, which effectively reduces the model’s bias towards
majority class samples by dynamically adjusting the loss
weights, prompting it to pay more attention to the minority
samples that are difficult to categorize, so as to alleviate the
problem of class imbalance and improve the overall predic-
tion performance. Taken together, DTC-m6Am, with both
robustness and generalization ability, is an efficient and re-
liable m6Am prediction model, providing a powerful tool
for RNA modification sites research.
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Table 9. Model comparison with the state-of-the-art models
on the independent testing dataset.

Predictor ACC AUC Sn Sp F1 MCC

m6AmPred* 0.623 0.735 0.887 0.358 0.702 0.289
DLm6Am* 0.642 0.730 0.875 0.409 0.710 0.322
m6Aminer* 0.647 0.754 0.874 0.420 0.713 0.331
DTC-m6Am 0.691 0.765 0.878 0.503 0.739 0.411
The conclusions were from the previous study [22], as stated
by the asterisk (*) , and the best experimental results are high-
lighted in bold.

Fig. 11. Results of the DTC-m6Am model and other models
in independent tests. The metrics include Sn, Sp, ACC, MCC,
AUC and F1, with values closer to the outer circle indicating bet-
ter performance. The results show that DTC-m6Am (red) excels in
several metrics, indicating its strong generalization ability. Gen-
erated using Python, specifically with the matplotlib and seaborn
libraries.

3.6 Sequence Analysis of m6Am Sites

In order to find out the motif pattern of the m6Am site,
we used the kplogo [44] tool to analyze the m6Am posi-
tive sequence data, and the visualization results are shown
in Fig. 12. In this study, adenine (A) was located in the
center of the RNA sequence fragment, with 20 nucleotides
before and after. k-mer Logo analysis results highlighted
that at positions 19 to 22, specific k-mer (e.g., U, C, CAU,
etc.) with significant enrichment, suggesting that these se-
quences may play a key role in the recognition and forma-
tion of the m6Am modification. Especially at position 23,
significant variability was observed, and the k-mer repre-
sented by ANC may indicate that more sequence diversity
or regulation by environmental factors may be involved in

m6Ammodification at this position. In addition, the signifi-
cant depletion of G at positions 19 and 23may be closely re-
lated to the selective recognition andmodification ofm6Am
modification for these positions, suggesting that the modifi-
cation may be regulated by the context upstream and down-
stream of the sequence. Thus, combining contextual infor-
mation can help identify m6Am sites.

3.7 An Available Web Server for DTC-m6Am
The m6Am site identification methods using deep

learning approaches often require the configuration of cum-
bersome deep learning environments as well as the debug-
ging of complex computational models, which constitutes a
high threshold of use for most non-specialized researchers.
To solve this problem, we developed the DTC-m6Am web-
site to provide efficient, convenient, and accurate online
m6Am site prediction services. The platform is built to
lower the technical threshold of m6Am site prediction and
help researchers focus on experimental design and biolog-
ical function validation, thus accelerating the advancement
of scientific research. By integrating advanced machine
learning models with known data training, the platform is
able to quickly identify potential m6Am sites in input RNA
sequences.

The web interface is shown in Fig. 13. Users only
need to paste the target mRNA sequence as text into the
input box of the website and click “Submit” to get the
prediction results. In addition, the website supports batch
uploading of FASTA format files and returns the results
via email, which is convenient for users to perform high-
throughput data analysis. Our website can be accessed at
https://hardy-leech-conversely.ngrok-free.app/.

4. Conclusions
As an important RNA epitope marker, m6Am modi-

fication plays a key role in gene expression regulation, af-
fecting mRNA stability, splicing, and translation efficiency.
Based on its importance, we propose a deep learning model
that combines the feature extraction capability of DenseNet,
the sequence modeling advantage of TCN, and the atten-
tion mechanism of the CBAM module to design a high-
precision m6Am predictor to identify the m6Am site better
and facilitate epigenetic studies. DTC-m6Am has the fol-
lowing advantages over previous studies: (1) DTC-m6Am
used an algorithm-based non-equilibrium strategy in the
m6Am site prediction study, which to some extent solved
the problem of bias toward the majority class during the
training process and ensured the recognition ability of pos-
itive samples while significantly improving the recognition
ability of negative samples, with significant improvement
compared to the data-based downsampling method. (2)
DTC-m6Am employs a simple and efficient one-hot cod-
ing method, which is intuitive and easy to implement with-
out complex feature engineering. It can retain the integrity
and clarity of the original data. In addition, one-hot coding
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Fig. 12. Visualisation results of kpLogo for k-mer logo. The sequence information in the figure highlights the base preference and
informativeness of each position, with blue, green, red, and yellow indicating bases C, A, U (T), and G, respectively, and the font size
reflecting the importance and frequency of the bases at that position, which helps to identify key sequence patterns. Created using the
web tool available at http://kplogo.wi.mit.edu/manual.html.

Fig. 13. Homepage of the DTC-m6Am predictor. Sourced from https://hardy-leech-conversely.ngrok-free.app/.
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is more advantageous in terms of computational overhead,
which helps to improve the training efficiency and predic-
tion performance of the model. (3) We have also developed
an m6Am prediction website. This platform not only en-
ables real-time access and application of the DTC-m6Am
model we developed, but also automates prediction based
on RNA sequences uploaded by users. Through simple se-
quence uploading and clicking operations, users can obtain
the prediction results of m6Am sites without the need for
professional programming ability, which greatly reduces
the threshold of use.

Although DTC-m6Am exhibits superior predictive
performance, there are some potential limitations. First, the
performance of themodel is limited by the size and diversity
of the training data, which may undergeneralize due to data
scarcity especially in cross-species or rare modification sce-
narios. Second, although we employ Focal Loss to mitigate
the category imbalance problem, the prediction of a few
categories may still be affected in extremely imbalanced
datasets. In addition, signaling overlap in high-density re-
gions (e.g., m6A/m6Am competitive modifications) and the
complexity of RNA dynamic structure make it difficult to
accurately resolve modification sites with existing features.
In terms of feature encoding, One-Hot encoding, while sim-
ple and efficient, has limitations in representing complex
structural features, especially when it is necessary to cap-
ture relationships between neighboring base pairs in a se-
quence. This limitation may affect the model’s ability to
resolve complex RNA modification sites. Therefore, ex-
ploring other coding schemes such as PseEIIP and PSSM
coding has the potential to improve the model’s ability to
represent complex structural features by better capturing the
neighboring relationships and chemical properties in the se-
quence. Future studies can combine methods such as mi-
gration learning or self-supervised learning by introducing
larger and more diverse datasets in order to improve the
generalization and robustness of themodel. Meanwhile, the
integration of RNA secondary structure or multimodal data
into the model can be further explored, and the coupling of
sequence-structure-function can be captured by graph neu-
ral networks or 3D convolutional architectures to enhance
the decoding ability of the spatial distribution of modifica-
tion sites and the dynamic regulatory mechanisms.
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