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Abstract

Mitochondria, ubiquitous in eukaryotic cells, evolved from an ancestral aerobic alpha-proteobacterium that had been phagocytosed by a
primordial archaeal cell. Numerous factors link mitochondria to current-day bacteria, notably the facultative pathogens that are phago-
cytosed and survive within the host as a chronic infection. Despite these parallels, we typically refer to mitochondria as “symbionts” and
rarely consider them as perhaps the most successful example of long-term chronic infection. Here, we will explore critical aspects of
mitochondrial structure and function and consider what we might learn by refocusing our attention on mitochondria as bacteria that are
uniquely adapted to their host cell, i.e., as a chronic infection tolerated by its eukaryotic host.
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1. Introduction
Mitochondria are membrane-bound intracellular or-

ganelles that replicate independently within virtually all
eukaryotic cells and generate energy via a series of bio-
chemical reactions collectively known as oxidative phos-
phorylation. Although several competing theories exist [1–
4], the most widely accepted is that mitochondria arose
approximately 1.5 billion years ago in a primordial ar-
chaeal cell that had phagocytosed an ancestral aerobic
alpha-proteobacterium, most likely a predecessor of the
marine iodide-oxidizing bacterial genus, Iodidimonas [5].
Upon escaping the phagosome, the intracellular bacterium
adapted within the cytoplasm to exist in symbiosis within
its anaerobic host [6]. Among these adaptations, most of
the bacterial genes were eventually transferred to the newly
formed eukaryotic cell nucleus [7]. Mitochondria in human
cells maintain a single double-stranded ∼16.5 kB circular
DNA that encodes 13 polypeptides that are essential com-
ponents of the electron transport chain, as well as two ri-
bosomal RNAs and 22 transfer RNAs necessary for their
translation. In addition to energy production, mitochon-
dria evolved to support several additional roles, including
macromolecular synthesis and intracellular signaling (re-
viewed in [8]).

Most textbooks state that mitochondria live in sym-
biosis with their eukaryotic cell hosts. In its simplest
terms, symbiosis describes a relationship between two en-
tities that is mutually beneficial (i.e., mutualism), although
other types of arrangements exist (e.g., commensalism, par-
asitism). By contrast, the term infection typically infers
specific harm to the host, although the distinction between
these terms blurs when considering the pathogenesis of
chronic infections. Despite their evolutionary history, mi-

tochondria are rarely considered to represent an infection.
This is likely because mitochondria in their current form
are considered critical elements of the eukaryotic host cell,
and not infectious or pathologic agents [9]. Likewise, al-
though mitochondrial dysfunction can lead to serious dis-
ease, in their healthy state, they are not perceived to func-
tion as pathogens. However, and despite these ongoing per-
ceptions, mitochondria share numerous characteristics with
bacteria, reflecting their evolutionary origin from an ances-
tral endosymbiotic bacterium, which may have entered by
an infective process [10–12]. In this manuscript, we will
explore various features of current-day mitochondria and
consider what we might learn by refocusing our attention
on mitochondria as bacteria that are uniquely adapted to
their host cell, i.e., tolerated as chronic pathogens in their
eukaryotic hosts.

1.1 Structure
Mitochondria are roughly the same size and shape as

free-living coccobacilli, and many of their metabolic com-
ponents, such as those in the electron transport chain and
oxidative phosphorylation, are structurally and functionally
conserved with those found in current-day bacterial sys-
tems [13]. Both mitochondria and bacteria are enveloped in
double membranes, with the inner membranes of both bac-
teria and mitochondria sharing similar lipid compositions
and embedded transport proteins [14]. For example, car-
diolipin, a phospholipid abundant in bacterial membranes,
can be found only in the inner mitochondrial membrane of
eukaryotic cells [15]. Likewise, and similar to bacteria, the
mitochondrial genome, which contains 37 genes, exhibits
high gene density and no introns [16].
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1.2 Phagocytosis
As noted above, mitochondria are believed to have de-

veloped within the cytoplasm of a primordial archaeal cell
of theAsgard superphylum that had phagocytosed an ances-
tral aerobic alpha-proteobacterium. Notably, this interac-
tion resembles the initial events of an intracellular infection,
in which bacteria avoid destruction largely by remaining in-
side a phagosome and thus physically and immunologically
sequestered from the host environment. Over time, inter-
dependence between these two previously independent life
forms increased through membrane integration, shared sig-
naling, and gene transfer [17,18].

1.3 Replication
Although many proteins required for full mitochon-

drial function are synthesized in the cell nucleus, mitochon-
dria maintain their own circular DNA and can replicate in-
dependently of the host cell through a process similar to
binary fission [19,20]. Mitochondria use prokaryotic-type
ribosomes (55S vs. 70S) and initiate translation with the
amino acid N-formyl methionine, a feature typical of most
bacterial species [21–23]. The results of recent studies sug-
gest that mitochondria can exist and function in extracel-
lular environments, analogous to the life cycle of faculta-
tive intracellular bacterial pathogens. Cell-free mitochon-
dria found in human blood are respiration competent (i.e.,
utilize oxygen) [24,25] and may modulate host inflamma-
tion and immune responses [26] and sensory functions [27].

1.4 Mitophagy
Mitophagy, the process used by eukaryotic cells to re-

move damaged mitochondria, in many ways resembles mi-
crobial clearance [28]. Damaged mitochondria are tagged
with ubiquitin chains; engulfed in autophagosomes, and
delivered to lysosomes for degradation and clearance. In-
tracellular pathogens (e.g., Mycobacteria and Salmonella
spp.) are cleared by similar mechanisms [29].

1.5 Mitoviruses and Bacteriophages
Virus pathogens also serve to link mitochondria to

their bacterial predecessors [30–33]. Mitoviruses (fam-
ily Narnaviridae) are non-enveloped viruses with non-
segmented, linear, positive-sense, single-stranded RNA
genomes that encode a single protein (RNA-dependent
RNA polymerase) and specifically target and replicate
within mitochondria. Although most characterized mi-
toviruses infect mitochondria in fungi, recent evidence sug-
gests that several members of this family target contempo-
rary plants and insects [34,35]. Interestingly, mitoviruses
are believed to have evolved from leviviruses (family Le-
viviridae), which are RNAbacteriophages that target Gram-
negative bacteria.

1.6 Antibiotic Susceptibility

Antibiotics are used widely to treat and, in some cases,
prevent bacterial infection. Despite their perceived safety
and efficacy, antibiotics also target host mitochondria. Pro-
longed use of beta-lactams, quinolones, and/or amino-
glycosides can lead to overproduction of reactive oxygen
species, oxidative damage, and mitochondrial dysfunction
[36]. While several studies have highlighted the impact of
antibiotic use on metabolic, neurodegenerative, and/or psy-
chiatric disease [37–40], additional research will be needed
to improve our understanding of the precise mechanisms
underlying this effect.

2. Discussion
Thus, mitochondrial endosymbiosis may be inter-

preted as an initially infective process that evolved into mu-
tualism, driven by molecular compatibility favored by en-
vironmental selection. While compatibility, or conforma-
tional matching [41], may have masked the origin of pro-
tomitochondria; this process may ultimately have presented
specific liabilities. Under stress or aging, mitochondria be-
come dysfunctional (from the perspective of their role as
eukaryotic symbionts), triggering apoptosis or necrosis and
altering cellular and organismic behavior [42–44]. Some
researchers suggest that subtle conflicts persist between
mitochondrial and nuclear genomes (e.g., mitonuclear in-
compatibility), a condition that becomes particularly visi-
ble in aging or interspecies hybrids [45,46]. From this per-
spective, the cost of retaining the ancestral symbiont may
include eventual cellular decline [47,48]. A full explo-
ration of the implications of this hypothesis may lead to a
novel understanding of disorders such as diabetes and neu-
rodegeneration among others, i.e., those coupled to energy
metabolism.

Furthermore, mitochondria demonstrate an excep-
tional degree of immunologic compatibility with their eu-
karyotic host cells. Mitochondria elicit minimal immune re-
sponses when transplanted into different cell types or even
across species [49–51]. This tolerance probably emerged
as the protomitochondria became integrated into host cell
signaling pathways and interacted with other cellular com-
ponents. An improved understanding of the mechanisms
underlying the nature of their immunological “invisibility”
has critical implications for the development of novel strate-
gies to combat transplant rejection and treat autoimmune
disorders.

3. Conclusion
The evolutionary history of mitochondria suggests

that the most successful pathogens are those that can adapt
to their host and environment, evade detection, and repro-
duce efficiently while providing specific benefits to their
host cells. The development of mutualistic symbiosis has
permitted protomitochondrial “intruders” to thrive in part-
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nership with evolving eukaryotic cells and organ tissues.
Further consideration of mitochondrial biology as the most
successful example of long-term chronic infection may pro-
vide us with new insights into strategies to prevent age-
related neurodegeneration and related metabolic disorders.
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