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Abstract

Background: Efferocytosis (ER) plays a crucial role in the programmed clearance of dead cells, a process that is mediated by phago-
cytic immune cells. However, further exploration is needed to determine the full extent of its impact on the progression of pancreatic
ductal adenocarcinoma (PDAC), particularly through interactions among tumor cells, stromal cells, and immune cells within the tumor
microenvironment (TME).Methodology and Results: In this study, we comprehensively analyzed the Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) database, as well as additional databases from multiple bioinformatics websites, utilizing 167 ER
features derived from the integration of single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic data. A set of 14 ER-associated
prognostic signatures, referred to as the “14-gene panel” genes, was identified based on overall survival (OS)/disease-free survival (DFS)
data, Pearson correlation coefficients, and multivariate Cox regression analyses. The model pathways enriched by the four-gene combi-
nation represented by “LEAF” and the 14-gene combination represented by the “14-gene panel” presented a high degree of similarity,
including among the adhesion, mitotic, G2/M checkpoint, and epithelial‒mesenchymal transition (EMT) signaling pathways. Least ab-
solute shrinkage and selection operator (LASSO) regression was subsequently employed to construct an ER risk scoring system using
deep learning, based on the following formula: LGALS3, EMP1, ASPH, and FNDC3B, collectively termed the “LEAF” panel. Addition-
ally, random survival forest (RSF) algorithms facilitated the identification of a key panel of genes, designated “LEAP” genes, including
LGALS3, EREG, ASPH, and PLS3; three of which genes (ASPH, LGALS3, and EREG) were identified as key factors influencing the
behaviors of PDAC tumors, tumor-associated stroma, and macrophages. Finally, we utilized experimental methods, including Boyden
chamber analyses, immunohistochemical staining, and cell cycle analyses, to demonstrate that interference with ASPH suppresses the
malignant properties of tumors, including proliferation and migration. Multiplex immunofluorescence staining was employed to identify
EREG as highly relevant to the M2 macrophage subpopulation. Conclusion: Our findings underscore the importance of considering a
novel prognostic signature comprising 14 ER genes in the context of the TME when investigating the biology of PDAC. Future studies
may explore how modulating these interactions could lead to novel therapeutic opportunities.

Keywords: efferocytosis; pancreatic ductal adenocarcinoma; prognosis; tumor microenvironment

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is themost
common and aggressive histological subtype of pancreatic
cancer, ranking among the leading causes of cancer-related
mortality worldwide [1]. PDAC frequently eludes detec-
tion until it has progressed to the advanced stages owing
to its insidious nature and nonspecific symptoms, leading
to delayed diagnoses for the majority of patients [2]. This

stealthy progression often leaves clinicians and patients un-
prepared, exacerbating the challenges of early intervention.
As a result, nonsurgical treatments such as radiotherapy and
chemotherapy are primary options for advanced cases [2,3].
Additionally, emerging therapies such as immunotherapy
and other innovative approaches are being explored for the
treatment of PDAC [4,5]. Despite advances in early de-
tection and drug development, the prognosis for advanced

https://www.imrpress.com/journal/FBL
https://doi.org/10.31083/FBL40818
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-9611-1229
https://orcid.org/0009-0004-6702-9550
https://orcid.org/0009-0008-2923-9986
https://orcid.org/0000-0001-7015-3166
https://orcid.org/0000-0002-3340-5958
https://orcid.org/0009-0005-0257-5793
https://orcid.org/0000-0001-6732-9466


PDAC patients remains poor, with five-year survival rates
less than 10%, even at the localized stages [6]. Patients
with PDAC are frequently diagnosed at the advanced or
metastatic stages, significantly limiting therapeutic efficacy
[4], which underscores the urgent need to discover inno-
vative biomarkers and molecular signatures capable of en-
abling earlier detection, refining prognostic assessments,
and guiding personalized therapeutic strategies to enhance
clinical management and reduce the impact of aggressive
malignancy.

Efferocytosis (ER)—the process by which apoptotic
cells are phagocytosed and eliminated—plays a crucial role
in maintaining tissue homeostasis [7]. This biological
mechanism is essential for preventing secondary necrosis,
which can lead to inflammation and further tissue damage
[8]. In the context of cancer, efferocytosis becomes par-
ticularly significant as tumor cells undergo various forms
of cell death, including apoptosis, necrotic apoptosis, fer-
roptosis, and pyroptosis [9]. These cell death mechanisms
are triggered by factors such as genetic mutations, hypoxic
conditions within the tumor microenvironment, and thera-
peutic interventions such as radiotherapy and chemother-
apy [10]. Professional phagocytes, such as macrophages
and dendritic cells, along with nonprofessional phagocytes,
such as fibroblasts and epithelial cells, play a vital role in
detecting and removing apoptotic tumor cells through effe-
rocytosis [11]. This rapid and efficient clearance prevents
the release of proinflammatory molecules that could oth-
erwise exacerbate tissue damage and promote tumor pro-
gression [11]. The efficiency of this process is facilitated
by a range of genes and signaling pathways that increase
the recognition and engulfment of apoptotic cells [12,13].
Notably, many of these genes are overexpressed in vari-
ous cancers—including in leukemia and lung, breast, and
pancreatic cancers—suggesting their involvement in tumor
progression and metastasis [14]. The complex interplay be-
tween efferocytosis and tumor biology underscores the need
for a deeper understanding of this process. While studies on
the impact of efferocytosis on PDAC progression are lim-
ited, emerging evidence points to its critical role in shap-
ing the tumor microenvironment. Further research into the
molecular mechanisms governing efferocytosis in PDAC
could provide valuable insights into the development of
novel therapeutic strategies aimed at enhancing antitumour
immunity and overcoming immune evasion.

In our previous study, we identified galectin-3 (Gal-3)
as an important modulator of the tumor microenvironment
(TME) in PDAC patients. Gal-3 increases the aggressive-
ness of tumor cells by promoting their proliferation, migra-
tion, and invasion capabilities, and it also activates collagen
and fibrin crosslinking within the stromal tissue surround-
ing the tumor, leading to the formation of a more rigid and
fibrotic extracellular matrix. Moreover, its ability to acti-
vate collagen and fibrin crosslinking and promote the re-
lease of inflammatory cytokines such as Interleukin-6 (IL-

6) and IL-8 creates a protumorigenic milieu that accelerates
PDAC progression [15]. Interestingly, multiple genes asso-
ciated with Gal-3 are involved in the ER signaling pathway,
although they do not encompass the canonical gene sets typ-
ically associated with ER signaling.

In this study, we delineated the prognostic potential
and TME landscape of PDAC by leveraging ER features
derived from the integration of single-cell RNA sequencing
(scRNA-seq) and bulk transcriptomic data. The ER signa-
ture comprises 14 genes (DUSP4, ASPH, MMP14, EMP1,
EREG, MAP4K4, PANX1, PLS3, FNDC3B, RBMS1,
ITGB1, ADAM17, PICALM, and LGALS3) as “14-gene
panel”, including those directly associated with the ER and
bypass genes closely linked to its function. This study
was to provide critical theoretical insights for the prognos-
tic stratification and precision treatment of PDAC. A prog-
nostic scoring system for patients was developed based on
the on identified efferocytosis features and was validated
via deep learning approaches. We investigated the underly-
ing functional targets responsible for the varying prognoses
among patients with different ER risks through comprehen-
sive clustering, immune infiltration, and model comparison
analyses from both single-cell and bulk transcriptomes. Ad-
ditionally, nomogram models of tumor cells, stromal cells,
and immune cells were established to accurately predict the
survival of patients with PDAC, facilitating individualized
treatment plans tailored to their specific ER risk categories.

2. Materials and Methods
2.1 Data Collection, Processing, Acquisition, and
Preparation

We retrieved 179 samples from patients with PDAC
who underwent RNA sequencing from the Cancer Genome
Atlas (TCGA) database (phs000178 from https://www.om
icsdi.org/dataset/dbgap/phs000178), which included clini-
cal information, transcriptome expression, and copy num-
ber variation (CNV) data, and 171 samples of normal tis-
sues from volunteers from the Genotype-Tissue Expres-
sion (GTEx) Project. Additionally, we obtained the pan-
cancer cohort for the gene expression profiling and interac-
tive analyses of the cancer and normal samples from the
Gene Expression Profiling Interactive Analysis (GEPIA)
and GEPIA2 platforms developed by PUCH (http://gepia2.
cancer-pku.cn/, Beijing, China), as well as eight datasets
(GSE111627; 141017; 148673; 154763; 154778; 158356;
162708; 165399) from patients with PDAC patients from
theGEOdatabase (https://www.ncbi.nlm.nih.gov/geo/, Na-
tional Institutes of Health (NIH), MD, USA). Moreover, a
panel of 223 genes related to efferocytosis was explored
in the Molecular Signatures Database (MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb), a collection of anno-
tated gene sets for use with the gene set enrichment analy-
sis (GSEA) software (version 4.4) by the USCD (SanDiego,
CA, USA).
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2.2 Data for Single-Cell RNA-seq Analysis
The single-cell RNA-seq dataset from the GEO

database (GSE154778, https://www.ncbi.nlm.nih.gov/geo
/query/acc.cgi?acc=GSE154778) comprises 10 samples
from patients with primary PDAC and 6 samples from pa-
tients with metastatic lesions. The Seurat R package (ver-
sion 4.3.3, https://cran.r-project.org/web/packages or https:
//www.bioconductor.org/) was used to analyze the single-
cell RNA sequencing data. While, the Tumor Immune
Single-Cell Hub 2 (TISCH2) database (http://tisch.compbi
o.cn/) provided detailed cell type annotations at the single-
cell level. Cell clusteringwas performed via Seurat’s “Find-
Clusters” and “FindNeighbors” functions, and the results
were visualized via t-SNE mapping. Cellular annotation
was conducted by referencing signature genes associated
with specific cell types. Additionally, we utilized the “Add
Module Score” function from the Seurat package to assess
the activity levels of specific gene sets within individual
cells.

2.3 Consistency Clustering
We identified 39 of the total-167 genes

(Supplementary Table 1) associated with efferocytosis
that exhibited prognostic significance for overall survival
(OS) and disease-free survival (DFS). Seven genes were
subsequently found to be significantly associated with
both OS and DFS. A panel of five genes was ultimately
selected from these seven genes. The top ten genes were
analyzed for protein‒protein interactions via the STRING
database (https://cn.string-db.org/, version 12.0) to high-
light their enrichment. “Consensus Cluster Plus” package
(version 1.70.0, https://cran.r-project.org/web/packages or
https://www.bioconductor.org/) was used for consistency
clustering to categorize PDAC patients into two subgroups.
Significant differences in the clinical and prognostic
characteristics were observed between the two subgroups
of PDAC patients across the two independent cohorts.

2.4 Functional Enrichment Analysis
To explore the biological pathways and processes

associated with efferocytosis-related genes (ERGs) and
models (ERMs), we used the Cluster Profiler R package
(version 4.10.1, https://cran.r-project.org/web/packages or
https://www.bioconductor.org/) for Gene Ontology (GO,
https://geneontology.org/), Kyoto Encyclopedia of Genes
and Genomes (KEGG, https://www.kegg.jp/), and gene
set enrichment (GSEA, https://www.gsea-msigdb.org/gsea
/index.jsp) analyses. These analyses identified key func-
tions, pathways, and molecular interactions involved in ef-
ferocytosis. Additionally, we applied gene set variation
analysis (GSVA, https://www.bioconductor.org/packages/
devel/bioc/html/GSVA.html) to reveal activated or sup-
pressed pathways involved in efferocytosis.

2.5 Construction of the ER Risk Scoring System (ERGRS)
All efferocytosis-related genes were simultaneously

included as predictors in a Cox proportional-hazard model
with an L1 penalty (LASSO). The procedure was run 100
times; in each run a ten-fold cross-validation identified the
penalty parameter (λ) that minimized the cross-validated
partial-likelihood deviance, after which genes with non-
zero coefficients were recorded. Genes retained in >50%
of the 100 iterations were defined as stable predictors with
only four genes meeting this stability criterion: ASPH,
EMP1, FNDC3B and LGALS3. Their mean β-coefficients
across the iterations were taken as weights, yielding the fi-
nal four-gene risk-score formula. Based on this signature,
we constructed an ER risk scoring system, the ERGRS, via
the following formula: Risk Score = ASPH × (0.0359) +
EMP1 × (0.131) + FNDC3B × (0.0372) + LGALS3 ×
(0.3).

2.6 Random Survival Forests Model
To establish a robust predictive framework, we im-

plemented a random forest-based algorithm for the fea-
ture selection. Each forest was grown with ntree = 1000,
nodesize = 5, bootstrap sampling (samptype = “swr”), and
mtry ≈ √

p (where p is the number of candidate genes),
while the out-of-bag (OOB) error was tracked to confirm
convergence. The permutation-based variable importance
(VIMP) was extracted from every run, and the mean VIMP
over 100 forests was taken as the final importance score.
Genes were ranked by this average VIMP, and scores were
accumulated in descending order until 90% of the total im-
portance was reached, yielding four top-contributing genes.
This process identified the four prognostic biomarkers with
significant discriminatory power in PDAC.

2.7 Cell Culture and Transfection Procedures
Human pancreatic cancer cell lines (ASPC-1 and

BxPC-3) were obtained from the American Type Cul-
ture Collection (ATCC, Manassas, VA, USA), and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS),
100 U/mL penicillin, and 100 mg/mL streptomycin
(all products purchased from Thermo Fisher Scien-
tific, Chicago, IL, USA). All cell lines were authenti-
cated via short tandem repeat (STR) DNA fingerprint-
ing and tested negative for mycoplasma. Small in-
terfering RNAs (siRNAs) specifically targeting ASPH
(siRNA1 5′-TCACGTGGTTTATGGTGAT-3′ and siRNA2
5′-TGTGGATGATGCCAAAGTT-3′) and a control inter-
fering RNA were obtained from Guangzhou RiboBio Co.,
Ltd., Guangzhou, Guangdong, China. For the tran-
sient transfection, ASPC-1 cells were transfected with
the siRNA using Lipofectamine 2000 (11668019, Invitro-
gen™, Waltham, MA, USA) for 12 hours following which
functional assays and the subsequent experiments were con-
ducted.
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2.8 Multiplex Immunofluorescent (mIF) Staining and
Immunohistochemistry (IHC) Analysis

We obtained tissue samples from patients with pri-
mary PDAC patients were obtained from who had under-
gone duodenopancreatectomy or pancreatospenectomy at
the Department of General Surgery, Beijing Chaoyang Hos-
pital. The collection and utilization of these tissues were
conducted following the protocol approved by the Ethics
Committee of the Beijing Chaoyang Hospital of Capital
Medical University (approval No. 2018-K-99), with in-
formed consent obtained from all participants. Paraffin-
embedded 5 µm thick sections were prepared for multi-
plex immunohistochemical staining. Specifically, the sec-
tions were deparaffinized and subjected to heat-induced
epitope retrieval in Tris buffer (pH 8.0). A four-marker
panel consisting of EREG (Epiregulin, 12048), SMA
(Smooth Muscle Actin (α-SMA), 19245), PanCK (Pan-
Cytokeratin, 4545), CD206 (Mannose Receptor (MRC1),
24595) (All products are sourced from Cell Signaling Tech-
nology, Inc., located in Danvers, MA, USA.), and DAPI
was employed. Horseradish Peroxidase (HRP)-conjugated
anti-rabbit/mouse TSA (Cat#abs50015, Absin, Shanghai,
China) was used as the secondary antibody. The visual-
ization of each biomarker was achieved via tyramine sig-
nal amplification-conjugated fluorophores (PerkinElmer,
Naperville, IL, USA). Overlapping regions of interest were
analyzed per slide according to previously established pro-
tocols. For the IHC analysis, a total of eight pairs of
paraffin-embedded PDAC tissues and adjacent normal tis-
sues were collected to assess the ASPH expression. The tis-
sue slides were processed through deparaffinization, rehy-
dration, and peroxidase quenching. 3,3’-Diaminobenzidine
Tetrahydrochloride (DAB) staining and hematoxylin coun-
terstaining were performed, and the slides were prepared
for microscopic examination as described in our previous
report. The staining intensity and percentage of positive
cells were scored.

2.9 Real Time PCR Analysis

Total cellular RNA was extracted using TRIzol
reagent and subsequently reverse-transcribed into cDNA
using Moloney murine leukemia virus (M-MLV) re-
verse transcriptase (28025013, Invitrogen™, Waltham,
MA, USA). Quantitative PCR (q-PCR) was then car-
ried out with SYBR Green PCR Mix (A25742, Applied
Biosystems, Foster City, CA, USA) on an ABI 7500
Fast Real-Time PCR System (Applied Biosystems, Fos-
ter City, CA, USA). The relative gene expression lev-
els were calculated using the ∆Ct method: ∆Ct = Ct
(target gene) – Ct (GAPDH). The primer sequences used
were as follows: Snail: Forward Primer TCGGAAGCC-
TAACTACAGCGA; Reverse Primer AGATGAGCATTG-
GCAGCGAG; Slug: Forward Primer CGAACTGGACA-
CACATACAGTG; Reverse Primer CTGAGGATCTCTG-
GTTGTGGT; Twist: Forward Primer GCCTAGAGTTGC-

CGACTTATG; Reverse Primer TGCGTTTCCTGTTAAG-
GTAGC. All primers were synthesized by Beijing Sangon
Biotech (Beijing, China). q-PCR data are presented as
Mean ± Standard Deviation (SD) from three independent
experiments.

2.10 Cell Proliferation Assay
The cell viability and proliferation were assessed via

the Cell Counting Kit-8 (CCK-8) reagent (CK04, Dojindo
Molecular Technologies, Inc., Tokyo, Japan) following the
manufacturer’s instructions. The treated cells were eval-
uated at 12, 24, 48, and 72 hours post-transfection. The
absorbance at 490 nm was measured via a multimode
microplate reader (BMG Labtech ClarioStar, Cary, NC,
USA).

2.11 ATP Activity Assays
The ATP Content Assay Kit (BC0300, Solarbio, Bei-

jing, China) was employed to quantify intracellular ATP
production in accordance with the manufacturer’s instruc-
tions.

2.12 Cell Cycle Analysis
The cells were collected and washed, followed by

incubation with propidium iodide (PI) staining solution
(P1304MP, Invitrogen™, Waltham, MA, USA) and 10 µL
of permeabilization solution for 30 minutes at room tem-
perature in the dark. The cell cycle distribution was subse-
quently analyzed via flow cytometry (BD Biosciences, San
Diego, CA, USA).

2.13 Statistical Analysis
The results of the cell proliferation assay are presented

as means ± standard deviations. The Kaplan–Meier sur-
vival curves were generated using the survminer R pack-
age (version 0.4.9, https://cran.r-project.org/web/packages
or https://www.bioconductor.org/). A Wilcoxon signed-
rank test was employed to compare the significant differ-
ences between the two subgroups. Differences between the
groups were determined via the two-tailed Student’s t-test
or the χ2 test with Fisher’s exact probability method via
GraphPad Prism software version 7.0 (GraphPad Software,
Inc., Boston, MA, USA). For multiple tests, the Bonfer-
roni‒Holm procedure was applied. The results with *, p
< 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001
were considered statistically significant.

3. Results
3.1 Identification of 14 Hub Genes Related to Efferocytosis

Using the RNA-seq dataset of 179 PDAC samples
from the TCGA database, we acquired 167 efferocytosis-
related genes (ERGs) from the literature, and employed
one-wayCox regression analysis to identify 21 and 18 prog-
nostic genes linked to the OS and DFS of patients with
PDAC, respectively (Fig. 1A). A comparison of the PDAC
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Fig. 1. Identification of 39 hub genes related to efferocytosis. (A) The significant prognostic value of OS (11 red boxes, 10 blue
boxes) and DFS (13 red boxes, 5 blue boxes) upon ERGs in PDAC. (B,C) Box plots depicting upregulated (B) and downregulated (C)
genes both in OS and DFS. *, p < 0.05. (D) Box plots depicting the mixed RNA expression of 5 poor survival-related genes in PDAC
tumor and normal tissues. *, p < 0.05. (E) Kaplan-Meier survival curves illustrating that the 5 genes correlated with poor survival
in PDAC patients. (F) KEGG analysis of the 5 genes involved in these pathways. (G) Top 10 genes correlated with the 5 genes in
PDAC according to the PCC. (H) LGALS3 was positively correlated with the 5 genes. (I) Venn diagram showing each of the top 100
genes related to LGALS3 in PDAC tumor and normal tissues. (J) Forest plot of these genes. (K) Distribution and mutation frequency
of ERGs in the TCGA-PDAC cohort. (L) The frequency of CNV alterations in ERGs, with bar height indicating mutation frequency.
ERGs, efferocytosis-related genes; PDAC, pancreatic ductal adenocarcinoma; OS, overall survival; DFS, disease-free survival; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PCC, pearson correlation coefficient; TCGA, the Cancer Genome Atlas; CNV, copy number
variation.
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tumor samples and 171 normal tissue samples revealed that
5 (DUSP4, ASPH, MMP14, EMP1, and EREG) of these
genes, which are associated with poor survival, were up-
regulated in tumors (Fig. 1B). In contrast, 2 genes (JUND
and EPB41L3) associated with favorable survival were also
upregulated in tumors (Fig. 1C). We subsequently utilized
the same database to analyze a panel composed of the dif-
ferential expression patterns of these five genes between
PDAC tumor and normal tissues. Our analysis revealed sig-
nificant differences in the expression levels between tumor
and normal samples in this panel (Fig. 1D). The Kaplan-
Meier (K‒M) survival analysis revealed a correlation be-
tween the PDAC patients’ OS and gene expression with this
compound (Fig. 1E). KEGG analysis revealed that these
genes are involved in pathways enriched in both tumor and
normal tissues, as illustrated by the molecular functions,
cellular components, and biological processes depicted in
Fig. 1F. For example, the transferase activity; cytokine ac-
tivity; and extracellular-integrin complex and ErbB1 sig-
nalling were enriched in tumor samples, whereas GTPase
activity; lysosome, exosome and VEGF; and the VEGF re-
ceptor network were enriched in normal samples. Through
a protein‒protein interaction (PPI) analysis via the STRING
database, we identified the top 10 genes that strongly cor-
related with the 5 target genes in pancreatic cancer cells,
as evidenced by their high pearson correlation coefficient
(PCC) scores, as shown in Fig. 1G.

3.2 The “14-Gene Panel” was Screened via
Bioinformatics Approaches.

Given its established role as a strong prognostic
marker for PDAC, as previously reported by our team and
others [15,16], LGALS3, a member of the galectin family, is
positively correlated with the expression of these five sig-
natures in both tumor and normal tissues (Fig. 1H). We fur-
ther identified the top 100 genes in PDAC tumor and normal
tissues that were correlated with LGALS3. As illustrated in
the Venn diagram (Fig. 1I), RTN4,MAP4K4, PANX1, PLS3,
FNDC3B, and RBMS1 exhibited significantly greater cor-
relations with tumor samples; ITGB1, ADAM17, and PI-
CALM were correlated with both tumor and normal sam-
ples; notably, only PPP3R1was highly correlated with nor-
mal samples alone. Next, a univariate Cox regression anal-
ysis was performed to generate a significant forest plot for
14 genes, except for RTN4 (Fig. 1J). Among the 173 pa-
tients with PDAC, ER-related gene mutations were iden-
tified in 2.31% (4 patients). RBMS1 presented the high-
est mutation frequency, followed closely by ADAM17 and
ASPH, as illustrated in Fig. 1K. Additionally, we observed
varying degrees of DNA copy number variation (CNV)
among the ERGs. As shown in Fig. 1L, RBMS1 displayed
extensive CNV amplification, whereas some ERGs pre-
sented CNV depletion specifically.

3.3 Two Distinct Groups of PDAC Patients Categorized
via Consistent Clustering

The principal component analysis (PCA) revealed that
the distribution of the aforementioned 14 genes (“14-gene
panel”) in all the pancreatic cancer samples presented two
subpopulations (Fig. 2A). We successfully classified the
PDAC patients into two distinct types by employing un-
supervised clustering of this panel. The optimal number
of clusters, k = 2, was used to divide the entire cohort into
Cluster C1 (consisting of 111 patients) and Cluster C2 (con-
sisting of 33 patients) (Fig. 2B,C). The Kaplan‒Meier sur-
vival analysis demonstrated significantly improved prog-
nosis in Cluster C2 patients compared with those in the
Cluster C1 patients (p = 0.015), as shown in Fig. 2D. No-
tably, the RNA level of each component in the panel was
weakly expressed in the Cluster C2, as shown in Fig. 2E.
To further investigate the biological characteristics of these
two subtypes, we conducted GSVA. The C1 subtype was
significantly enriched in oncogenic pathways, including
cell mitosis, protein secretion, focal adhesion, and epithe-
lial‒mesenchymal transition (EMT). In contrast, the C2
subtype was enriched in metabolic pathways, including
retinol metabolism, diabetes mellitus, and olfactory trans-
duction signalling (Fig. 2F). The GSEA using hallmark and
ontology gene sets from theMolecular Signatures Database
(MSigDB) further revealed the significant enrichment of
the EMT-related pathways in the C1 subgroup, whereas
the C2 subgroup exhibited enrichment in the large ribo-
somal subunit pathways, as illustrated in Fig. 2G,H. The
PDAC patients were stratified into three groups accord-
ing to the “14-gene panel” expression signature, as shown
in the volcano plot. The genes encoding YAP1, ITGAV,
MMP7, CST6, and COL11A1 were significantly upregu-
lated (Fig. 2I). We then conducted a KEGG functional en-
richment analysis of differentially expressed genes (DEGs),
which revealed that high expression of the “14-gene panel”
signature is associated with the assembly and activation of
the focal adhesion, phosphatidylinositol-3-kinase- protein
kinase B (PI3K-AKT), mitogen-activated protein kinases
(MAPK), and hippo signaling pathways. In contrast, the
downregulated genes are involved in pathways related to
protein and fat digestion and absorption (Fig. 2J,K).

3.4 Core Role of the “LEAF” of the “14-Gene Panel” in
Prognosis

It was necessary to explore the potential prognos-
tic significance of the “14-gene panel” signature owing
to its limited prognostic clustering in the TCGA cohort,
as demonstrated by the receiver operating characteristic
(ROC) analysis, with the area under the curve (AUC) val-
ues of 0.42, 0.34, and 0.08 at 1 year, 3 years, and 5 years,
respectively (Supplementary Fig. 1A), and as further con-
firmed via the univariate and multivariate Cox regression
analyses, which indicated that the “14-gene panel” was not
a significant independent prognostic predictor for PDAC
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Fig. 2. Two types of PDACpatients were categorized by “14-gene panel” clustering. (A) The scatter plot displays the gene distribution
and subgrouping of PDAC patients. (B) The TCGA-PDAC cohort was clustered into C1 and C2 molecular subgroups on the basis
of 14 ERGs. (C) The clustering results were best when k = 2 from 2–5 cumulative distribution function values. (D) K‒M survival
analysis of the prognosis of C1 and C2 patients. (E) ERG expression levels varied between the two clusters. (F) GSVA revealed
the hallmark pathways distinguishing clusters, with red indicating promotion and blue signifying inhibition. (G,H) GSEA enrichment
analysis, including hallmark gene sets (G) and ontology gene sets (H). (I) Volcanomap of “14-gene panel”-associated genes in the TCGA-
PDAC cohort. (J,K) KEGG analysis of upregulated (J) and downregulated (K) genes among the DEGs. K‒M, Kaplan-Meier; GSVA,
gene set variation analysis; GSEA, gene set enrichment analysis; DEGs, differentially expressed genes.
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(Supplementary Fig. 1B,C). To this end, least abso-
lute shrinkage and selection operator (LASSO) regression
and multivariate Cox modelling were applied to develop
ER-associated prognostic signatures. We performed ten-
fold cross-validation on these genes through 100 iterations,
identifying the four key genes—LGALS3, EMP1, ASPH,
and FNDC3B—termed the “LEAF” signature (Fig. 3A)
with the best λ (–2.96) (Fig. 3B). We further determined
the selection frequency of this model, which revealed the
“LEAF” signature as the most critical gene among the “14-
gene panel” genes (Fig. 3C), which were scored based
on their stability and contribution (Fig. 3D). These genes
demonstrated promising early-stage diagnostic potential in
PDAC. The PDAC patients were categorized into high-
risk and low-risk groups based on the median risk score.
The K‒M analysis revealed that the patients in the low-
risk group had better overall survival (Fig. 3E), and the
ROC analysis of the “LEAF” signature in the TCGA co-
hort revealed robust prognostic discrimination, with AUC
values of 0.75 at 1 year, 0.89 at 3 years, and 0.95 at
5 years, indicating an excellent temporal predictive per-
formance (Fig. 3F). We compared the high-risk and low-
risk groups via the “LEAF” signature, and generated a
clinical risk factor heatmap that highlighted distinct “14-
gene panel” expression patterns. Notably, all the “14-gene
panel” genes presented increased expression in deceased
patients (Fig. 3G).We explored the high and low expression
levels of the LEAFs in the TCGA database and identified
the biological processes and signalling pathways associ-
ated with each group. High “LEAF” expression correlated
with processes such as the mitotic spindle, Notch signaling,
the G2M checkpoint, and adhesion junctions, whereas low
“LEAF” expression correlated with olfactory and diabetes
metabolism, as shown in the heatmap (Fig. 3H). These re-
sults aligns with the signaling pathways identified via the
“14-gene panel” in Fig. 2J,K. Finally, we employed both
univariate and multivariate Cox regression analyses to val-
idate cluster grouping as a standalone prognostic indicator
for PDAC (Fig. 3I,J). These data indicate that the “LEAF”
signature plays a central role in the prognostic capability of
the “14-gene panel” model.

3.5 Key Genes Identified via Deep Learning Models

To elucidate the role of efferocytosis in the prognoses
of patients with PDAC, we employed random survival for-
est (RSF) algorithms to strategically identify the key effe-
rocytosis genes associated with patient outcomes. We iden-
tified four prognostic biomarkers with significant discrimi-
natory power; namely, LGALS3, EREG, ASPH, and PLS3,
also called “LEAP”. Integrating the LASSO analysis re-
sults, we identified LGALS3 and ASPH as the two pivotal
genes involved in efferocytosis, which are significantly cor-
related with the prognoses of patients with PDAC (Fig. 4A).
To validate the relationship between LGALS3 and ASPH,
we established a genetically modified PDAC cell line over-

expressing LGALS3, as shown in Fig. 4B, in which both
the RNA and protein levels of LGALS3 are low in BxPC-
3 cells. RNA sequencing revealed the gene distribution
across distinct groups through a Venn diagram, intersecting
four dimensions: (1) highly expressed genes in LGALS3-
overexpressing BxPC-3 cells versus control cells; (2) the
top 100 genes correlated with LGALS3 in tumor tissue; (3)
the top 100 genes correlated with LGALS3 in normal tissue;
and (4) a total of 167 efferocytosis-related genes (Fig. 4C).
Interestingly, LGALS3 overexpression resulted in the iden-
tification of only one common gene expressed in both the
tumor and normal samples: ITGB1, as shown in Fig. 1I. Ad-
ditionally, only ASPH was found at the intersection of the
tumor and RNA-seq groups. Importantly, EREG was not
associated with the sequencing outcomes but emerged only
at the intersection of the tumor group and the efferocytosis-
associated genes, implying that the EREG expression is not
dependent on tumor cells but is more likely to affect other
tissue cells within the tumor microenvironment, and that
ASPH is specific to tumor cells.

3.6 ASPH Expression in PDAC Tumors and Its Function in
the Cell Cycle

The RNA levels of ASPH are significantly greater in
tumor tissues than in adjacent nontumor tissues across vari-
ous solid tumor types, including liver, esophageal, and pan-
creatic cancer tumors (Fig. 4D). The Human Protein Atlas
database (https://www.proteinatlas.org/) provides patho-
logical images of ASPH from amale patient with pancreatic
cancer (Fig. 4E). A correlation analysis revealed a direct re-
lationship between the ASPH and LGALS3 expression lev-
els in tumor tissues (Fig. 4F), as well as a significant as-
sociation between the ASPH expression and pathological
grade (Fig. 4G). An immunohistochemistry analysis was
performed to analyze the ASPH localization and expres-
sion levels in eight paired PDAC tissues and adjacent non-
neoplastic pancreatic tissues to better understand the ASPH
protein expression in clinical cases (Fig. 4H). The results
demonstrated specific ASPH immunoreactivity in all the
adenocarcinoma samples, with both the positivity and stain-
ing intensity exceeding 50%. In contrast, the adjacent nor-
mal tissues exhibited minimal detectable staining, with pos-
itivity below 20% and an intensity less than 50% (Fig. 4I).
Consequently, we established the pancreatic cancer cell line
ASPC-1withASPH knockdown (Fig. 4J) to further validate
the ASPH effect on the mitotic spindle function and G2/M
checkpoint, as described in Fig. 3H. As shown in Fig. 4K,
the ASPH silencing reduced the tumor cell proliferation.
A flow cytometry analysis revealed an increased propor-
tion of cells in the G2/M phase following the ASPH down-
regulation (Fig. 4L). Furthermore, an enzyme-linked im-
munosorbent assay (ELISA) was conducted to quantify the
increase in the ATP production following the ASPH knock-
down (Fig. 4M).
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Fig. 3. Development and verification of prognostic indicators related to “LEAF” genes. (A) Coefficient selection under LASSO
regression analyses with “LEAF” genes. The vertical line is drawn at the optimal λ value determined. (B) Tenfold cross-validation for
parameter tuning adjusted through LASSO regression. (C) Feature selection frequency of “14-gene panel” genes in the TCGA-PDAC
cohort through 100 deep learning steps. (D) Bar chart depicting the difference in the above “14-gene panel” gene scores in terms of
their stability and contribution. (E) Survival curves generated via the Kaplan‒Meier method for the high-risk and low-risk groups. (F)
Time‒dependent ROC curve analysis of the TCGA-PDAC cohort after deep learning. (G) Heatmap showing the clinical risk factors
associated with the “LEAF” expression pattern. (H) Heatmap of biological processes or signaling pathways in the high-risk and low-
risk groups. Red symbolizes advancement, whereas blue signifies restraint. (I,J) Through the use of “LEAF” genes, univariate (I) and
multivariate (J) Cox model analyses of clinicopathologic factors and gene subtypes were performed. LASSO, least absolute shrinkage
and selection operator; ROC, receiver operating characteristic.
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Fig. 4. ASPH expression promotes PDAC progression. (A) Venn diagram showing “14-gene panel” expression in tumor and normal
tissues selected by the LASSO regression and random survival forest (RSF) algorithms. (B) RNA and protein levels of LGALS3 in PDAC
cell lines. The red arrow pointed out the low expression of ASPH in BxPC-3. (C) Venn diagram of the top 100 genes related to LGALS3
in tumors and normal tissues; sequencing of LGALS3 genetic cells compared with vector control cells; and identification of ER genes
from the Molecular Signatures Database. These genes cross four distinct groups. (D) Expression level of ASPH across cancers. (E)
Pathological ASPH staining images of a male pancreatic cancer patient (HPA059303) from the Human Protein Atlas (HPA) database.
Scale bar = 200 µm. (F) Positive correlation between ASPH and LGASL3. (G) Relationship between ASPH and pathological grade in the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) samples. (H) Specific ASPH immunoreactivity between tumor and adjacent
normal tissues by IHC. Scale bar = 200 µm. (I) The positive rate and intensity of ASPH expression were calculated. (J) The proliferation
rates of PDAC cells with or without ASPH knockdown. (K) The efficiency of the RNA level of ASPH. (L) Flow cytometry analysis of
the proportion of G2/M phase-arresting PDAC cells treated with or without ASPH knockdown. The red arrows denote distinct phases of
the cell cycle, specifically the G0/G1 phase, the S phase, and the G2/M phase. (M) The detection of ATP production using ELISA assay
with three independent experiments. **, p < 0.01, ***, p < 0.001 and ****, p < 0.0001 were considered statistically significant.
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3.7 ASPH Contributes to Cell Migration Through the EMT
Phenotype

We further identified seven primary clusters with spe-
cific marker genes in each cell population via single-cell
sequencing data from the GEO database (GSE: 154778)
(Fig. 5A), based on the aforementioned exploration of
EMT hallmarks via the bioinformatics analysis of the “14-
gene panel” characteristics described in Fig. 2F. The uni-
form manifold approximation and projection (UMAP) and
heatmap analyses demonstrated that the EMT population
was distinctly separated from the other cell populations
(Fig. 5A,B). The ERmodule scores highlight the EMT pop-
ulation, which is characterized by high scores for both “14-
gene panel” genes and “LEAF” genes (Fig. 5C). The ASPH
expression was significantly increased in the epithelial tu-
mor cell (ETC) and EMT populations (Fig. 5D). To further
validate the functional phenotype of ASPH, we conducted
the Boyden chamber assays using ASPH-knockdown cell
lines and found that the cell migration was markedly re-
duced following ASPH silencing (Fig. 5E). In addition,
classical molecular EMT markers were detected on ASPH-
silencing cells via RT-PCR. The ASPH knockdown reduced
the Snail, Slug, and Twist RNA levels remarkably (Fig. 5F).
These data indicate that the ASPH expression in tumor cells
drives their migratory characteristics via the EMT pheno-
type.

3.8 EREG Participates in the Evaluation System by
Influencing Immune Cells in the TME

Since the EREG gene from “LEAP” was identified
in the RSF analysis, as illustrated in the Venn diagram in
Fig. 4C, we further compared the EREG expression lev-
els between tumor tissues and their adjacent normal tis-
sues across various solid tumors, including colorectal can-
cer, renal cell carcinoma, and pancreatic cancer tumors
(Fig. 6A). Notably, we observed a significant increase in
the EREG activity within tumor-associated macrophages
(TAMs) compared with that in the other cell types in
GSE154778 (Fig. 6B). We subsequently acquired single-
cell RNA sequencing data from patients with PDAC from
the CRA001160 database, adhering to the methodology
outlined in the TISCH2 database. By leveraging marker
genes characteristic of distinct cell types, we successfully
classified the cells into twelve primary clusters: acinar
cells; B cells; CD8+ T cells; dendritic cells (DCs); duc-
tal cells; endocrine cells; endothelial cells; fibroblasts,
malignant cells; monocytes/macrophages; plasma cells;
and stellate cells. The EREG expression was signifi-
cantly elevated in the monocyte/macrophage subpopulation
(Fig. 6C). To elucidate the role of EREG in monocytes and
macrophages, we analyzed its distribution across mono-
cytes, M1 macrophages, and M2 macrophages. The box
plot in Fig. 6D shows that the EREG expression levels were
significantly higher in macrophages than those in mono-
cytes. Additionally, as shown in Fig. 6E, the EREG expres-

sion was notably greater in M2 macrophages than that in
M1 macrophages. Finally, we observed the colocalization
of EREG and CD206 in pancreatic cancer tissues via mul-
tiplex immunofluorescence staining (Fig. 6F). This exper-
imental evidence further confirms that EREG plays a role
in the function of tumor-associated immune cells, particu-
larly M2 macrophages, and facilitates a more comprehen-
sive evaluation of the “14-gene panel” system. The work-
flow of this study is illustrated in Fig. 6G. This method in-
volved the identification of 14 critical risk genes from the
ER database via OS/DFS data and PCC screening, followed
by deep learning analysis. The primary focus was on the
role of three target genes in tumor, stromal, and immune
cells within the TME: ASPH, LGALS3, and EREG.

4. Discussion
Globally, the general incidence rate of pancreatic can-

cer is approximately 15 per 100,000 people, with pancre-
atic ductal adenocarcinoma being the most common histo-
logic subtype [6]. However, this rate has been gradually
increasing over time. Because the symptoms of pancreatic
cancer are often nonspecific and subtle, it frequently es-
capes detection, resulting in the majority of patients being
diagnosed at advanced stages when nonsurgical treatments
(e.g., FU, oxaliplatin, leucovorin, irinotecan (FOLFIRI-
NOX), and gemcitabine with nab-paclitaxel) are the only
available options [2]. Although novel chemotherapeutic
agents targeting drugs and immunosuppressants have been
developed, such as “MRTX1133” for harboring KRAS G12D

mutations, “HBI-2376” for advanced solid tumors with
KRAS G12D mutations, “olaparib” for BRCA1, BRCA2, or
PALB2 mutations, and “maintenance SBRT + ipilimumab
+ nivolumab” [17,18]. PDAC remains the leading cause
of life-threatening health problems in patients with cancer.
Therefore, the identification of biomarkers associated with
novel insights into PDAC risk assessment is critically im-
portant.

Efferocytosis, a novel multistep cellular process, is
a crucial mechanism through which phagocytes, includ-
ing macrophages, DCs, monocytes, and epithelial cells,
clear and recycle severely damaged or apoptotic cells [19].
A previous study demonstrated that the features of effe-
rocytosis in lung cancer can accurately predict the clini-
cal prognosis and treatment response [20]. Moreover, the
efferocytosis-mediated clearance of parenchymal dead cells
promotes macrophage reprogramming and liver metasta-
sis in patients with PDAC [21]. A recent report revealed
that the blockade of PI3Kγ signaling restricts inflamma-
tory macrophages through MER Proto-Oncogene Tyrosine
Kinase (MERTK)-dependent efferocytosis, effectively con-
verting immune-tolerant myeloid populations into profi-
cient antigen-presenting cells [22] while dismantling the fi-
brotic tumor stromata characteristic of treatment-resistant
malignancies in PDAC [21]. Hence, from multiple per-
spectives encompassing tumor cells, stromal components,
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Fig. 5. ASPH is related to migration through EMT. (A) Seven cell clusters were identified in the PDAC samples via a UMAP plot. (B)
The heatmap indicates 3 marker genes in each cell population specific to different cell types. (C) Violin plot showing the efferocytosis
module score for the “14-gene panel” cell cluster and “LEAF” group. (D) Feature plots illustrating the expression of ASPH at the single-
cell level. (E) Boyden chamber assay showing the effect of ASPH knockdown on cell migration. Scale bar = 200 µm. (F) The RNA levels
of EMT markers with ASPH knockdown cells with three independent experiments. **, p < 0.01 and ****, p < 0.0001 were considered
statistically significant. ETCs, epithelial tumor cells; TAMs, tumor-associated macrophages; EMT, epithelial‒mesenchymal transition;
CAFs, cancer-associated fibroblasts; Endos, endothelial cells; TILs, tumor-infiltrating lymphocytes; MASTs, mast cells; UMAP, uniform
manifold approximation and projection.

and tumor-associated immune cells, we emphasize the crit-
ical role of the early detection of the key efferocytosis-
related molecules in enhancing prognostic evaluation and
survival prediction for the patients of pancreatic cancer. In
this study, by employing bioinformatics analysis with data
from the TCGA, GTEx databases and several GEO profiles,
we focused on efferocytosis within the tumor microenvi-
ronment of PDAC. These datasets offered valuable insights
into efferocytosis-related genes, enabling us to identify a
panel of markers that might predict a poor prognosis in the
patients of PDAC.

Initially, in this study, 29 genes associated with a to-
tal of 218 efferocytosis-related genes were screened based
on OS andDFS. Among these genes, only seven genes were
significantly correlated with both survival metrics: DUSP4,
ASPH,MMP-14, EMP1, EREG, JUND, andEPB41L3. No-
tably, while JUND and EPB41L3 were associated with fa-
vorable survival outcomes, the other five genes (DUSP4,
ASPH, MMP-14, EMP1, and EREG) were associated with
poorer survival outcomes, as indicated by their higher ex-
pression levels in tumor tissues. Next, the top 10 correlated
genes associated with these five candidate genes were iden-

tified via Pearson’s correlation coefficient analysis. No-
tably, while PPP3R1 was correlated with normal tissues
andRTN4was not significantly associatedwith a poor prog-
nosis risk, the remaining eight-gene panel was strongly as-
sociated with high Gal-3 expression in tumor tissues. Ul-
timately, a 14-gene panel comprising LGALS3, MAP4K4,
PANX1, PLS3, FNDC3B, PBMS1, ITGB1, ADAM17, PI-
CALM, DUSP4, ASPH, MMP14, EMP1, and EREG was
identified as an efferocytosis-associated evaluation model.

We obtained a set of four genes (“LEAF”) by inter-
secting the genes identified through the LASSO algorithm.
Additionally, we identified another distinct set of four genes
(“LEAP”) via random survival forest (RSF) analysis, adopt-
ing the same naming convention as that used for the LEAF.
Notably, by performing a Venn diagram analysis on these
two gene sets, we identified two significant overlapping
genes: LGALS3 and ASPH. LGALS3 has previously been
reported to improve the ability of macrophages to ingest
efferocytosis [23]. Elevating the LGALS3 levels might
be a way to rescue efferocytosis in some diseases [24].
LGALS3 and efferocytosis are well established, yet they re-
main underreported in the literature. Our previous research
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Fig. 6. EREG affects M2 macrophage polarization. (A) The RNA expression level of EREG across cancers. (B) Violin plot showing
the EREG score for each cell type. (C) Twelve cell clusters were identified via a UMAP plot of the PDAC samples and feature plots indi-
cating the expression of EREG at the single-cell level. (D) Box line plot of the difference in EREG expression levels between monocytes
andmacrophages. (E) Comparison of the EREG expression levels betweenM1 andM2macrophages. (F)Multiplex immunofluorescence
staining showing the colocalization of EREG and CD206 in PDAC tissues. Scale bar = 200 µm. (G) The workflow of our research. *,
p < 0.05 and **, p < 0.01 were considered statistically significant. EREG, Epiregulin; SMA, Smooth Muscle Actin (α-SMA); PanCK,
Pan-Cytokeratin; CD206, Mannose Receptor (MRC1); PCC, Pearson correlation coefficient; GEO, Gene Expression Omnibus.

demonstrated a significant association between LGALS3
expression and poor prognoses in patients with pancre-
atic cancer metastasis through IL-8 secretion and integrin
β1 interaction in the TME [15], as well as its influence
on M2 macrophage polarization [25]. Targeting LGALS3
in combination with chemokine C-X-C motif ligand 12-
chemokine C-X-C motif receptor 4 (CXCL12-CXCR4) in-
hibition markedly enhances the efficacy of anti-PD-1 im-
munotherapy in the TME of pancreatic cancer [16]. There-
fore, in this study, we incorporated LGALS3 as a variable to
develop an evaluation model related to efferocytosis from
a novel perspective. ASPH is a gene that encodes an en-
zyme that belongs to the α-ketoglutarate-dependent dioxy-
genase family [26] and as a therapeutic target in cancer,

regulates the proliferation, invasion, and metastasis of pan-
creatic cancer through multiple signaling pathways [27,28].
For example, Activating the ASPH-Notch signaling axis
leads to matrix metalloproteinases/a disintegrin and met-
alloproteinase (MMP/ADAM)-mediated exosomes synthe-
sis and release, significantly boosting the breakdown of
the extracellular matrix in breast cancer cells [29]. More-
over, the highly expressed Aspartate β-Hydroxylase-SRC
Proto-Oncogene (ASPH-SRC) axis is significantly corre-
lated with a poor prognosis in pancreatic cancer, as its ac-
tivation promotes angiogenesis and metastasis [28]. In this
study, we explored the high ASPH expression in tumors
compared with that in normal tissues, as well as its de-
pendence on tumor stage. ASPH silencing significantly re-
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duced the proliferation of pancreatic cancer cells and the
EMT significance, such as the expression of the Snail, Slug
and Twist RNA levels. These findings are in accordance
with the content reported in a previous study, in which in-
terfering ASPH reduced the protein levels of N-cadherin
and Snail [30]. Additionally, ASPH knockdown induced
G2/M-phase arrest, characterized by an increased percent-
age of cells in the G2/M-phase. However, it remains un-
clear whether this effect is due to unrepaired DNA damage
or the suppression of mitosis [31]. This inhibition extends
tomultiple aspects of cancer biology, influencing tumor cell
growth, metastasis, the epithelial‒mesenchymal transition,
and angiogenesis.

One of the key consequences of efferocytosis in the
tumor microenvironment is the creation of an immunosup-
pressive milieu [10]. By clearing apoptotic cells, effe-
rocytosis reduces the presentation of antigens to the im-
mune system, thereby facilitating tumor immune escape
[32]. The major reaction of immune cells involved in ef-
ferocytosis is mediated primarily by macrophages, a fact
that has been consistently emphasized in numerous scien-
tific reports. Macrophages exhibit remarkable plasticity
and can adapt their functions based on the expression of key
genes and inflammatory responses. In this study, single-cell
sequencing analysis revealed that ASPH is expressed pre-
dominantly in epithelial cells. In addition, EREG enrich-
ment was observed in monocytic and macrophage subpop-
ulations. EREG was identified through the cross-screening
of Gal-3-associated genes from tumors and efferocytosis-
related genes. However, it was not detected in our RNA-
sequencing data from BxPC-3/Gal-3 OE cells, suggesting
that EREG may have a limited association with tumor cells
themselves but is likely related to other cell types within
the TME. For example, a recent study showed that EREG,
released by TAMs, may increase the resistance of can-
cer cells to treatment in the TME [33]. Soluble EREG
is produced by senescent stromal cells, which non-cell-
autonomously develop the senescence-associated secretory
phenotype (SASP) upon DNA damage, and its expres-
sion pattern resembles that of other SASP factors, such as
CXCL8, Colony Stimulating Factor 2 (CSF2), Wnt Fam-
ily Member 16B (WNT16B), IL6, and MMP3 [34]. We
subsequently identified EREG as a marker prominently as-
sociated with macrophage subpopulations enriched in M2
polarization, as determined by single-cell sequencing and
multiplex immunohistochemistry analyses.

Although we did not conduct experimental investiga-
tions on the multiple gene markers, EMP1, FNDC3B, and
PLS3, identified through LASSO and RSF in this study, we
do not believe that the expressions of these genes are in-
significant in predicting pancreatic cancer. For example, it
has been reported in the literature that EMP1 plays a crucial
role in predicting tumor metastasis via the assessment of its
expression ratios in different macrophage subpopulations
[35]. Moreover, FNDC3B, a member of the fibronectin

type III domain-containing protein family, is a prognostic
biomarker and plays a pivotal role in driving the progression
of pancreatic cancer [36], and PLS3, an actin-binding pro-
tein, is a diagnostic and prognostic marker for PDAC [37].
These studies and evidence have verified that the genes we
selected play a significant role in determining the prognosis
of patients with PDAC [35–37].

In summary, efferocytosis, is a sophisticated cellu-
lar clearance mechanism across multiple hallmarks of can-
cer. Themechanistic dissection of efferocytosis-related sig-
naling cascades and their crosstalk with oncogenic path-
ways presents an urgent research frontier. In this study,
we not only revisited previously identified efferocytosis-
associated genes but also examined the genes networks
linking stromal and immune cells to predict the PDAC pro-
gression. As primary targets, LGALS3 and ASPH are piv-
otal; secondary targets include EMP1, FNDC3B, PLS3, and
EGER. By integrating these target genes into a compre-
hensive panel (“14-gene panel”) and precisely modulating
their molecular networks, we aim to revolutionize therapeu-
tic paradigms, potentially yielding dual benefits in tumor
microenvironment reprogramming and metastasis suppres-
sion.

5. Conclusion
This study re-examined efferocytosis-related genes

and explored network genes for the prediction of PDAC
progression. The integration of key targets into a panel,
comprising the “14-gene panel” genes, was performed with
the aim of transforming therapies to benefit tumor microen-
vironment reprogramming and metastasis suppression.
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